Skip to main content
. 2022 Jun 2;3(6):100522. doi: 10.1016/j.patter.2022.100522

Table 1.

Classification accuracy on MNIST, CIFAR10, and CIFAR100 datasets

Models Training method MNIST CIFAR10 CIFAR100
Spiking CNN44 conversion 82.95
BackRes45 BP 84.98
ContinueSNN46 conversion 99.44 90.85
Spike-Norm19 conversion 91.55
STBP31 BP 99.42 50.7
HM2BP33 BP 99.49
LISNN47 BP 99.5
BNTT48 BP 90.5 66.6
STBP NeuNorm32 BP 90.53
BackEISNN49 BP 99.67 90.93
SBPSNN43 BP 99.59 90.95
TSSL-BP34 BP 99.53 91.41
ST-RSBP50 BP 99.62
RNL51 conversion 99.51 93.45 75.1
SNASNet-Fw 52 NAS + BP 93.64 70.06
SNASNet-Bw 52 NAS + BP 94.12 73.04
Our method BP 99.67 92.15 68.28
Our method ResNet34 BP 94.51 69.32