Table 3.
Performance for federated molecular classification
| Dataset | α | Centralized training |
Federated learning |
|||||||
|---|---|---|---|---|---|---|---|---|---|---|
| MolNeta | FedChemaours | FedAvg | FedProx | MOON | FedFocalours | FedVATours | FLITours | FLIT+ours | ||
| Tox21 | 0.1 | 0.829 | 0.8182 | 0.7705 | 0.7732 | 0.7331 | 0.7696 | 0.7733 | 0.7711 | 0.7802b |
| 0.5 | 0.7811 | 0.7774 | 0.7461 | 0.7812 | 0.7787 | 0.7825 | 0.7870b | |||
| 1 | 0.7770 | 0.7775 | 0.7457 | 0.7881b | 0.7706 | 0.7748 | 0.7806 | |||
| SIDER | 0.1 | 0.638 | 0.6260 | 0.6029 | 0.6056b | 0.5885 | 0.6016 | 0.6027 | 0.6035 | 0.6038 |
| 0.5 | 0.6011 | 0.5931 | 0.5966 | 0.6086 | 0.5981 | 0.6096 | 0.6146b | |||
| 1 | 0.6011 | 0.6023 | 0.5901 | 0.6003 | 0.6053 | 0.6072 | 0.6174b | |||
| ClinTox | 0.1 | 0.832 | 0.8903 | 0.7491 | 0.7540 | 0.7892b | 0.7789b | 0.7581 | 0.7761 | 0.7775 |
| 0.5 | 0.7521 | 0.7423 | 0.7917b | 0.7770 | 0.7614 | 0.7888b | 0.7852 | |||
| 1 | 0.7784 | 0.7791 | 0.8001 | 0.8036b | 0.7743 | 0.7849 | 0.7993 | |||
| BBBP | 0.1 | 0.690 | 0.8674 | 0.8361 | 0.8610 | 0.8737b | 0.8550 | 0.8673b | 0.8666 | 0.8663 |
| 0.5 | 0.8594 | 0.8879b | 0.8865 | 0.8726 | 0.8641 | 0.8671 | 0.8774 | |||
| 1 | 0.8453 | 0.8557b | 0.8487 | 0.8378 | 0.8386 | 0.8515 | 0.8515 | |||
| BACE | 0.1 | 0.806 | 0.8834 | 0.8203 | 0.8328 | 0.8373 | 0.8253 | 0.8166 | 0.8242 | 0.8467b |
| 0.5 | 0.8212 | 0.8398 | 0.8285 | 0.8332 | 0.8417 | 0.8516 | 0.8667b | |||
| 1 | 0.8486 | 0.8408 | 0.8561 | 0.8497 | 0.8578b | 0.8497 | 0.8561 | |||
indicate if lower or higher numbers are better.
Results are obtained with centralized training.
Best federated-learning results.