Skip to main content
. 2022 Jun 7;10(6):e37804. doi: 10.2196/37804

Table 4.

Overall performance on multilevel event extraction compared with the state-of-the-art methods with gold standard entities.

Method Trigger recognition (%) Event extraction (%)

Precision Recall F1 score Precision Recall F1 score
EventMinea 70.79 81.69 75.84 62.28 49.56 55.20
SSLa,b 72.17 82.26 76.89 55.76 59.16 57.41
CNNa,c 80.92 75.23 77.97 60.56 56.23 58.31
mdBLSTMa,d 82.79 76.56 79.55 90.24 44.50 59.61
RLe+KBsa,f N/Ag N/A N/A 63.78 56.81 60.09
DeepEventMineh N/A N/A N/A 69.91 55.49 61.87
HANNh,i N/A N/A N/A 63.91 56.08 59.74
Our modelh 82.20 78.25 80.18 72.26 55.23 62.80j

aPipeline model.

bSSL: semisupervised learning.

cCNN: convolutional neural network.

dmdBLSTM: bidirectional long short-term memory with a multilevel attention mechanism and dependency-based word embeddings

eRL: reinforcement learning.

fKB: knowledge base

gN/A: not applicable.

hJoint model.

iHANN: hierarchical artificial neural network.

jThe best value compared with baselines.