Table 7.
Differences in deep learning models
| RK | Model frameworks | Loss function | Training strategies |
|---|---|---|---|
| Sub-challenge 1: DR grading | |||
| 1 | EfficientNet33 | SL1 | MMoE + GMP + ES + OHEM + CV + O + T |
| 2 | EfficientNet33 | SL1 + CE + DV + PL | CV + TTA |
| 3 | EfficientNet33 | L1 + CE(5 class) | PLT |
| Sub-challenge 2: image quality assessment | |||
| 1 | SE-ResNeXt32 | CE | TL |
| 2 | ResNet31 | CS + L1 | TL |
| 3 | VGG,30 UNet39 | CE | TL |
| Sub-challenge 3: DR grading based on UWF fundus | |||
| 1 | EfficientNet33 | L1 + CE(5 class) | PLT |
| 2 | EfficientNet33 | SL1 | MMoE + GMP + ES + OHEM + CV + O + T |
| 3 | EfficientNet33 | CE | TL |
SL1, smooth L1 loss; CE, cross-entropy loss; DV, dual view loss; PL, patient-level loss; CS, cost-sensitive loss;40 L1, L1 loss; CE(5 class), mean loss of 5 class (one versus others); MMoE, multi-gate mixture of expert;41 GMP, generalized mean pooling;42 OHEM, online hard example mining;43,44 CV, cross-validation; O, oversampling; ES, early stopping; TL, transfer learning; TTA, test time augmentation;45,46 PLT, pseudo-labeled and labeled training.