Table 2.
Classification accuracy on N-MNIST, DVS-Gesture, and DVS-CIFAR10 datasets
| Models | Method | N-MNIST | DVS-Gesture | DVS-CIFAR10 |
|---|---|---|---|---|
| HM2-BP 33 | BP | 98.88 | – | – |
| SLAYER 53 | BP | 99.2 | 93.64 | – |
| TSSL-BP 30 34 | BP | 99.28 | – | – |
| IIRSNN 54 | BP | 99.28 | – | – |
| TSSL-BP 100 34 | BP | 99.4 | – | – |
| STBP 31 | BP | 99.44 | – | – |
| LISNN 47 | BP | 99.45 | – | – |
| STBP NeuNorm 32 | BP | 99.53 | – | 60.5 |
| BNTT 48 | BP | – | – | 63.2 |
| SALT 55 | BP | – | – | 67.1 |
| STBP-tdBN 56 | BP | – | 96.87 | 67.8 |
| LMCSNN 57 | BP | 99.61 | 97.57 | 74.8 |
| BackEISNN 49 | BP | 99.57 | – | – |
| Our method | BP | 99.71 | 98.96 | 78.95 |