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Predictors of opioid overdose death in neighborhoods are important to identify, both to understand character-
istics of high-risk areas and to prioritize limited prevention and intervention resources. Machine learning methods
could serve as a valuable tool for identifying neighborhood-level predictors. We examined statewide data on opioid
overdose death from Rhode Island (log-transformed rates for 2016–2019) and 203 covariates from the American
Community Survey for 742 US Census block groups. The analysis included a least absolute shrinkage and
selection operator (LASSO) algorithm followed by variable importance rankings from a random forest algorithm.
We employed double cross-validation, with 10 folds in the inner loop to train the model and 4 outer folds to assess
predictive performance. The ranked variables included a range of dimensions of socioeconomic status, including
education, income and wealth, residential stability, race/ethnicity, social isolation, and occupational status. The
R2 value of the model on testing data was 0.17. While many predictors of overdose death were in established
domains (education, income, occupation), we also identified novel domains (residential stability, racial/ethnic
distribution, and social isolation). Predictive modeling with machine learning can identify new neighborhood-level
predictors of overdose in the continually evolving opioid epidemic and anticipate the neighborhoods at high risk of
overdose mortality.
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Abbreviations: CBG, census block group; LASSO, least absolute shrinkage and selection operator; OUD, opioid use disorder.

Despite substantial public health investment, the opioid
overdose crisis continues unabated in the United States (1).
Opioid-involved overdose claimed the lives of 90 Americans
per day in 2015, rising to a staggering 137 per day in 2019
(1, 2). Prescriptions for opioid analgesics have decreased
precipitously since their peak in 2012, and greater propor-
tions of opioid use and opioid-involved mortality are now
attributable to heroin, illicitly manufactured fentanyl, and
other synthetic opioids (3). Synthetic opioids increasingly
adulterate the illicit drug supply, greatly increasing overdose
risk (4). In some jurisdictions, including New England,
fentanyl has largely supplanted heroin in the drug supply (5).

Due to the difficulty of monitoring the continually evolv-
ing illicit drug supply and rapidly changing overdose risk
environment, proactive interventions focused at the commu-

nity level, including naloxone distribution, street outreach,
expansion of opioid use disorder (OUD) treatment services,
and provision of mobile and low-threshold OUD treatment,
have become more important than ever (6, 7). However,
at present, community-level increases in opioid-involved
overdose deaths are detected in hindsight, with data often
derived from autopsy reports, and substantial time lags limit
their utility (8). Syndromic surveillance of nonfatal opioid
overdoses (e.g., using emergency department or emergency
medical services data sources) is more timely, but case defi-
nitions are inconsistently applied across jurisdictions (9). To
improve understanding of specific characteristics that place
communities most at risk for opioid overdose and other drug-
related harms, and to inform where best to prioritize limited
public health and harm reduction resources, researchers and
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practitioners must better understand the predictors of opioid
overdose death at the community level. Because of their
ability to detect patterns in data and account for complex
variable interactions, machine learning methods could serve
as a valuable tool in identifying these community-level
predictors (10).

Most studies to date that have utilized machine learning
to identify predictors of OUD and opioid-involved overdose
mortality have focused on individual-level data in clinical
settings (11–16). More recent predictive modeling efforts
have recognized the importance of social factors in driving
opioid overdose and have incorporated data from crimi-
nal justice records and human services providers and self-
reported data on socioeconomic status and illicit drug use
(17–19). These individual-level predictive models consis-
tently find that inclusion of social factors achieves meaning-
ful improvements in model performance. Researchers have
also applied machine learning methods to predict the future
spatial distribution of overdose deaths and to detect emerg-
ing geographic and demographic patterns of overdoses (20).

However, to our knowledge, none of these predictive
modeling efforts have attempted to identify which specific
community-level predictors could help in understanding the
geographic distribution of opioid overdose mortality risk
(20, 21). Prior research on neighborhood characteristics
associated with opioid overdose mortality risk has identified
potential domains of interest, including occupational factors,
income and wealth, and racial/ethnic segregation (22–24).
While these analyses are illuminating, they neglect the rela-
tive influence, complex interactions, and high degree of cor-
relation between these community-level predictors and so
provide an incomplete picture of the factors most predictive
of overdose death (25–27). A significant gap in the literature
exists in analyzing, synthesizing, and prioritizing the rapidly
changing community-level predictors of the opioid overdose
crisis.

A machine learning approach to examining community-
level predictors of overdose facilitates both the ranking of
existing domains and the identification of new domains that
predict recent trends in overdose death rates while account-
ing for the high degree of correlation and interaction between
different domains. Herein, we employ machine learning
techniques involving 206 neighborhood-level demographic
variables derived from the US Census Bureau’s Ameri-
can Community Survey from 2016–2019. The predictors
encompass domains such as educational attainment, income,
disability, employment, and other measures of the built envi-
ronment (e.g., age of housing). We use these variables to pre-
dict the neighborhood-level distribution of opioid overdose
deaths in Rhode Island, the state with the 11th highest rate
of opioid overdose mortality nationally as of 2018 (28). We
leverage double cross-validation to select a model without
overfitting. For the outer loop, the data are divided into 4
folds. Each fold is used to evaluate the out-of-sample perfor-
mance of a predictive model trained using the other 3 folds,
and performance is averaged over the 4 folds. For the inner
loop, 10-fold cross validation (within the training data) is
used to tune the hyperparameters of the least absolute shrink-
age and selection operator (LASSO) and random forest algo-
rithms. As an additional sensitivity analysis, we substitute

elastic net regression for the LASSO; results are reported
in Web Table 1 (available at https://doi.org/10.1093/aje/
kwab279). This study follows the Transparent Reporting
of a Multivariable Prediction Model (TRIPOD) checklist,
available in Web Table 2.

METHODS

Opioid overdose death rates

Our unit of analysis was the census block group (CBG),
the smallest geographic unit for which the US Census
Bureau publishes sample data (29). We chose CBGs as
the level of analysis because they consist of small areas
(600–3,000 residents) and have been found to be good
proxies for neighborhoods in previous research (29, 30).
We excluded special land-use CBGs, which are areas with
minimal population used to denote important land features
(29). Of the 815 CBGs present in Rhode Island, we excluded
7 because of excessive missingness and 66 special land-use
CBGs, for a final analytical sample of 742 CBGs.

The outcome—the rate of opioid overdose death per
100,000 population at the CBG level—was calculated from
data provided by the Rhode Island Department of Health
using Rhode Island’s State Unintentional Drug Overdose
Reporting System (31). Information for this Centers for Dis-
ease Control and Prevention–funded program is abstracted
from multiple data sources, including medical examiners’
records, death certificates, law enforcement records, and
toxicological results; a complete breakdown of case defini-
tions is available online (32). As part of data collection,
professional abstractors identify the precise location of in-
jury, defined as the address closest to the location where
the overdose occurred. For this analysis, staff at the Rhode
Island Department of Health geocoded all cases to the CBG
using a census geocoder.

We included all accidental opioid-involved overdose
deaths that occurred in Rhode Island between July 1, 2016,
and June 30, 2019. Where injury location was missing, we
used residence location (n = 56; 6.48%), and we excluded
from analysis cases that were missing data on both location
of death and residence (n = 7; 0.81%). We calculated the an-
nual rate of opioid overdose death per 100,000 residents by
summing the number of opioid overdose deaths, dividing by
the total population of the CBG according to the American
Community Survey and number of years, and multiplying by
100,000 (33). Because of the existence of a small number of
extreme outliers, we used log(1 + x), or the log-transformed
opioid overdose death rate plus 1, as the primary outcome to
account for zeros in the data; this practice has been shown
to perform well in right-skewed, strictly positive data in
previous studies (34, 35).

Covariates

We selected a total of 206 variables from the Census
Bureau’s annual American Community Survey that repre-
sented a variety of domains, based on prior literature exam-
ining the neighborhood-level determinants of overdose risk;
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all variables and definitions are available in Web Table 3
(22–27). We excluded covariates with over 5% missingness
as a conservative method to reduce the dimensions of the
data set. As a result, from the 206 variables in the original
data set, we used 203 variables without excessive missing-
ness for the final analysis. We used an average of the covari-
ates’ values, all continuous variables, from 2016 to 2019
as the predictors because these demographic characteristics
change little over the course of 3 years.

Statistical analysis

We developed a prediction model through double cross-
validation by training community-level predictors in the
10 inner folds within each of the 4 outer folds with log-
transformed annual opioid death rates averaged over the
study period. We evaluated the performance of our model,
averaged over the 4 outer folds of the double cross-validation
design. We first implemented a LASSO algorithm to reduce
variability in our estimates and multicollinearity caused by
the existence of many strongly correlated covariates that
explain little of the variation in the opioid death rate by
CBG. The LASSO algorithm addresses the possibility of
overfitting by setting covariates that do not meaningfully
improve predictive performance to 0. This is achieved by
minimizing the sum of the mean squared error (as in ordinary
least squares linear regression) and a penalty term equal to
some constant λ times the sum of the coefficients’ absolute
values. To select the optimal value of the penalty parameter
λ, we performed an inner 10-fold cross-validation (within
the training data) for each outer fold of the double cross-
validated design, which resulted in an average optimal value
across the 4 folds of 0.0998. The coefficients and perfor-
mance derived from the LASSO regression are available in
Web Table 4. After discarding the covariates set to 0 by the
LASSO algorithm, 40 total covariates remained across the
4 folds. Descriptive statistics for these 40 covariates in the
overall data set are available in Web Table 5 (36, 37).

We next used the random forest algorithm for its ability to
handle high-dimensional data with complex interactions and
to rank covariates by variable importance. While other tree-
based methods like gradient boosting can perform variable
importance ranking, we chose random forest because it
performs comparatively well with this data and for its inter-
pretability by a non–machine learning specialist audience.
We averaged the permutation variable importance across
folds of each of the remaining covariates and ranked them
accordingly. We computed permutation variable importance
by 1) taking the sum of the decrease in mean squared error
from splitting on a covariate for the out-of-sample data;
2) permuting each variable to understand the mean squared
error increase from excluding the variable; and 3) averaging
and normalizing by the standard error and then scaling to
produce a range from 0 to 100 (38). There are probably
complex interactions between the variables, some that are
intuitive (e.g., between income and education) and some
that a researcher cannot anticipate. Thus, even with a mod-
est number of interactions, the problem quickly becomes
intractable for parametric modeling, where specifying more

parameters than available observations leads to overfitting
(39, 40).

The mechanism behind the random forest algorithm is an
ensemble, or collection, of nonparametric regression trees.
In a simple regression tree, observations are split into 2
different nodes, or groups of observations based on different
values of the covariate that cause the largest reduction of
mean squared error in the outcome within groups after the
split. After the first split, this process continues, and the data
are further split into successive groups according to other
important covariates that create increasingly homogenous
groups.

While a nonparametric regression tree creates an intuitive
prediction of opioid overdose death rates based on mean
values in covariate subgroups, a tree’s form is extremely sen-
sitive to the variables the algorithm splits on. To understand
this intuitively, imagine that the opioid overdose death rate
is strongly predicted by 3 variables: low educational attain-
ment, low household income, and median age. Low educa-
tional attainment is strongly correlated with low household
income. As a result, conditional on having split by low house-
hold income, low education explains little further regarding
the differences between groups, and vice versa. Thus, while
2 regression trees might explain similar levels of variation
in the opioid overdose death rate, 1 tree might split on
low household income first and the other on low education,
after which the collinearity of the two variables would make
the other seem unimportant. The random forest algorithm
addresses this issue of high variability in the structure of
individual trees by drawing bootstrapped samples of the
training data and averaging the results of different regression
trees conducted on each of these samples. Random forest
reduces the correlation between regression trees by ran-
domly drawing only a subset of covariates to split on at each
node. To understand whether each covariate has a protective
or harmful association with opioid overdose death, we used
the sign of the coefficient from the LASSO algorithm to
determine the direction of the relationship.

To train the random forest model, we performed hyper-
parameter tuning on the same inner folds as for the LASSO
regression. Through cross-validation, we tuned the param-
eters by setting the number of trees at 1,000 or more for
each model, and we found the optimal number of covariates
randomly sampled at each split to be 21, on average, across
the folds. The chosen set of model parameters was then
used to fit the predictive model on the outer folds, at which
point we evaluated out-of-sample prediction performance.
We relied on mean squared error as the measure by which
to gauge prediction accuracy. All analyses were performed
in R 3.6.1 (R Foundation for Statistical Computing, Vienna,
Austria), and the analysis code is available online (41). The
study was approved by the Brown University and Rhode
Island Department of Health institutional review boards.

RESULTS

A total of 863 overdose deaths attributable to opioids
occurred in Rhode Island from January 2016 to June 2019,
of which 741 (85.9%) were eligible for inclusion in this
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Figure 1. Calibration of predicted and actual log rates of opioid overdose death (number of deaths per 100,000 population) at the census block
group level, American Community Survey, 2016–2019. The calibration plot has a slope of 0.73 and an intercept of 0.35.

analysis. Over the 42-month study period, a median of 1
opioid overdose death occurred per CBG, with an interquar-
tile range of 0–1 and a range of 0–12. Opioid overdose
deaths occurred at higher rates in the urban areas of Rhode
Island (31 deaths/100,000 population), which consist of the
Providence metropolitan area and much of the eastern border
of the state, than in less urban areas (22 deaths/100,000
population).

The variables selected by LASSO and ordered by the
random forest pertained to a wide range of the dimensions
of socioeconomic status, including 9 covariates related to
education, 10 related to income and wealth, 6 related to
residential stability, 2 related to race/ethnicity, 3 related to
occupational status, 4 related to social isolation, 3 related to
age, and 2 related to sex, as defined by the US Census Bureau
(descriptive statistics are provided in Web Table 5, and a full
list of variables considered in the LASSO algorithm is pro-
vided in Web Table 3). The remaining variable, percentage
of residents who did not speak English, did not fall into any
of these categories. Web Table 4 shows the coefficients from
this regression. Web Figure 1 shows the covariates with the
highest variable importance metrics (grouped by domain and
direction of coefficient), and Web Figure 2 shows the same
results for the elastic net sensitivity analysis. The R2 and root
mean squared error of the model on testing data were 0.17
and 16.2, respectively, and Figure 1 shows the calibration
plot. A perfectly calibrated model would produce a slope of
1, whereas our model’s slope was 0.73, as the model tended
to overestimate overdose deaths in CBGs with 0 cases and
underestimate overdose deaths in CBGs at the upper end of
the distribution.

DISCUSSION

While existing predictive models that focus on overdose
risk at an individual level can assist in clinical decision-
making, our focus on neighborhood-level predictors is better
suited to optimizing the allocation of public health resources
and targeted community-focused interventions. In this anal-
ysis of neighborhood-level predictors of fatal opioid over-
dose burden in Rhode Island, we identified a set of 40
predictors that together explained approximately 17% of
the variance in fatal overdose rates between CBGs. While
many of the predictors fell into domains established from the
existing literature, like education, income/wealth, and occu-
pational status (22, 23, 25–27), they also included important
new domains, including residential stability, racial/ethnic
distribution, and social isolation. Importantly, these factors
predicted overdose death burden at the neighborhood level
using injury location and may not necessarily reflect traits
or risks experienced by individual decedents.

The high variable importance and positive LASSO regres-
sion coefficient suggest that one of the most important
covariates identified—percentage of men with only a high
school education—is associated with higher rates of opioid
overdose death. Educational attainment serves as an impor-
tant proxy measure of social status, and recent research
suggests that men without a college education and/or resid-
ing in areas with little economic opportunity face markedly
higher rates of substance use and related disorders (42–
44). The combination of the variable importance ranking
and the protective relationship between increased educa-
tional attainment and opioid overdose death at the CBG
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level implies that fatal overdoses concentrate in areas with
lower socioeconomic status among men, a trend replicated
by the importance of income and occupation as predictors
(described below). Consistent with this pattern, the percent-
age of the population with some college education had a high
variable importance and a negative association with opioid
overdose death rates.

Income and wealth, captured by measures of household
income, median home values, poverty, and car ownership,
have also been identified in past research on the opioid
crisis that identified deaths at the county and state levels as
occurring most frequently in areas of lower income and high
unemployment (22, 25). In this analysis, areas that had a
larger percentage of households with incomes under $50,000
per year, lower median housing values, and lower car own-
ership tended also to have higher rates of opioid overdose
death. Consistent with this pattern, a higher proportion of
households earning at least $100,000 per year was associated
with fewer opioid overdose deaths. Several hypotheses exist
regarding the mechanism for this relationship, including
drug use to manage chronic stress due to economic hardship,
previously identified by studies of other types of drug use
(45). Two of the income variables identified denoted house-
holds living at or below the poverty line, and both predicted
higher opioid death rates; this is consistent with research
that found severe economic stress had a strong association
with heroin-involved deaths in urban zip codes in the United
States (25).

Occupational characteristics were represented in 3 of the
covariates selected, including percentage of men in pro-
duction occupations and percentages of men and people in
management occupations. A greater number of men in pro-
duction occupations was positively associated with higher
overdose death rates, while greater numbers of men and
people in management occupations were protective. This
coheres with recent work on overdose deaths by occupa-
tion in Massachusetts and Rhode Island, which found that
workers in occupations with limited sick leave and insurance
coverage, especially construction, production, and service
workers, were far more likely to suffer an opioid-related
overdose death than their higher-earning peers at less risk of
injury (26, 32). This relationship likely exists because work
injuries in these sectors are often treated with opioids, which
results in neighborhoods with both more prescription opioid
use and a greater supply of prescription opioids in circulation
(32).

While not previously established as a driver of opioid
overdose deaths, variables that capture information on res-
idential instability served as important predictors of over-
dose mortality in our analysis. Residential instability has an
independent and synergistic effect relative to neighborhood
and individual-level poverty on the health of individuals in
a neighborhood (46, 47). In social disorganization theory,
residential instability is hypothesized to have a negative
effect on health through a lack of institutional strength,
limited social network interaction, and lesser feelings of
neighborhood attachment (46). Furthermore, an established
body of literature shows that people experiencing homeless-
ness face risks of OUD and opioid-involved mortality far in
excess of those with stable housing (47).

In combination, these factors could increase the
population-level burden of OUD and opioid-related death.
The covariates denoting residential stability, including
percentage of renter-occupied households, percentage of
owner-occupied households, percentage of housing units
that experienced turnover in 2010 and in the 1990s, and
percentage of houses for sale that are vacant, probably
correlate with both relative economic hardship and resi-
dential instability, which could each have an independent
association with opioid overdose deaths in a CBG. This
hypothesis is supported by the positive associations between
opioid overdose death rate and a higher percentage of renter-
occupied housing, a higher percentage of houses for sale that
are vacant, and higher rates of recent housing unit turnover.
Consistent with these results, the percentage of owner-
occupied households and housing turnover in the 1990s
were both associated with fewer opioid overdose deaths.

From the late 1990s to approximately 2010, rates of OUD
were higher among Whites; however, overdose death rates
among Blacks and Hispanics have increased considerably
in recent years (27). This model detected a significant pos-
itive association between the percentage of neighborhood
residents who are Black and opioid overdose death rates.
The inclusion of these variables in the variable importance
graphs reflects a potential change in the demographic pro-
file of individuals at risk for opioid overdose and under-
scores contributions of systemic racism as a significant
driver of drug overdose risk in communities of color (48).
This demonstrates machine learning’s ability to detect both
previously theorized associations and emergent trends that
surpass current theoretical knowledge.

Lastly, measures of social isolation, long understood to
play an important role in OUD, also have a strong asso-
ciation with increased opioid overdose death rates at the
neighborhood level (49). Specifically, our model suggests
that communities with more people living alone or unmar-
ried have higher opioid overdose death rates. These are
the same covariates as those identified in previous cross-
sectional analyses of the risk of opioid overdose (49). Due
in part to the multidimensional nature of social isolation, its
exact role in community opioid overdose mortality remains
underexplored; additional research is needed to elucidate the
causal mechanisms.

There are several limitations to the current study. First,
this analysis focused on CBG-level covariates as predic-
tors of neighborhood-level opioid overdose mortality rates.
While the R2 value of our predictive model was low relative
to those presented in individual-level studies with clinical
data, the focus on prediction at an aggregate level using
only socioeconomic determinants made highly accurate pre-
diction far more challenging (50). Still, in the absence of
comparable efforts focused at the neighborhood level, this
relatively low R2 could affect the current model’s utility.
While the predictive power of the approach remains low,
a model incorporating other data sources could pave the
way for focused community-level interventions in neigh-
borhoods at high risk of overdose outbreaks. This type
of predictive modeling may help policy-makers anticipate
types of communities that could have a higher rate of over-
dose mortality, although it would be important to examine
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these relationships in settings beyond Rhode Island and
prospectively as well. Additionally, the model would have
to consider the fairness of resource targeting, a persistent
concern in predictive modeling (10).

Second, the data were collected at the CBG level, a level
that is more fine-grained than a census tract but still repre-
sents communities defined by the Census Bureau and not
necessarily neighborhood divisions. Third, opioid overdose
mortality as an outcome is less common and more variable
than nonfatal opioid overdose or OUD more generally. This
makes it both less stable and more challenging to predict.
Fourth, the burden of opioid-related mortality may not pre-
cisely align with the burdens of opioid use and OUD in a par-
ticular area; however, from the perspective of policy-makers
trying to minimize opioid-related harms, identification of
predictors of opioid overdose death can provide crucial
information on where the epidemic might have the most
severe impacts. Lastly, this analysis relied on the location of
the overdose (otherwise known as the location of injury) and
not the location of residence, so it may not have targeted the
neighborhoods in which victims actually resided. However,
because area of residence and area of overdose often concord
in Rhode Island—with 73.7% of events in the data set occur-
ring in the victim’s residential CBG—and most community-
level interventions focus on intervening at the point of drug
use, this is not a significant concern.

In summary, our machine learning approach identified
many of the covariates implicated in the existing litera-
ture, albeit at a neighborhood level, and revealed potential
new domains associated with opioid overdose death rates.
The use of public data and the large number of standard
covariates from the American Community Survey allow
researchers to further explore the relationships identified in
this analysis, as well as the covariate domains associated
with opioid overdose death rates, in their own contexts of
interest. The model’s ability to identify important predictors
of overdose death suggests that after incorporating other
important ecological data, a neighborhood-level predictive
model could become a valuable and interpretable asset for
public health departments both in determining where to
target resources for community-focused overdose preven-
tion intervention and in understanding the characteristics
of communities most heavily impacted by this ongoing
crisis in their own jurisdictions. Rhode Island provides an
instructive case-study setting for identifying predictors of
overdose mortality, as a state with below-average opioid
prescription rates but an opioid overdose death rate over
twice the national average (51). While Rhode Island is
only 1 state, the covariates identified in this analysis bear
remarkable similarity to those identified in other places
across the country (51, 52). Broader investigations should
consider these relationships in diverse settings.
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