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a b s t r a c t 

Background and Objective: Incomplete Kawasaki disease (KD) has often been misdiagnosed due to a lack 

of the clinical manifestations of classic KD. However, it is associated with a markedly higher prevalence 

of coronary artery lesions. Identifying coronary artery lesions by echocardiography is important for the 

timely diagnosis of and favorable outcomes in KD. Moreover, similar to KD, coronavirus disease 2019, cur- 

rently causing a worldwide pandemic, also manifests with fever; therefore, it is crucial at this moment 

that KD should be distinguished clearly among the febrile diseases in children. In this study, we aimed to 

validate a deep learning algorithm for classification of KD and other acute febrile diseases. Methods: We 

obtained coronary artery images by echocardiography of children (n = 138 for KD; n = 65 for pneumo- 

nia). We trained six deep learning networks (VGG19, Xception, ResNet50, ResNext50, SE-ResNet50, and 

SE-ResNext50) using the collected data. Results: SE-ResNext50 showed the best performance in terms of 

accuracy, specificity, and precision in the classification. SE-ResNext50 offered a precision of 81.12%, a sen- 

sitivity of 84.06%, and a specificity of 58.46%. Conclusions: The results of our study suggested that deep 

learning algorithms have similar performance to an experienced cardiologist in detecting coronary artery 

lesions to facilitate the diagnosis of KD. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Kawasaki disease (KD) is the most common acquired heart 

isease in childhood. It was first described by Dr. Kawasaki in 

967 [1] . KD mostly occurs in children aged less than 5 years and

as a high prevalence in countries of Northeast Asia, particularly 

apan, South Korea, and Taiwan [2,3] . 

The main symptoms of KD are unexplained high fever, diffuse 

rythematous polymorphous rash, bilateral conjunctival injection, 

ervical lymphadenopathy, oral mucosal changes, and extremity 

hanges, sometimes with perineal desquamation, or reactivation of 

he bacillus Calmette-Gurin injection site [4–7] . While the widely 

sed diagnostic criteria for KD are useful, incomplete KD in infants 

r children aged 10 years or older can often be problematic, caus- 

ng misdiagnosis due to a lack of manifestation of the full clinical 
Abbreviations: Kawasaki disease, KD; Class activation map, CAM; Global average 

ooling, GAP; Coronavirus disease 2019, COVID-19; Areas under the precision-recall 

urve, AUPRC; Adaptive Moment Estimation, ADAM. 
∗ Corresponding authors. 

E-mail addresses: jyhwang@dgist.ac.kr (J.Y. Hwang), lucyeun@yuhs.ac (L.Y. Eun) . 

o

t

K

a

g

ttps://doi.org/10.1016/j.cmpb.2022.106970 

169-2607/© 2022 Elsevier B.V. All rights reserved. 
riteria of classic KD. Nevertheless, this disease has a much higher 

revalence of coronary artery lesions [4,7] . 

Given the difficulty in diagnosing incomplete or atypical KD 

y clinical features alone, identifying coronary artery findings by 

chocardiography, along with evaluation of various biomarkers by 

lood tests, becomes more significant for ensuring an appropri- 

te diagnosis [4] . Even though the choice of treatment with a 

igh dose of intravenous immunoglobulin infusion decreases the 

isk of coronary artery complications, about 5% of treated children 

nd 15–25% of untreated children have a risk of coronary artery 

neurysms or ectasia. Certainly, one of the fatal complications of 

ntreated KD is coronary artery aneurysm. Accordingly, the role of 

chocardiography in recognizing coronary artery lesions is substan- 

ial to ensure timely diagnosis and favorable outcome [8] . 

For the proper diagnosis of incomplete KD, the pediatric cardi- 

logists need to perform echocardiography to investigate the pa- 

ient’s coronary arteries. The most important therapeutic goal of 

D is the prevention of coronary artery aneurysm formation. When 

n aneurysm is noticed, it is critical to prevent development of a 

iant aneurysm or formation of a thrombus [9] . 

https://doi.org/10.1016/j.cmpb.2022.106970
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2022.106970&domain=pdf
mailto:jyhwang@dgist.ac.kr
mailto:lucyeun@yuhs.ac
https://doi.org/10.1016/j.cmpb.2022.106970
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Unfortunately, without an experienced pediatric cardiologist 

nd a KD expert, it is challenging to diagnose incomplete KD be- 

ause the fever patterns of many acute febrile diseases in chil- 

ren appear similar to KD, particularly the initial high grade of 

ever. In 2020, reports of severely ill pediatric cases have shown 

hat KD and coronavirus disease 2019 (COVID-19) presented simi- 

ar symptoms [10,11] . Moreover, the incidence of KD suddenly in- 

reased in Europe and the USA during the COVID-19 pandemic. In 

ddition, KD-like multi-systemic inflammatory syndrome in chil- 

ren affected many children in Europe and in the USA. This is of 

articular concern, as it can result in missed or delayed KD diag- 

osis and treatment [12] . 

Several studies on computer-aided diagnosis based on deep 

earning algorithms have shown good performance. Deep learning- 

ased approaches for the diagnosis of cancer or lesions have been 

hown to perform well and have already surpassed human doc- 

ors in some categories [13] . Additionally, deep learning algorithms 

ave shown better performance in the medical vision field than 

onventional methods [14] . Several deep learning algorithms have 

een proposed to diagnose various diseases, such as breast can- 

er [15] , liver cancer [16] , and thyroid nodules [17] on ultrasound 

mages. These medical deep learning algorithms have been pro- 

osed for computer-aided enhancement of diagnostic performance. 

owever, deep learning algorithms have not yet been applied to 

D diagnosis. 

The purpose of this study was to assess whether explainable 

eep learning algorithms could be used to identify coronary artery 

esions on echocardiographic images for the timely diagnosis of KD. 

e also evaluated the performance of these algorithms in distin- 

uishing KD from another acute febrile disease, pneumonia. 

. Methods 

.1. Data acquisition 

To investigate whether it would be possible to distinguish be- 

ween KD and another similar acute febrile disease, we selected 

neumonia as an alternative representative acute febrile disease. 

neumonia is one of the most common febrile diseases in children. 

For this study, echocardiographic imaging data from January 

016 to August 2019 were acquired from Yonsei University Gang- 

am Severance Hospital. Giant coronary aneurysm cases were ex- 

luded from this study. Echocardiographic images of 138 children 

ith incomplete KD and 65 children with pneumonia (203 in to- 

al) were acquired and labeled as KD and non-KD by an experi- 

nced cardiologist. 2D echocardiographic coronary artery short axis 

iew images were obtained for the appropriate diagnosis when the 

hildren initially presented with high grade fever. We cropped the 

chocardiographic images to 512 × 512 pixels. 

.2. Deep learning algorithm 

In this study, to distinguish incomplete KD from non-KD using 

chocardiographic images, we applied six deep learning architec- 

ures: VGG-19 [18] , Xception [19] , ResNet-50 [20] , ResNext-50 [21] , 

E-ResNet-50, and SE-ResNext-50 [22] . 

VGG [18] is the most basic network with a simple structure 

or classification and good performance. Therefore, it is still widely 

sed as a comparison architecture. Xception [19] is a linear stack of 

epth-wise separable convolutions with residual connections and 

hows higher performance than the baseline Inception architec- 

ure [23] . ResNet [20] is a deep learning network which is stacked 

ore deeply using a skip connection and is being used in various 

elds. ResNext [21] has shown higher performance while reduc- 

ng the computation cost compared to the existing ResNet by using 

 group convolution. SE-ResNet and SE-ResNext [22] are networks 
2 
n which squeeze-and-excitation blocks are added to ResNet and 

esNext, respectively [24] . 

Since the data in our study were limited to training the mod- 

ls, only networks with 50 or fewer convolution layers were used 

n this experiment. Thus, we used VGG-19, Xception, ResNet-50, 

esNext-50, SE-ResNet50, and SE-ResNext50 in this experiment. 

e then evaluated the capability of the deep learning algorithms 

o distinguish between KD and non-KD. 

For the training, we used a stochastic optimization method, 

daptive moment estimation (ADAM) optimizer, [25] with parame- 

er β1 = 0 . 9 , β2 = 0 . 999 , and ε = 10 −8 . The initial learning rate was

 e −3 , and it decreased by 1/10 every 30 epochs. We trained each 

etwork for a total of 120 epochs. Training batch sizes consisted of 

2 patches. We used a binary cross-entropy loss function to train 

ach network. We used the pretrained weights of each network on 

mageNet to achieve better performance [24] . 

The deep learning framework used for training and testing the 

eep learning algorithms was PyTorch [26] . We trained and tested 

ll networks using a 2-GHz Intel Xeon E5-2620 processor and an 

VIDIA TITAN RTX graphics card (24 GB). 

.3. Class activation map 

To explain deep learning algorithms, we used the class activa- 

ion map (CAM) [27] . Previously, it was not possible to know which 

alient parts of a medical image would be highlighted by a deep 

earning algorithm for classification. The CAM has been proposed 

o solve this issue and to be able to explain deep learning algo- 

ithms. Most deep learning algorithms use a fully connected layer 

o classify the values obtained by applying a global average pool- 

ng (GAP) to the feature maps from the last convolution layer. A 

inear transform with a class number of filters is then applied to 

he weight obtained through GAP. 

Here, to obtain the CAM, the weight of the linear transform for 

ach class was multiplied by the feature map obtained from the 

ast convolutional layer. The CAM at class c, M c (x, y ) , can be calcu-

ated as follows: 

 c (x, y ) = 

∑ 

k 

w 

c 
k F k 

= 

∑ 

k 

w 

c 
k 

∑ 

x,y 

f k (x, y ) 

= 

∑ 

x,y 

∑ 

k 

w 

c 
k f k (x, y ) (1) 

here f k (x, y ) is a feature map from the last convolution layer for

 unit k, w 

c 
k 

is the weight of linear transformation corresponding 

o class c for the unit k , and x and y are the spatial information

f f k and M c , respectively. The class activation map, M c (x, y ) , indi-

ates a class-specific highlight map at a spatial grid (x, y ) . There-

ore, through the CAM, it is possible to understand which parts of 

he image are considered when the deep learning algorithm pro- 

eeds with classification. Hence, the CAM is an excellent tool for 

nalyzing medical image deep learning algorithms [28,29] , as in 

his study. 

.4. Ethics statement 

This study was approved by the Yonsei University College of 

edicine Institutional Review Board and the Research Ethics Com- 

ittee of Severance Hospital (study approval number: 2020-1127- 

01). All research was performed in accordance with relevant 

uidelines and regulations. The requirement for written informed 

onsent was waived by the Institutional Review Board due to the 

etrospective study design. 
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Table 1 

Diagnostic performance of deep learning algorithms. The best performance is in bold , and the second 

best performance is in underlined . 

Networks VGG19 Xception ResNet50 ResNext50 SE-ResNet50 SE-ResNext50 

Accuracy 67.49 73.40 65.03 64.04 67.00 75.86 

F1 score 77.55 81.88 75.43 74.02 75.81 82.56 

Sensitivity 82.61 88.41 78.99 75.36 76.09 84.06 

Specificity 35.38 41.54 35.38 40.00 47.69 58.46 

Precision (PPV) 73.08 76.25 72.19 72.73 75.54 81.12 

NPV 48.94 62.79 44.23 43.33 48.44 63.33 

Fig. 1. Echocardiography analysis process using deep learning algorithms in this study. 
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. Results 

Since we conducted the experiments using 10-fold cross valida- 

ion, there were 10 outcomes. Each subset had 182 or 183 echocar- 

iographic images for training and 21 or 20 echocardiographic im- 

ges for testing. The test images in each subset included 14 or 

5 echocardiographic images labeled as KD and 6 or 7 echocar- 

iographic images labeled as non-KD (pneumonia) by an echocar- 

iographic specialist. Table 1 shows the diagnostic performance of 

ach network trained with each subset for the test dataset. The 

ccuracies of VGG19, Xception, ResNet50, ResNext50, SE-ResNet50, 

nd SE-ResNext50 were 67.49%, 73.40%, 65.03%, 64.04%, 67.00%, 

nd 75.86% for the classification of KD and non-KD, respec- 

ively. The F1 score of VGG19, Xception, ResNet50, ResNext50, SE- 

esNet50, and SE-ResNext50 were 77.55%, 81.88%, 75.43%, 74.02%, 

5.81%, and 82.56% for the classification of KD and non-KD, respec- 

ively. In contrast, the sensitivities of VGG19, Xception, ResNet50, 

esNext50, SE-ResNet50, and SE-ResNext50 were 82.61%, 88.41%, 

8.99%, 75.36%, 76.09%, and 84.06%, respectively. The specifici- 

ies of VGG19, Xception, ResNet50, ResNext50, SE-ResNet50, and 

E-ResNext50 were 35.38%, 41.54%, 35.38%, 40.00%, 47.69%, and 

8.46%, respectively. The precision (positive predictive value; PPV) 

f VGG19, Xception, ResNet50, ResNext50, SE-ResNet50, and SE- 

esNext50 were 73.08%, 76.25%, 72.19%, 72.73%, 75.54%, and 81.12%, 

espectively. The negative predictive value (NPV) of VGG19, Xcep- 

ion, ResNet50, ResNext50, SE-ResNet50, and SE-ResNext50 were 

8.94%, 62.79%, 44.23%, 43.33%, 48.44%, and 63.33%, respectively. In 

hese results, SE-ResNext50 showed the best performance in terms 

f accuracy, F1 score, sensivitivity, precision, and NPV for the dis- 

inction of KD and non-KD. It identified 154 true-positive diag- 

oses among 203 images. Fig. 2 shows the precision-recall curve 

f the deep learning algorithms used for the classification between 

D and pneumonia. The areas under the precision-recall curve 
3 
AUPRC) of VGG19, Xception, ResNet50, ResNext50, SE-ResNet50, 

nd SE-ResNext50 were 0.7576, 0.8074, 0.6913, 0.7599, 0.8534, and 

.8563, respectively. 

For non-KD, the echocardiographic images of pneumonia and its 

orresponding CAM images are illustrated in Fig. 3 . These images 

ere correctly identified as non-KD by SE-ResNext50. The images 

n the first row represent the pneumonia image correctly recog- 

ized as non-KD by SE-ResNext50, whereas the second row shows 

he pneumonia image incorrectly classified as KD by SE-ResNext50. 

For incomplete KD, the echocardiographic image of KD and its 

orresponding CAM image are demonstrated in Fig. 4 . The images 

n the first row were correctly identified as KD by SE-ResNext50, 

hereas the images in the second row were incorrectly classified 

s non-KD by SE-ResNext50. The thicker red regions indicate the 

arts of images focused on by the deep learning algorithm during 

he process of classification as KD and non-KD. 

. Discussion 

The goal of this study was to investigate the potential of 

xplainable deep learning algorithms to identify and differenti- 

te KD from acute febrile diseases. We therefore selected several 

ell-known deep learning algorithms (VGG19, Xception, ResNet50, 

esNext50, SE-ResNet50, and SE-ResNext50) to distinguish incom- 

lete KD from other acute febrile diseases. We selected pneumonia 

s a representative of other acute febrile diseases because it is the 

ost common febrile disease in children. KD and pneumonia show 

imilar fever patterns before the occurrence of respiratory symp- 

oms in pneumonia. Despite the small training dataset, the results 

n our study demonstrated that the deep learning algorithms show 

xcellent performance for the identification of the KD. Neverthe- 

ess, as the performance of a deep learning algorithm depends on 
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Fig. 2. The precision-recall curves of each deep learning algorithm for KD. Areas under the precision-recall curve of VGG19, Xception, ResNet50, ResNext50, SE-ResNet50, 

and SE-ResNext50 were 0.7576, 0.8074, 0.6913, 0.7599, 0.8534, and 0.8563, respectively. 

Fig. 3. Illustration of a class activation map of SE-ResNext50 for non-KD: the first column shows the echocardiographic images of non-KD, the second column shows the 

CAMs, and the third column shows the overlay of the echocardiographic image and the CAM. 
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he quantity of training data [30,31] , the deep learning algorithm 

or KD diagnosis should be extended. 

Figs. 3 and 4 show the parts of the echocardiographic images 

hat are considered important by the deep learning algorithm to 

istinguish between KD and non-KD. These figures indicate that 

he explainable deep learning algorithms identified KD by using 

he features of the coronary arteries. This is comparable to how pe- 

iatric cardiologists diagnose and differentiate the diseases. Clinical 

eports have mentioned that coronary artery imaging could be key 

o the appropriate diagnosis of KD, particularly incomplete KD [3] . 

hrough this analysis, our results revealed that deep learning algo- 

ithms can identify KD among KD and non-KD, as cardiologists do, 

hich suggests that deep learning algorithms could be applied in 

 clinical setting to recognize incomplete KD among various acute 

ebrile diseases in children. Thus, these results indicate that ex- 

lainable deep learning algorithms might be used to diagnose KD 

t a general hospital without a KD expert. In Korea, an experienced 
4 
ediatric cardiologist is not always available at each hospital, ow- 

ng to a lack of human resources. Nevertheless, timely diagnosis of 

D is essential for proper treatment, to prevent poor outcomes of 

oronary artery lesions. 

The SE-ResNext and SE-ResNet have several squeeze-and- 

xcitation blocks allow using global information from an ultra- 

ound image by using the global average pooling. Several works 

emonstrated that the performance of deep learning algorithms on 

ifferent scale objects is affected by a receptive field. To distinguish 

ncomplete KD and pneumonia in echocardiographic images, it is 

mportant to use the difference in the size of the coronary artery 

n the images. To fully discriminate the difference in the size of 

he coronal artery for the two diseases, it is beneficial to have a 

arge receptive field or to use global spatial information. Thus, the 

E-ResNext and SE-ResNet, which could use global spatial informa- 

ion, show better performance than ResNext and ResNet in distin- 

uishing the incomplete KD and pneumonia diseases. 
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Fig. 4. Illustration of a class activation map of SE-ResNext50 for KD: the first column shows the echocardiographic images of KD, the second column shows the CAMs, the 

third column shows the overlays of the echocardiographic images and the CAM. 

Fig. 5. Illustration of a class activation map of failure case of SE-ResNext50 for KD: the first row shows the echocardiographic images of non-KD, but the SE-ResNext50 

predicts a KD. In contrast, the second row shows the echocardiographic images of KD, but the SE-ResNext50 predicts a non-KD. 
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Previous studies have analyzed echocardiographic images us- 

ng deep learning to perform classification of myocardial dis- 

ase [32] , detect hypertrophic cardiomyopathy, cardiac amyloid, 

nd pulmonary arterial hypertension [33] , and evaluate chamber 

egmentation [34] and wall motion abnormalities [35,36] . How- 

ver, there has been no study to date on diagnosis of incomplete 

D by echocardiographic images of coronary artery lesions using 

eep learning, as we have done here. This study indicates that ex- 

lainable deep learning has potential to diagnose KD among acute 

ebrile diseases. In the global COVID-19 pandemic in particular, 

here is a risk that KD might be misdiagnosed, as WHO stated that 

OVID-19 has a similar febrile clinical presentation as KD [10,11] . 

herefore, now more than ever, it is important to distinguish KD 
5 
rom other febrile diseases in children; this may be possible by us- 

ng an explainable deep learning algorithm. 

In this study, we used 138 KD and 65 pneumonia images for 

valuation of the performance of the deep learning models. Al- 

hough the number of datasets was limited for training and testing 

he deep learning models to be translated into the clinics, we con- 

ucted cross-validation to confirm the performance of deep learn- 

ng models in this study. It was found that the sensitivity of SE- 

esNext was 82.64% which is comparable to that of an experienced 

ardiologist, which typically offers a sensitivity of more than 85%. 

owever, the specificity of SE-ResNext was 58.46% which is 10% 

ess than that of an experienced cardiologist, which usually offers 

 specificity of almost 70% [8] . Although the specificity of deep 
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[  

[

[

[

[  

[

earning algorithms is lower than that of an experienced cardiol- 

gist, the deep learning models can be useful for the diagnosis of 

ncomplete KD in the clinics that do not have experienced cardi- 

logists when they are further improved. Note that the class acti- 

ation maps from the deep learning models clearly [ Figs. 3 and 4 ]

howed that the coronary artery regions were salient for incom- 

lete KD, but not clearly for pneumonia as experienced cardiolo- 

ists do for the diagnosis of incomplete KD. Therefore, the results, 

hown in this study, demonstrate that the deep learning models 

ave the potential for discriminating between incomplete KD and 

ther febrile diseases such as pneumonia with echocardiographic 

mages. 

Many research has proven that the performance of deep learn- 

ng algorithms depends on the amount of training data. The speci- 

city of the deep learning algorithms in the discrimination be- 

ween the incomplete KD and other febrile diseases like pneumo- 

ia in this study was relatively low because of the imbalanced ul- 

rasound image dataset. To solve this issue, it may be necessary 

o acquire more KD and pneumonia images which have the sim- 

lar number. However, it has been known that it is very difficult 

o acquire a large amount of medical data. Therefore, various deep 

earning models such as few-shot or zero-shot learning techniques 

ave been studied to overcome this issue caused by the limited 

umber of medical datasets [37] . Also, the problem from the im- 

alanced datasets of medical datasets has been tried to be solved 

y using various techniques such as focal loss which offers to fo- 

us training on a sparse dataset and simultaneously and prevent 

he vast number during training [38,39] . The deep learning tech- 

iques can be applied to discriminate between incomplete KD and 

neumonia using ultrasound imaging. The related study remains 

uture work. 

. Conclusions 

We have shown the feasibility of using an explainable deep 

earning approach for detection of KD based on echocardiogra- 

hy images. The AUPRCs of the deep learning algorithms, in- 

luding VGG19, Xception, ResNet50, ResNext50, SE-ResNet50, and 

E-ResNext50, were found to be 0.7576, 0.8074, 0.6913, 0.7599, 

.8534, and 0.8563, respectively, for discrimination between KD 

nd non-KD. In particular, the SE-ResNext50 offered the best per- 

ormance among the deep learning algorithms with an accuracy of 

5.86% and an AUPRC of 0.8563. The explainable deep learning al- 

orithms highlighted salient features of coronary arteries, similar 

o how an experienced pediatric cardiologist would examine coro- 

ary artery regions for the detection of KD. Although the specificity 

f deep learning algorithms was still lower than that of highly ex- 

erienced clinicians for the discrimination between incomplete KD 

nd non-KD, the deep learning algorithms used in this study were 

romising in terms of sensitivity and precision. Therefore, deep 

earning algorithms may assist clinicians in reducing the probabil- 

ty of misdiagnosing KD in clinical practice. The abilities of deep 

earning algorithms should be further developed to be compara- 

le to the performance of highly experienced clinicians in order to 

ranslate this approach to application in the clinic. 
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