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Abstract

Protein stability, dynamics and function are intricately linked. Accordingly, protein designers leverage dynamics in their designs and gain insight
to their successes and failures by analyzing their proteins’ dynamics. Molecular dynamics (MD) simulations are a powerful computational tool
for quantifying both local and global protein dynamics. This review highlights studies where MD simulations were applied to characterize the
stability and dynamics of designed proteins and where dynamics were incorporated into computational protein design. First, we discuss the
structural basis underlying the extreme stability and thermostability frequently observed in computationally designed proteins. Next, we discuss
examples of designed proteins, where dynamics were not explicitly accounted for in the design process, whose coordinated motions or active
site dynamics, as observed by MD simulation, enhanced or detracted from their function. Many protein functions depend on sizeable or subtle
conformational changes, so we finally discuss the computational design of proteins to perform a specific function that requires consideration of
motion by multi-state design.

Graphical Abstract

Keywords: molecular dynamics, fold switching, de novo protein design, consensus design, ancestral sequence reconstruction

https://doi.org/10.1093/protein/gzac001
https://orcid.org/0000-0002-9774-0608


2 The stability and dynamics of computationally designed proteins

Introduction

Proteins are dynamic molecules, and their dynamics are crit-
ical to their functions. Enzyme active sites may close around
their substrates, transporters change shape as they move sub-
strates across a membrane, signaling proteins change confor-
mation to bind a receptor or not and intrinsically disordered
regions may organize in the presence of a particular substrate.
Designed proteins adopt these sorts of motions too, some of
which may have been intentionally engineered by the designer,
and some not. Recent studies probing the dynamics of com-
putationally designed proteins have begun to shed light on
how designed proteins move, how their dynamics affect their
stabilities and functions, and how their stability and dynamics
depend on the technique by which they were designed. As
protein designers work towards a particular functional goal or
stability requirement, they may want to select a design strategy
that produces protein dynamics compatible with these goals.

We will discuss here proteins designed using two gen-
eral computational strategies, structure-based and sequence-
based, and begin with a brief summary of these techniques.
First, structure-based protein design begins with a preex-
isting or designed backbone scaffold, then computationally
optimizes the amino acid side chain and its conformation
at each position (Das and Baker, 2008; Huang et al., 2016;
Korendovych and DeGrado, 2020). Alternatively, the crit-
ical residues may be oriented, the backbone designed to
accommodate them and finally the remaining residues packed
in Kries et al. (2013). Design of proteins to adopt multi-
ple conformations requires modeling of the various states
(Davey and Chica, 2017; Korendovych, 2018; Mandell and
Kortemme, 2009). Second, consensus design and ancestral
sequence reconstruction (ASR) are two sequence-based, com-
putational techniques that use phylogenetic information from
multiple sequence alignments (MSAs). Consensus design takes
in the sequences of a family of proteins, aligns them in
an MSA and assigns each residue of the new, consensus
protein to be the most frequent amino acid found at that
position (Lehmann et al., 2000; Porebski and Buckle, 2016;
Sternke et al., 2020). ASR again takes in sequences of related
proteins, builds a phylogenetic tree and predicts the protein
sequences at the nodes, representing common ancestors (Risso
and Sanchez-Ruiz, 2017; Thornton, 2004). Based on the
reconstructed tree, it is possible to predict at what point in
time the common ancestors could have existed.

Computational protein design occurs at the atomic- and
residue-scale, and molecular dynamics (MD) simulations pro-
vide detailed structural and dynamic data at these scales. MD
simulations can provide relevant insight to the success of the
proteins in maintaining their designed conformations as well
as data on the dynamics and conformations populated over
time. MD simulations use Newtonian mechanics along with a
force field and energy function to calculate the movements of a
molecule’s atoms over time (Allen and Tildesley, 1989). These
simulations provide structural data on the atomic level and
femtosecond-to-microsecond timescales, allowing scientists to
assess local and global protein properties (Hollingsworth and
Dror, 2018; Karplus and McCammon, 2002). Although we
focus this review on proteins assessed by MD, MD data
becomes even more powerful when it can be validated and
enhanced by complimentary experimental data to paint a
full picture of protein stability and dynamics (Bottaro and
Lindorff-Larsen, 2018).

In this review, we first discuss the structural basis of stability
in computationally designed proteins as investigated by MD
simulations. Next, we compare the dynamics of designed pro-
teins, including coordinated motions and active site accessi-
bility and preorganization, when dynamics were not explicitly
considered in the design process. Finally, we discuss proteins
designed to perform a function where the function depends on
a conformational change or where insight to the functional
success was provided by analysis of the protein’s dynamics.
In conclusion, we discuss common stabilizing and dynamic
properties of designed proteins based on the design strategy
(Table I).

Assessment of Designed Proteins’ Stability

Protein folding is driven by burial of hydrophobic surface
area away from ordered water and favorable arrangements
of charged and nonpolar residues (Dill, 1990). Secondary
structure and tertiary contacts form, and most are maintained
as the protein moves towards the native structure (Fersht,
2008; Shea and Brooks III, 2001). Proteins constantly expe-
rience thermal fluctuations that may enhance or detract from
their ability to remain in the folded, native state (Dill and
MacCallum, 2012). Proteins found in thermophilic organisms
are thermostabilized through a variety of methods including
rigidification and shortening of loops, addition of surface salt
bridges and helix–dipole interactions, optimization of core
packing and increasing burial of hydrophobic surface area
(Jaenicke and Böhm, 1998; Russell and Taylor, 1995). Com-
putationally de novo designed proteins often end up being
extremely stable or thermostable (Baker, 2019), but it is not
obvious whether they are thermostable for the same reasons
as those that are naturally occurring. In this section, we review
the structural bases of stability (�G) and thermostability (Tm)
in engineered proteins that were designed without function
in mind.

Backbone rigidity is associated with
thermo/stability

Decreased backbone dynamics and conformational hetero-
geneity were observed in MD simulations of conserpin,
a protein designed from the consensus sequence of the
serpin family, relative to wild type serpins (Porebski et al.,
2016). These decreased dynamics were associated with
an increase in thermostability, measured experimentally.
Consensus-HD, another consensus protein designed based on
the homeodomain family, has a decrease in ps–ns backbone
dynamics as measured by 15N NMR relaxation studies, and
it is more stable than engrailed-HD, one of the wild type
sequences in the family, by 5 kcal/mol (Tripp et al., 2017).

Although MD simulations may be used to assess the stabil-
ity of a designed protein, they also provide data that can be
leveraged in designing proteins to be more stable. When the
goal of protein design is to stabilize a protein, this stability
may be assessed by quantifying the backbone motion of
the protein and residue contact frequencies. Analysis of salt
bridge networks in MD simulations of thermophilic carbonic
anhydrases (CAs) suggested three point mutations that were
inserted into a mesophilic CA to increase thermostability
(Bharatiy et al., 2016; Fig. 1a). These mutations successfully
increased its conformational stability, as measured by RMS-
D/F of the backbone in high-temperature MD simulations.
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Table I. Dynamic properties of computationally designed proteins

Designed protein Design strategy Dynamic properties Reference(s)

Alpha-carbonic anhydrase Insertion of strategic
point mutations inspired
by MD of a thermophilic
homologue

Decreased RMSD/F, decreased SASA Bharatiy et al., 2016

T4 lysozyme Proteus-designed point
mutant pairs

Increased interresidue contacts; Some stabilizing
(ProTherm ��G)

Barroso et al., 2020

Conserpin Consensus design More conformationally homogeneous (PCA),
thermostable (Tm from CD), decreased salt
bridges, decreased H-bonds, decreased SASA,
decreased RMSF

Porebski et al., 2016

Consensus-HD Consensus design Decreased backbone motion (15N NMR), more
stable (�G from CD)

Tripp et al., 2017

UVF De novo design Increased RMSD/F, increased unique side-chain
contacts

Nguyen et al., 2019

15 scFvs and scAbs RosettaAntibody Some more thermostable (Tm from DSFa); Some
resistant to heat deactivation at 70 ◦C (ELISA)

Lee et al., 2020

AYEdes Rosetta de novo Decreased RMSD/F, decreased SASA, increased
secondary structure retention, increased contacts,
more stable (�G from CD)

Dantas et al., 2007; Gill
and McCully, 2019

Flu and botulism
antigen-binding mini
proteins

Rosetta de novo design,
including backbone

Generally thermostable (Tm from CD);
Antigen-binding residues were less dynamic in
successful designs (backbone/side-chain RMSD)

Chevalier et al., 2017

7896 pocket proteins Rosetta de novo design,
including backbone

Stability score was correlated with total sequence
hydrophobicity, Rosetta energy score, local
sequence-structure agreement; Those that
expressed tended to be thermostable (Tm from CD)

Basanta et al., 2020

ASR, consensus EF-Tu ASR, consensus design ASRs were more rigid (RMSD/F); Consensus had
dynamic properties unlike naturally occurring
proteins (PCA)

Okafor et al., 2018

AncSR1, AncSR2 steroid
receptors

ASR Older ASR had several highly dynamic regions
(RMSD/F); ASRs maintained extant contact
networks to mediate an allosteric conformational
change

Okafor et al., 2020

Ancestral glycosidase ASR ASR was more flexible near the active site but core
was equally rigid as extant (RMSF, b-factor,
proteolysis)

Gamiz-Arco et al., 2021

Precambrian β-lactamases ASR Older ASRs were more flexible globally and
in/around the catalytic pocket (RMSF, DFIb)

Zou et al., 2015; Risso
et al., 2017

AncHLD-RLuc ASR ASR was less dynamic than extant proteins, and a
highly mobile helix/loop led to increased active site
accessibility (RMSD, Caver)

Chaloupkova et al., 2019

Nitrating P450 TxtE
mutants

MD/HMMc-informed
site-saturating
mutagenesis

Mutants’ F/G loop stayed in the closed
conformation more often (HMM,c TTN,d KD)

Dodani et al., 2016

4 LinB mutants Caver + site-saturating
mutagenesis

Mutant’s active site tunnel was open more often
(MD, Caver, SAe)

Brezovsky et al., 2016

2 successful, 2
unsuccessful DIG-binding
proteins (DIG10.2,
DIG10.3, DIG12, DIG16)

Rosetta de novo Successful designs had more rigid cavity entrances
(RMSF), better-organized hydrophobic cores
(SASA), smaller cavity volumes (POVME, RMSF),
preorganized ligand-binding side chains (dihedral
angles), stationary ligand in holo simulations
(RMSD)

Tinberg et al., 2013;
Barros et al., 2019

DFSc Rational coiled-coil
design

Preorganization of SQ•-compatible Zn2+
coordination state improves binding

Reig et al., 2012; Ulas
et al., 2016

PS1 Rational coiled-coil
design, Rosetta

Hydrophobic core is structured and ligand-binding
region is flexible (HDX, water locations from MD)

Polizzi et al., 2017

ABLE Rational coiled-coil
design, COMBS, van der
Mers, Rosetta

Preorganization of rotamers in the ligand-binding
site except for two residues (crystal structure)

Polizzi and DeGrado,
2020

a
Differential scanning fluorimetry.

b
Dynamic Flexibility Index.

c
Hidden Markov Models.

d
Total turnover numbers.

e
Specific activity.

Protein design often optimizes core packing and
contacts

Structure-based protein design algorithms tend to optimize for
tight core packing and increased core contacts. Most energy
functions do not explicitly reward tight core packing, but

tightly packed cores score well based on the attractive energies
between atoms and exclusion of solvent (Alford et al., 2017).
Total protein hydrophobicity is one of the best predictors of
experimental success in expressing and purifying a de novo
designed protein (Basanta et al., 2020). Likewise, burial of
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Fig. 1. Structural and dynamic sources of thermo/stability in designed proteins. (a) Wild type NgCA (left, PDB 1koq) and mutant NgCA (right, added
Ser44Arg, Ser139Glu and Lys168Arg mutations) with its designed salt bridge networks. Also showing Arg136, Asp194 and Glu226 in sticks. (b) Wild
type AYE (right, PDB 1aye) and designed AYEdes (left, PDB 2gjf) colored by secondary structure and showing hydrophobic core packing (AYEdes
residues 6, 8, 10, 15, 16, 19, 22, 36, 43, 45, 47, 55 and 59). (c) Designed scFv C9 + C14 (PDB 6p79) with core-adjacent hydrophobic cluster (Ser147Lys,
Ser149Trp and Glu242Met) shown in blue sticks. (d) Structures from MD simulations of wild-type EnHD (right, PDB 1enh) and UVF (left, PDB 2p6j)
showing differences in native dynamics.

large swaths of hydrophobic surface area and tightly packed
hydrophobic cores are also properties observed in the proteins
of thermophilic organisms (Jaenicke and Böhm, 1998; Russell
and Taylor, 1995).

Proteins designed using Rosetta should therefore have
tightly packed cores, but it is important to check whether
the packing is maintained in vitro or in silico, as designed.
AYEdes, a Rosetta de novo design, has a tightly packed
hydrophobic core in MD simulations based on contacts and
buried SASA, and it also has decreased backbone motion
relative to the wild type template (Gill and McCully, 2019;
Fig. 1b). These properties likely contribute to its increased
stability of ��G = −10.3 kcal/mol relative to its wild type
backbone template (Dantas et al., 2007). MD simulations
of proteins containing a subset of the mutations in AYEdes
showed that core packing was increased but between different
regions than was expected based on the Rosetta models (Gill
and McCully, 2019).

Redesigning the entire protein may not be necessary to
increase stability, as tighter packing and increasing burial
of hydrophobic surface area is stabilizing when applied to
small clusters of residues only. Although protein cores are
often already optimally packed, there may be more room for
improvement in surface-proximal regions. Indeed, increasing
the packing by adding bulky hydrophobic residues in clusters

of <5 residues resulted in higher melting temperatures in
several antibodies designed with Rosetta (Lee et al., 2020;
Fig. 1c). The Protein Engineering Supporter (Proteus) web tool
leverages the Protein Databank (PDB) to build a database of
interacting residues, which can replace non-interacting residue
pairs in a provided protein structure if their backbone geome-
tries match (Barroso et al., 2020). Mutations to lysozyme
designed by Proteus also increased the number of contacts
beyond the mutated residue or pair, and four were found in
the ProTherm database to be stabilizing.

Thermo/stability is not necessarily associated with
rigidity and tightly packed cores

Although protein design algorithms often produce tightly
packed cores, loose, dynamic cores are also possible out-
comes and may impart stability themselves. UVF, a de novo
designed, thermostable protein, has a highly dynamic and fully
hydrophobic core as measured by increased backbone RMS-
D/F and unique side-chain contact pairs in MD simulations
(McCully et al., 2013; Nguyen et al., 2019). At high temper-
ature, UVF maintained these heightened dynamics without
unfolding. Rather than interpreting heightened dynamics as
destabilizing, however, we hypothesized that these dynamics
explain UVF’s thermostability by imparting entropic stability
(Fig. 1d). Sequence-based design methods, such as consensus
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design, do not optimize for core packing and residue contacts.
Indeed, conserpin has fewer salt bridges, hydrogen bonds
and SASA than extant serpins, but it is still more stable and
thermostable (Porebski et al., 2016). Conserpin’s stability is
due to smoothing of its energy landscape from the addition of
stabilizing contacts that discourage aggregation-prone confor-
mations.

For these reasons, it may not be accurate to infer ther-
mo/stability from the level of dynamics or contact/packing
patterns observed in MD simulations of proteins, designed
or otherwise. Analysis of traditional MD simulations to infer
thermostability should focus on detecting the early stages of
the unfolding pathway in elevated-temperature simulations.
Alternately, MD simulation in combination with enhanced
sampling methods may calculate a protein’s Tm or �G more
directly (Miao and McCammon, 2016).

Assessment of Designed Proteins’ Dynamics

Protein function may depend on coordinated motion within a
region of a protein (e.g. binding site accessibility) or between
regions across a protein structure (e.g. signal transduction,
regulation and motor functions; Berendsen and Hayward,
2000). Therefore, proteins designed to complete these sorts
of functions may need to do so via coordinated motions.
Studying coordinated motions in naturally occurring proteins
has provided much insight to enzyme biochemistry, cellular
biology and disease (Grant et al., 2010; Olsson et al., 2006;
Papaleo et al., 2016). For proteins that bind a ligand, such as
sensors or enzymes, accessibility of the active site is essential
and often under control of surrounding loop, flap or cap
regions.

Analyzing the similarities and differences between the
motions of proteins that are subject to natural evolutionary
forces versus those that were computationally designed may
provide insight to essential or novel mechanisms. Dynamics
are difficult to rationally design, and we will address this
challenge in Section ‘Proteins designed for dynamic function’
of this review. In this section, however, we review mechanisms
of coordinated motion, active site accessibility and active site
preorganization in designed proteins where motion was not
explicitly considered in the design process.

Coordinated motions

ASR is a sequence-based protein design technique that
attempts to predict a natural sequence rather than engineer
one. ASR proteins shed light on protein evolution and are
attractive starting points for protein design projects due
to their heightened thermostabilities (Nguyen et al., 2017).
Beyond their use as templates, investigation of their dynamics
provides insight to how coordinated motions evolved.

In investigating the stability and dynamics of six EF–Tu
proteins: three ASRs, one consensus, one mesophilic and one
thermophilic; Okafor et al. (2018) found that heightened
dynamics in Domain 1 was correlated with lower thermosta-
bility for both the naturally occurring and designed proteins.
Similarly, lower dynamics in Domain 2 at high temperature
were observed in ASRs of the two oldest common ancestors,
which might be expected to be thermostable based on their
computed age (Nguyen et al., 2017). The heightened dynamics
in the most recent ASR were associated with loss of these ionic
interactions in favor of interactions with the Domains 1–2

hinge peptide, leading to a major reorientation of Domain
2 relative to Domain 1 (Fig. 2a). Based on a community
analysis, the ASR designs’ dynamics were most similar to the
naturally thermostable EF–Tu. Consensus EF–Tu was the least
coordinated and most disparate of the set of EF–Tus, which
was predicted to explain its relatively lower function.

Investigation of ASRs of steroid receptors by MD simu-
lation identified crucial contact networks maintained across
evolutionary time (Okafor et al., 2020). These networks pro-
vide allosteric communication mediating activation of a con-
formational switch upon ligand binding. Different classes of
ligands trigger different allosteric pathways and conforma-
tional changes incompatible with function. These insights
provide useful information for those wishing to exploit steroid
receptors as an engineered biosensor. Looking to the dynamics
of the ASRs, the older ancestor (AncSR1) had a higher RMSD
than the more recent ancestor (AncSR2), but these heightened
dynamics were concentrated in several loop, terminal and
helix-terminal regions that were distal from the ligand-binding
site (Fig. 2b). When removing these highly dynamic regions
from the calculation, the overall core RMSDs were similar
between AncSR1 and AncSR2.

Active site dynamics and accessibility

Heightened dynamics, especially in the catalytic pocket, may
be advantageous when designing a protein with promiscuous
function. In multiple studies of proteins designed by ASR,
heightened dynamics in the active site has been observed
(Gamiz-Arco et al., 2021) and linked with promiscuous func-
tion (Chaloupkova et al., 2019; Zou et al., 2015), but it is not
always associated with heightened dynamics globally.

This promiscuity of ASR proteins can be leveraged as a
starting point for the design of new enzymatic function. In
replica exchange MD simulations of three ASR Precambrian
β-lactamases and one modern (TIM-1), the two oldest ances-
tral enzymes, based on predicted ages from the reconstruction
(PNCA and GNCA), were the most flexible and had the most
flexible catalytic pocket, whereas the most recent ancestor
(ENCA) and extant TIM-1 were more rigid (Risso et al.,
2017). Furthermore, the active site moved more indepen-
dently in the older enzymes, suggesting a mechanism for the
promiscuity of the older enzymes (PNCA and GNCA) via
heightened dynamics and independent motion of the active
site to accommodate a more diverse set of substrates. Similarly,
the reconstructed common ancestor of haloalkane dehaloge-
nases (HLDs) and Renilla reniformis luciferase (RLuc) was
promiscuous, able to catalyze the reactions of both HLDs and
RLuc (Chaloupkova et al., 2019). The reconstructed protein,
AncHLD-RLuc, had the most dynamic α4 helix and adjacent
loop in MD simulation, which allowed increased accessibility
in the main tunnel to the active site (Fig. 2c), but globally it
was the least dynamic of the three.

The dynamics of the region providing access to an enzyme’s
active site may be exploited to design new enzyme function.
Creation of a differentially substituted product was possible
through leveraging the F/G loop dynamics of the nitrating
P450 TxtE from Saccharomyces scabies (Dodani et al., 2016).
Mutation of His176 on this loop to bulky, hydrophobic
residues (Phe/Trp/Tyr) stabilizes the active site lid in the closed
conformation, resulting in a differently substituted product
with a longer retention time (Fig. 2d). Brezovsky et al. (2016)
controlled access to the active site of haloalkane dehalogenase
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Fig. 2. Flexible regions and stabilizing features arising from consensus designs and ancestral sequence reconstructions. (a) ASR EF-Tu N253 with GDP
and Mg2+ (PDB 5w76) colored by domain with the flexible linker shown in red. (b) Model of AncSR1 (personal communication) showing the most
dynamic regions (residues 1–7, 28–35, 155–168 and 245–249) and ligand-binding site (Ala47, Glu50, Leu84, Arg91 and Leu237). (c) AncHLD-RLuc (PDB
6g75) with catalytic residues (Asn51, Asp118, Trp119, Glu142 and His284), O2 substrate, α4 helix and adjacent loop (residues 142–167) and cap domain
(residues168–222) shown. (d) Closed-lid TxtE (MD structure (Dodani et al., 2016)) with F/G loop (residues 175–186), wild type His229, active site
residues (Tyr89, Tyr175, Cys357), L-Trp substrate and heme cofactor shown. (e) LinB-OpenW (PDB 5lka) with the native, blocked p1 tunnel (Leu177Trp),
designed p3 tunnel (Trp140Ala, Phe143Leu and Ile211Leu) and active site (residues Asp108 and Asp132) shown. (f) Model of DFSc bound to
semiquinone (personal communication) with Zn2+-coordinating residues (Glu11, Glu44, Glu74, His77, His100 and Glu104) and His107 shown.

LinB by blocking the native tunnel with a Leu177Trp muta-
tion and opening a new tunnel with three mutations identified
via high-throughput mutagenesis: Trp140Ala, Phe143Leu and
Ile211Leu (Fig. 2e). The mutant’s tunnel spent more time in an
open conformation in MD simulations, and the protein had
increased activity for 20/30 substrates relative to the wild-type
enzyme.

Active site preorganization in ligand-binding
proteins

In addition to detailing active site accessibility, MD studies
may be used to assess differences between successful and
unsuccessful designs. Whereas flexible active sites promote
promiscuous function in ASR-based proteins, preorganized
active sites are correlated with increased activity when opti-
mizing for a single function. Tinberg et al. (2013) used Rosetta
to design a β-barrel protein to bind digoxigenin (DIG) by plac-
ing three ligand-binding residues in known protein scaffolds.
As static structures and energy scores did not provide satisfy-
ing explanations to why 15/17 high-scoring proteins were not
functional experimentally, Barros et al. (2019) leveraged MD
simulations to explore the dynamics of two successful and two
unsuccessful designs in both the apo and holo forms. Non-
binders had the largest fluctuations in both cavity volume

and backbone motion around the cavity entrance. Once again,
preorganization of the three ligand-binding residues in the apo
simulations helped discriminate between the binders and non-
binders.

Likewise, optimizing metal-coordination geometry, based
on mutations suggested by QM/MM simulations, was suc-
cessful in speeding the reaction of a Zn2+-binding de novo
designed four-helix bundle protein that stabilized the forma-
tion of a semiquinone radical (Fig. 2f; Ulas et al., 2016). Sim-
ilarly, in MD simulations of proteins designed using Rosetta
to bind a flu antigen, those whose antigen-binding residues
moved less were more likely to bind, suggesting that preor-
ganization of the binding site is beneficial (Chevalier et al.,
2017).

Although active site preorganization is important for high
activity, it is energetically favorable for proteins to bind their
ligand as the last step in protein folding. Polizzi et al. (2017)
built a four-helix bundle scaffold around a porphyrin first
then subsequently packed in surrounding residues in designing
PS1. In another study, they used their van der Mers database
to build a four-helix bundle scaffold that properly oriented
the backbone relative to several chemical groups in their
ligand (Polizzi and DeGrado, 2020). The active site residues
of this protein, ABLE, largely adopted binding-compatible
rotamers in the apo form. Conversely, PS1 folded to form its
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hydrophobic core in half of the bundle, whereas the largely
polar binding site in the other half remained open and highly
flexible, clamping down upon porphyrin binding.

The main feature of Rosetta design is selecting amino
acids and placing their side chains in orientations that pack
well. When particular side-chain geometries are required, as
when designing a ligand-binding site into a pocket, it may
be necessary to move the protein backbone to achieve the
ideal side-chain geometries without introducing strain. Two
recent developments for exploring backbone geometries simi-
lar to a template structure involve using the CoupledMoves/-
KIC method within Rosetta and providing MD-generated
structures as input to Rosetta design (Löffler et al., 2017;
Loshbaugh and Kortemme, 2020; Ludwiczak et al., 2018).
Experimental information such as X-ray diffraction data may
be incorporated to restrain MD simulations and generate
ensembles of backbone templates without strain for use in
enzyme design (Broom et al., 2020).

Proteins Designed for Dynamic Function

Proteins that are designed to perform a function, such as
transport a ligand, bind a molecule or change conforma-
tion, pose an additional challenge beyond designing a stable
protein. Protein designers attempting these challenges must
consider the dynamics of the active site, multiple productive
conformations and potentially negative design of unproduc-
tive conformations. We begin by discussing multistate design,
which is used to favor or disfavor functionally relevant con-
formations. Then, we review the design and analysis of several
fold-switching proteins.

Design of dynamic function by multi-state design

To rationally design a protein to adopt multiple states, the
scoring function must reward sequences that adopt all desired
conformations, as well as perhaps penalize those that favor
undesired conformations. (Joh et al., 2014) worked from a
four-helix-bundle backbone structure to design a Zn2+ trans-
porter with an alternating-access mechanism by optimizing
for the energy difference between the singly bound (asym-
metric, desired) and doubly bound (symmetric, undesired)
states. Although scoring functions can reward or penalize
specific states, at times it is necessary to tune the relative
balance between these states experimentally. Once a protein
is designed to occupy two populations, mutations may be
strategically introduced to adjust the balance between two
populations such that the conformation/function is tunable by
e.g. light (Stone et al., 2019; Teets et al., 2020), ligand-binding
(Ha and Loh, 2017; Wei et al., 2020) or temperature (Campos
et al., 2019).

Subtle changes such as the flipping of the Trp43 rotamer
in Gβ1 on the millisecond timescale may be precisely engi-
neered via multistate design (Davey et al., 2017). The mul-
tistate design considered the six rotamers for Trp43, two of
which were favored (core-buried and surface-exposed), one
assigned the transition state, and the remaining three disfa-
vored, including the wild-type rotamer. The design, DANCER-
2, allowed exchange of Trp43 between the core-buried and
surface-exposed rotamers, as confirmed by NMR (Fig. 3b).
Consideration of all six states and >16 million designed
structures and energies was necessary to sufficiently sample

the energy landscape and select sequences that could exchange
between the desired states while avoiding others.

Fold-switching proteins

The Paracelsus challenge, to change one protein’s conforma-
tion into another while retaining at least 50% of the sequence
identity (Rose and Creamer, 1994), was accomplished for the
first time in 1997 (Dalal et al., 1997). Since then, protein
designers have become quite efficient at designing pairs of
proteins with high or complete sequence identity that adopt
disparate folds. The perhaps surprising ease of developing
these proteins pairs and fold-switchers may be explained by
the common existence of fold-switching proteins in nature
(Porter and Looger, 2018).

Inspired by viral fusion proteins, Wei et al. (2020) designed
a six-helix bundle fold-switching protein, the C-terminal end
of which could switch to a ‘long’ three-helix bundle confor-
mation. They incorporated a hydrogen-bonding network to
destabilize the short state and make the helices more soluble
in the long state, and they designed flexible loops that could
coordinate Ca2+ in the three-helix bundle state, creating a
Ca2+-dependent switch (Fig. 3a). The GA/GB set of proteins
are perhaps the most true to the Paracelsus challenge, where
GA88 and GB88 have 88% sequence identity but fold to either
an all-α (GA88) or α + β (GB88) conformation (Alexander
et al., 2007). Gianni et al. (2018) identified an interaction
between Thr1 and Glu19 in MD simulations of the denatured
state of GB88 that they hypothesized primed formation of
the β1/β2 hairpin and predisposed GB88 to adopt the α + β

vs. all-α conformation (Fig. 3c). Indeed, MD simulations of
a GB88-E19Q mutant showed inhibition of the Thr1–Glu19
interaction in the denatured state, and NMR experiments
showed adoption of the all-α fold.

Conclusions and Future Directions

Protein dynamics studies have shown that hydrophobic sur-
face area burial, secondary structure packing, backbone strain
minimization, loop and helix edge stabilization and active
site preorganization tend to be associated with successful,
stable protein designs (Table I). On the other hand, heightened
dynamics and loosely packed hydrophobic cores may also be
compatible with—if not responsible for—thermostability in
other designed proteins. If the goal is to design a protein that is
rigid and thermo/stable, Rosetta de novo design or consensus
design are strategic choices. For a protein that is thermostable
but dynamic, a fully hydrophobic core may be leveraged.

Proteins designed by de novo computational methods tend
to be very stable when successful or fail to fold properly when
they are not. This dichotomy suggests there is still much to
be learned about how designed proteins are stabilized and the
implications of optimizing for known stabilization strategies.
Atomic-level investigations of the dynamics of designed pro-
teins, especially in comparison with similar naturally occur-
ring mesophilic and thermophilic proteins, will continue to
shed light on the structural basis of thermostability in designed
proteins. Interpretation of heightened dynamics in MD simu-
lations should be taken with care, as they are not necessarily
evidence of instability. Instead, evidence of the early steps in
unfolding or lack thereof should be identified.

Consideration of protein dynamics may provide further
insight to differentiate successful from unsuccessful designs
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Fig. 3. Proteins designed for dynamic function. (a) XAA_GDVQ in the short (top, PDB 6nz1/6nxm) and long (bottom, PDB 6ny8) forms with the GDVQ
hinge region (residues 73–76), Ca2+-coordinating residues (Asp75), and polar networks (Asn54, Asn55, Ser92 and Asn61, Asn62, Gln85) shown. (b)
DANCER-2 with Trp43 in its major/exposed (PDB 5uce) and minor/buried (PDB 5ucf) state shown. (c) GA88 (PDB 2jws) and GB88 (PDB 2jwu) shown
with Thr1 and Glu19, which interact in the GB88 denatured state (MD simulation).

when static structures and energy scores cannot, particularly
when the designed protein carries out a particular function.
Ligand binding and catalysis tend to be most efficient with
a preorganized active site (Table I). Highly dynamic proteins
may spend minimal time in functionally compatible confor-
mations, lowering activity. However, heightened dynamics
may be associated with functional promiscuity, especially in
the active sites of enzymes designed by ASR. If the design
goal is a protein that acts on a variety of substrates or has
a slightly different function than a known protein, ASR is a
strategic choice of design method. For a function that requires
multiple protein conformations to carry out, designing in
a fully hydrophobic region to act as an entropy sink may
provide thermo/stability. Iteration of design with MD could
assess whether a particular sequence/structure produces the
appropriate level of dynamics in the desired regions without
evidence of unfolding.

Proteins have been designed to catalyze reactions, transport
molecules, report the presence of a ligand and change con-
formation in the presence of light or temperature. Designing
proteins that adopt multiple conformations as part of their
function requires weighting desired states, negative design of
unproductive states and consideration of the paths between
them. MD may be used to assess whether a protein stays in

a desired versus unproductive state and give insight to the
pathways between states that might need to be stabilized or
avoided. Multistate design may leverage structures produced
by MD simulations or other perturbation methods to design
amino acid sequences compatible with both function and
backbone dynamics concurrently.

As proteins are inherently dynamic molecules, investigation
of designed proteins’ dynamics is essential to understand-
ing why they are at times unsuccessful at folding stably
or performing a desired function, especially when analysis
of static structures or energy scores do not offer satisfying
explanations. Sharing both the structures of designed pro-
teins—both successful and not—and data from their molec-
ular dynamic simulations would facilitate large-scale analysis
of their dynamic properties.
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