Skip to main content
. 2022 Jun 2;3(6):100521. doi: 10.1016/j.patter.2022.100521

Table 3.

Performance for federated molecular classification

Dataset α Centralized training
Federated learning
MolNeta FedChemaours FedAvg FedProx MOON FedFocalours FedVATours FLITours FLIT+ours
Tox21 0.1 0.829 0.8182 0.7705 0.7732 0.7331 0.7696 0.7733 0.7711 0.7802b
0.5 0.7811 0.7774 0.7461 0.7812 0.7787 0.7825 0.7870b
1 0.7770 0.7775 0.7457 0.7881b 0.7706 0.7748 0.7806
SIDER 0.1 0.638 0.6260 0.6029 0.6056b 0.5885 0.6016 0.6027 0.6035 0.6038
0.5 0.6011 0.5931 0.5966 0.6086 0.5981 0.6096 0.6146b
1 0.6011 0.6023 0.5901 0.6003 0.6053 0.6072 0.6174b
ClinTox 0.1 0.832 0.8903 0.7491 0.7540 0.7892b 0.7789b 0.7581 0.7761 0.7775
0.5 0.7521 0.7423 0.7917b 0.7770 0.7614 0.7888b 0.7852
1 0.7784 0.7791 0.8001 0.8036b 0.7743 0.7849 0.7993
BBBP 0.1 0.690 0.8674 0.8361 0.8610 0.8737b 0.8550 0.8673b 0.8666 0.8663
0.5 0.8594 0.8879b 0.8865 0.8726 0.8641 0.8671 0.8774
1 0.8453 0.8557b 0.8487 0.8378 0.8386 0.8515 0.8515
BACE 0.1 0.806 0.8834 0.8203 0.8328 0.8373 0.8253 0.8166 0.8242 0.8467b
0.5 0.8212 0.8398 0.8285 0.8332 0.8417 0.8516 0.8667b
1 0.8486 0.8408 0.8561 0.8497 0.8578b 0.8497 0.8561

, indicate if lower or higher numbers are better.

a

Results are obtained with centralized training.

b

Best federated-learning results.