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Abstract 

Background:  The current genome-wide association study (GWAS) of Lewy body dementia (LBD) suffers from low 
power due to a limited sample size. In addition, the genetic determinants underlying LBD and the shared genetic 
etiology with Alzheimer’s disease (AD) and Parkinson’s disease (PD) remain poorly understood.

Methods:  Using the largest GWAS summary statistics of LBD to date (2591 cases and 4027 controls), late-onset AD 
(86,531 cases and 676,386 controls), and PD (33,674 cases and 449,056 controls), we comprehensively investigated 
the genetic basis of LBD and shared genetic etiology among LBD, AD, and PD. We first conducted genetic correla-
tion analysis using linkage disequilibrium score regression (LDSC), followed by multi-trait analysis of GWAS (MTAG) 
and association analysis based on SubSETs (ASSET) to identify the trait-specific SNPs. We then performed SNP-level 
functional annotation to identify significant genomic risk loci paired with Bayesian fine-mapping and colocalization 
analysis to identify potential causal variants. Parallel gene-level analysis including GCTA-fastBAT and transcriptome-
wide association analysis (TWAS) was implemented to explore novel LBD-associated genes, followed by pathway 
enrichment analysis to understand underlying biological mechanisms.

Results:  Pairwise LDSC analysis found positive genome-wide genetic correlations between LBD and AD (rg = 0.6603, 
se = 0.2001; P = 0.0010), between LBD and PD (rg = 0.6352, se = 0.1880; P = 0.0007), and between AD and PD (rg = 
0.2136, se = 0.0860; P = 0.0130). We identified 13 significant loci for LBD, including 5 previously reported loci (1q22, 
2q14.3, 4p16.3, 4q22.1, and 19q13.32) and 8 novel biologically plausible genetic associations (5q12.1, 5q33.3, 6p21.1, 
8p23.1, 8p21.1, 16p11.2, 17p12, and 17q21.31), among which APOC1 (19q13.32), SNCA (4q22.1), TMEM175 (4p16.3), 
CLU (8p21.1), MAPT (17q21.31), and FBXL19 (16p11.2) were also validated by gene-level analysis. Pathway enrichment 
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Background
Lewy body dementia (LBD) is the second most com-
mon neurodegenerative dementia after Alzheimer’s dis-
ease (AD) [1, 2]. The population-based incidence of LBD 
reported in a large-scale systematic review is between 
0.5 and 1.6 per 1000 person-years, accounting for 3 to 
7% of dementia cases. The prevalence of LBD increases 
with age and ranges from 0.02 to 63.5 per 1000 persons 
[3]. In addition, the epidemiological characteristics of 
LBD differ across ancestry, which highlights the need for 
studies on LBD among ethnically diverse populations [4, 
5]. Clinically, LBD is characterized by progressive cog-
nitive impairment, parkinsonism, and neuropsychiat-
ric symptoms, with extensively abnormal deposition of 
α-synuclein in the form of Lewy bodies, which are also 
featured in Parkinson’s disease (PD) pathology [6]. Unfor-
tunately, LBD is a type of irreversible dementia with high 
mortality due to the lack of effective treatment [7]. There-
fore, it is of great significance to probe into the complex 
genetic architecture of LBD, thus to better understand its 
underlying genetic mechanisms and investigate potential 
intervention targets.

Genome-wide association studies (GWAS) have suc-
cessfully identified several risk loci associated with LBD 
[8–10]; however, the sample sizes of these GWASs are 
relatively small, in which the largest LBD GWAS to date 
only includes 2591 LBD cases and 4027 neurologically 
healthy individuals [10]. The smaller sample size of LBD 
GWAS may be presumably due to the clinical underdi-
agnosis or misdiagnosis of LBD. In particular, LBD typi-
cally shares features with synucleinopathies (e.g., PD) and 
tauopathies (e.g., AD) [11], which often brings the diffi-
culties in clinical practice to obtain the precise diagnosis 
of LBD [12]. In addition, the clinically pathological diag-
nosis is hard to carry out, and the definitively diagnosed 
LBD cases generally rely on a brain autopsy after death 
[13, 14]. Therefore, it is infeasible to collect large sam-
ples of definitively diagnosed LBD cases in longitudinal 
studies. Using some state-of-the-art methods to alleviate 
the small sample size issue and improve the LBD GWAS 
power is necessary to re-explore the underlying genetic 
mechanisms and to provide novel insights into the bio-
logically potential intervention targets of LBD.

Multi-trait joint analysis can borrow the correla-
tion information from multiple correlated traits and 
has become a common and effective statistical tool to 
improve the power of the single-trait GWAS. Given the 
clinical and pathological overlap of LBD with AD and PD, 
a plausible hypothesis drawn from the neuropathological 
observations studies is that LBD lies on a disease con-
tinuum between AD and PD [15], and thus, one would 
anticipate the shared genetic underpinnings among these 
three diseases. More importantly, the current sample 
sizes of AD or PD GWASs are relatively large with sub-
stantial underlying information to exploit. Therefore, 
multi-trait joint analysis of LBD, AD, and PD could be 
more powerful not only in deeply exploring the LBD-
associated genetic variants by borrowing the information 
from both AD and PD, but also in providing the shared 
pleiotropic loci among these three diseases. In addition, 
the shared genetic loci could also serve as intervention 
targets with the potential to simultaneously prevent or 
treat these diseases, providing critical public health and 
clinical significance [16]. Indeed, previous studies also 
supported the possible genetic overlap among these 
three diseases and have illustrated the potential to deeply 
investigate the genetic architecture of LBD through 
multi-trait joint analysis. For example, a recent review 
summarized the genetic associations for LBD, includ-
ing the well-documented known loci, APOE, SNCA, and 
GBA [17]. Two additional loci BIN1 and TMEM175 have 
been recently discovered from the largest GWAS of LBD 
to date [10]. These loci have been implicated in AD (e.g., 
APOE and BIN1) as well as in PD (e.g., SNCA, GBA, and 
TMEM175), respectively, indicating the shared genetic 
etiology that LBD may be partly driven by the pleiotropic 
genetic variants associated with both AD and PD [10].

With the increase of publicly available GWAS sum-
mary data and the well-developed efficient tools, it is 
methodologically feasible to conduct the multi-trait joint 
analysis. Linkage disequilibrium score regression (LDSC) 
[18] is often used as an initial evaluation of the global 
genetic correlation among multiple traits, typically fol-
lowed by some subsequent analyses. Multi-trait analysis 
of GWAS (MTAG) [19] resorts to the correlation of mul-
tiple related traits to improve power. However, MTAG 

analysis of 40 common genes identified by GCTA-fastBAT and TWAS implicated significant role of neurofibrillary tan-
gle assembly (GO:1902988, adjusted P = 1.55 × 10−2).

Conclusions:  Our findings provide novel insights into the genetic determinants of LBD and the shared genetic etiol-
ogy and biological mechanisms of LBD, AD, and PD, which could benefit the understanding of the co-pathology as 
well as the potential treatment of these diseases simultaneously.

Keywords:  Lewy body dementia, Alzheimer’s disease, Parkinson’s disease, Shared genetics, Multi-trait association 
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may suffer from the inflation of false discovery rate due 
to the violation of the strong homogeneous assumption 
that all SNPs share the same variance-covariance matrix 
of effect sizes across traits. Association analysis based 
on subsets (ASSET) [20] is another flexible and power-
ful multi-trait method with relatively weak assumptions. 
ASSET could exhaustively explore all possible subsets of 
traits and assign an optimal one for each SNP, suggesting 
potential pleiotropic effects of these SNPs. Theoretically, 
MTAG and ASSET could complement each other.

In the present study, using the largest GWAS sum-
mary statistics of LBD, late-onset AD, and PD to date, we 
first performed single-trait LDSC to evaluate the qual-
ity of LBD, AD, and PD GWAS, respectively, followed by 
genome-wide genetic correlations with pairwise LDSC 
analysis. Second, we applied MTAG for LBD, AD, and 
PD to obtain the MTAG meta-analysis summary statis-
tics of LBD, with additional ASSET analysis to further 
validate and replicate the findings from MTAG. Third, 
based on the results from MTAG analysis, we imple-
mented SNP-level functional annotation to identify sig-
nificant genomic risk loci followed by SNP enrichment to 
discover the significant functional categories of various 
cells or tissues involved in the development of LBD. Next, 
we applied conditional and joint association analysis to 
identify independent association signals in genomic risk 
loci, followed by Bayesian fine-mapping to obtain credi-
ble sets of candidate causal SNPs as well as colocalization 
analysis to pinpoint the shared causal variants. Finally, 
we performed gene-level analysis including GCTA-fast-
BAT and multi-tissue TWAS analysis using joint-tissue 

imputation (JTI) to further explore novel LBD-associated 
genes and reveal the underlying genetic mechanisms of 
LBD. Briefly, we reported the novel LBD-associated risk 
loci and the shared loci that may play important roles 
in the clinical, pathological, and genetic overlap of LBD, 
AD, and PD, providing novel insight into the prevention 
or treatment of these diseases.

Methods
Study design, data sources, and quality control
The analysis flowchart of this study is shown in Fig. 1. We 
used the largest GWAS of LBD, AD, and PD to date. We 
obtained the largest GWAS summary statistics of LBD 
(2591 cases and 4027 controls) from the GWAS Catalog 
(https://​www.​ebi.​ac.​uk/) [10, 21], the largest late-onset 
AD GWAS (86,531 cases and 676,386 controls) from a 
large-scale meta-analysis excluding 23andMe (https://​
ctg.​cncr.​nl/​softw​are/​summa​ry_​stati​stics) [22, 23], and 
the largest PD GWAS (33,674 cases and 449,056 controls) 
from the MRC IEU OpenGWAS database (https://​gwas.​
mrcieu.​ac.​uk/) [24, 25]. These studies were all restricted 
to European ancestry with stringent quality control as 
described previously [10, 22, 24]. We converted the LBD 
summary statistics from human reference genome hg38 
to hg19 through CrossMap (http://​cross​map.​sourc​eforge.​
net/) [26, 27] to ensure the same alignment reference 
with the other two GWAS summary statistics. In addi-
tion, we excluded the major histocompatibility complex 
(MHC) region (chromosome 6, 26–34 Mb) due to its 
complex structure, filtered SNPs with minor allele fre-
quency (MAF) < 0.01, restricted to biallelic SNPs, and 

Fig. 1  Overall study design. Pairwise genome-wide genetic correlation analysis among LBD, AD, and PD was first performed by linkage 
disequilibrium score regression (LDSC), followed by multi-trait meta-analysis of LBD, AD, and PD GWASs using MTAG. Based on the MTAG​LBD results, 
SNP-level analysis and gene-level analysis were further implemented to investigate the genetic basis of LBD and shared genetics underlying LBD, 
AD, and PD. GWAS, genome-wide association study; MTAG, multi-trait analysis of genome-wide association studies; LBD, Lewy body dementia; AD, 
Alzheimer’s disease; PD, Parkinson’s disease

https://www.ebi.ac.uk/
https://ctg.cncr.nl/software/summary_statistics
https://ctg.cncr.nl/software/summary_statistics
https://gwas.mrcieu.ac.uk/
https://gwas.mrcieu.ac.uk/
http://crossmap.sourceforge.net/
http://crossmap.sourceforge.net/
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removed SNPs with duplicated or missing rs ID in each 
GWAS summary data for subsequent analyses. Besides, 
since the information including MAF, effect sizes, and 
standard errors of SNPs was unavailable in the AD 
GWAS, we estimated MAF using the 1000 Genomes Pro-
ject phase 3 of European ancestry as a reference panel 
[28] and then estimated the effect sizes and standard 
errors from Z-scores following the previous method [29]. 
Detailed descriptions of all GWAS studies above were 
provided in Additional file 1: Table S1.

LD score regression analysis
LD score regression (LDSC) [18, 30] is widely used for 
estimating the genome-wide genetic correlation between 
complex diseases or traits. LDSC essentially quantifies 
the genetic correlation by regressing the GWAS sum-
mary statistics on LD scores. We first performed the 
single-trait LDSC to estimate SNP-based heritability, 
mean χ2, genomic inflation factor λGC, and the intercept 
for each GWAS summary statistics. Note that the mean 
χ2 statistic is higher in the high-LD region compared with 
the low-LD region and should not be further analyzed if 
it is less than 1.02. λGC and the intercept can be used to 
evaluate the polygenicity and confounding due to popula-
tion stratification or cryptic relatedness.

We then conducted pairwise LDSC to estimate 
genome-wide genetic correlations among LBD, AD, 
and PD using the pre-computed LD scores of European 
ancestry from the 1000 Genomes Project Phase3 (https://​
alkes​group.​broad​insti​tute.​org/​LDSCO​RE/) [31]. Given 
that low imputation quality may lead to lower test sta-
tistics, we restricted our analysis to well-imputed Hap-
Map3 SNPs. Bonferroni-corrected significant threshold 
was set at a P value of 0.0167 (0.05/3). Again, both single-
trait and pairwise LDSC analyses can provide the overall 
results and direct the downstream analyses.

Multi‑trait meta‑analysis with MTAG​
MTAG applies generalized inverse-variance-weighted 
meta-analysis for multiple correlated traits and aims to 
detect novel genetic associations for each trait through 
boosting statistical power by borrowing the correlations 
among correlated traits [19]. Briefly, MTAG takes sum-
mary statistics from single-trait GWAS as inputs and 
produces trait-specific effects for one common set of 
SNPs. In addition, MTAG incorporates LDSC to account 
for sample overlap among the GWASs of multiple corre-
lated traits [19]. MTAG relies on the key homogeneous 
assumption that all SNPs across traits share the same var-
iance-covariance matrix of effect sizes, but the estimator 
of MTAG can be still consistent even if this assumption is 
violated when some SNPs influence only a subset of the 
traits [19]. Another important feature of MTAG is that 

the summary statistics obtained from MTAG for each 
trait can be used like summary statistics from a single-
trait GWAS.

We denote the summary statistics from single-trait 
GWAS as GWASLBD, GWASAD, and GWASPD, respec-
tively, and the summary statistics of LBD from MTAG 
analysis as MTAG​LBD. The genome-wide significance 
level for MTAG​LBD was set at Pmtag < 5 × 10−8. We per-
formed an analysis using MTAG v.1.0.8 and calculated 
the maximum false discovery rate (maxFDR) to evaluate 
the overall inflation due to violation of the homogeneous 
assumption [19].

Cross‑trait meta‑analysis with ASSET
ASSET builds on a generalized fixed-effects meta-anal-
ysis framework, allows SNPs affecting only a subset of 
analyzed traits, and is robust to heterogeneous genetic 
effects and sample overlap among multiple correlated 
traits [20]. ASSET exhaustively explores all possible 
subsets of traits for each given SNP and determines the 
optimal trait subset [20]. Given that MTAG is unable to 
account for pleiotropic effects of individual SNPs at the 
phenotypic level, we further carried out ASSET analysis 
to verify the significant genetic associations of MTAG​
LBD and to identify the optimal trait subset for each sig-
nificant SNP. The SNPs used in ASSET analysis were 
extracted from three single-trait GWAS summary statis-
tics, with effect directions all aligned to the effect alleles 
of GWASLBD. Here, we not only adopted a one-sided 
ASSET procedure assuming the same direction of asso-
ciation for all three diseases but also a two-sided ASSET 
analysis allowing the associations with opposite direc-
tions, to fully investigate the different association direc-
tions of SNPs on these diseases. SNPs with both Pmtag and 
Passet less than 5 × 10−8 were considered to be further 
verified if these SNPs are also in the optimal trait subset 
including LBD.

SNP annotation using FUMA
FUMA v1.3.6b [32], an online platform at https://​fuma.​
ctglab.​nl/ [33], was applied to annotate genome-wide sig-
nificant SNPs of MTAG​LBD. We performed FUMA anno-
tation with default settings and used the 1000 Genomes 
Project Phase3 of European ancestry as a reference panel. 
SNPs with P < 5 × 10−8 and independent from each other 
at r2 < 0.6 within 1 Mb were defined as independent 
significant SNPs. Lead SNPs, a subset of the independ-
ent significant SNPs, were defined if they are independ-
ent from each other at r2 < 0.1. Genomic risk loci were 
identified by merging the LD blocks of independent sig-
nificant SNPs that are closely located to each other (< 
250 kb) [32]. The top lead SNP was defined as the SNP 
with the lowest P value in a specific region. Functional 

https://alkesgroup.broadinstitute.org/LDSCORE/
https://alkesgroup.broadinstitute.org/LDSCORE/
https://fuma.ctglab.nl/
https://fuma.ctglab.nl/
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annotations, including ANNOVAR categories [34], com-
bined annotation-dependent depletion (CADD) [35] 
scores, and RegulomeDB scores [36], were also obtained 
by FUMA [32]. In addition, genome-wide significant 
SNPs from GWASLBD were also annotated by FUMA for 
comparison.

Conditional analysis using GCTA‑COJO
To further investigate whether the genomic risk loci of 
MTAG​LBD contain multiple independent signals, we 
performed conditional and joint association analysis 
using the stepwise model selection procedure in GCTA-
COJO [37, 38]. Only independent SNPs from FUMA 
(Pmtag < 5×10−8) in the genomic risk loci were included 
in GCTA-COJO analysis, with additional signals being 
reported when joint P value < 5 × 10−8. Again, 1000 
Genomes Project Phase3 of European ancestry was used 
as the reference panel for estimating LD.

Bayesian fine‑mapping analysis
We applied Bayesian fine-mapping analysis to obtain 
the SNP credible sets for each locus analyzed in GCTA-
COJO analysis using the finemap.abf function in coloc v5 
R package (https://​chr1s​walla​ce.​github.​io/​coloc/) under 
default settings [39]. With posterior probability (PP) of 
each SNP being causal provided in each locus, the 90% 
credible set of SNPs in a certain locus was obtained by 
inclusion of SNPs according to the PP order until the 
cumulative posterior probability up to 0.90. The SNP 
credible set would produce the potential candidate causal 
SNPs.

Colocalization analysis
The Bayesian colocalization method requires a single 
causal variant assumption for each trait in a specific ana-
lyzed region [40]. The hypothesis H3 that both traits are 
associated but with distinct causal variants and H4 that 
both traits are associated and share a single causal variant 
are of interest in our analysis. The posterior probability of 
H3 and H4 is denoted as PP3 and PP4, respectively, and 
the threshold for causal signals was set at PP3 or PP4 > 
0.75. Using the coloc.abf function in the coloc v5 R pack-
age [39] with prior probabilities all set at 1 × 10−4, colo-
calization analysis was performed on all SNPs in each 
locus identified by FUMA to further colocalize causal 
variants between LBD and AD as well as LBD and PD.

Functional enrichment analysis
We performed a detailed functional enrichment analy-
sis using GARFIELD [41]. GARFIELD leverages GWAS 
summary statistics and various regulatory/functional 
annotations, including genic annotations, histone modi-
fications, transcription factor binding sites, chromatin 

segmentation states, and open chromatin data (FAIRE, 
DHS Hotspots, peaks, and footprints) in various cells or 
tissues to find out the characteristics relevant to a trait of 
interest under different GWAS P value thresholds [41]. 
Briefly, given GWAS summary statistics and functional 
annotations (https://​www.​ebi.​ac.​uk/​birney-​srv/​GARFI​
ELD/) [42], GARFIELD first performs the LD pruning 
with a greedy procedure to extract independent SNPs 
from genome-wide genetic associations, followed by LD 
tagging annotation to annotate each variant with regu-
latory annotations. Then, utilizing a logistic regression 
model, GARFIELD calculates enrichment statistics (odds 
ratios, OR) and P values at user-defined GWAS P value 
thresholds for each annotation. We assessed the enrich-
ment of significant SNPs in MTAG​LBD at the Bonferroni-
corrected significance level P < 4.98 × 10−5 (0.05/1005), 
with 1005 being the number of annotations.

Gene‑level analysis
Using different methods with different model assump-
tions to obtain the overlapped signals can avoid the risk 
of false discoveries from using a single method. There-
fore, we applied two gene-level approaches with distinct 
principles, GCTA-fastBAT and TWAS, as parallel analy-
ses to obtain the common LBD-associated genes for sub-
sequent pathway analysis.

GCTA-fastBAT is a fast set-based association analy-
sis widely applied in the gene-based analysis [38, 43]. 
GCTA-fastBAT integrates z-statistics from a set of SNPs 
within a specific genomic region into a quadratic form of 
a multivariate normal variable and then calculates P val-
ues from an approximated distribution of the sum of χ2 
statistics over the SNPs, while accounting for LD between 
SNPs. To identify candidate genes, we here conducted a 
gene-based analysis using MTAG​LBD for all 24,763 genes 
by GCTA-fastBAT. Only SNPs located within the gene 
were included to examine the gene-trait associations. LD 
information from 1000 Genomes Project Phase3 was uti-
lized in the gene-based analysis. The genome-wide Bon-
ferroni-corrected significance level was set as PfastBAT < 
2.02 × 10−6 (0.05/24,763).

Transcriptome-wide association studies (TWAS) aim 
to integrate GWAS and eQTL studies to identify tissue-
specific gene-trait associations [44, 45]. We used MTAG​
LBD results and the S-PrediXcan program [46] combined 
with joint tissue imputation (JTI) models to perform a 
two-stage TWAS analysis. As an extension of PrediXcan 
[44], the JTI method substantially improves prediction 
performance by leveraging shared expression regulation 
and epigenetic similarity among different tissues [47]. 
We used JTI models in 13 different regions of brain tis-
sue derived from the Genotype-Tissue Expression project 

https://chr1swallace.github.io/coloc/
https://www.ebi.ac.uk/birney-srv/GARFIELD/
https://www.ebi.ac.uk/birney-srv/GARFIELD/
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version 8 (GTEx v8) transcriptome data [48], with Bon-
ferroni correction for multiple testing in each tissue.

Pathway enrichment
To understand the biological mechanisms of the sig-
nificant candidate genes identified from MTAG​LBD, we 
performed pathway enrichment using g:Profiler [49]. Sig-
nificant pathways were declared with a Bonferroni-cor-
rected significance level (adjusted P < 0.05).

Data visualization
R package CMplot (https://​github.​com/​YinLi​Lin/​CMplot) 
was used for producing Manhattan plots [50, 51]. Locus-
Zoom (http://​locus​zoom.​org/) was used for locus visuali-
zation [52, 53]. Other visualizations were performed in R.

Results
Linkage disequilibrium score regression
Single-trait LDSC estimates for GWASLBD, GWASAD, 
and GWASPD were shown in Additional file 1: Table S2. 
The estimates of liability-scale SNP heritability were 
0.1122 (se = 0.0528) for LBD, 0.0105 (se = 0.0017) 
for AD, and 0.0259 (se = 0.0024) for PD. The mean χ2 
statistics were all greater than 1.02, the genomic infla-
tion factors (λGC) were all less than 1.1, and the LDSC 
intercepts were all close to 1. All these results indi-
cated that the inflation of test statistics was probably 
caused by polygenicity rather than potential population 
stratification.

Pairwise LDSC analysis found positive genome-wide 
genetic correlations between LBD and AD (rg = 0.6603, 
se = 0.2001; P = 0.0010), between LBD and PD (rg = 
0.6352, se = 0.1880; P = 0.0007), and between AD and 
PD (rg = 0.2136, se = 0.0860; P = 0.0130) (Table 1).

MTAG analysis and LBD‑associated loci discovery
We performed a meta-analysis of GWASLBD, GWASAD, 
and GWASPD using MTAG. A total of 5,103,377 SNPs 
were available for MTAG meta-analysis, among which 
2388 SNPs in MTAG​LBD reached the genome-wide sig-
nificance level (Pmtag < 5 × 10−8, excluding the MHC 
region). All 2388 genome-wide significant SNPs along 

with their corresponding FUMA annotations were pro-
vided in Additional file  1: Table  S3. The Manhattan 
plots were shown in Fig.  2. From GWASLBD to MTAG​
LBD, the mean χ2 statistic increased from 1.024 to 1.132, 
the genomic risk loci increased from 5 to 20 (Additional 
file 1: Table S4 and Table 2), and the total number of lead 
SNPs (Pmtag < 5 × 10−8 and r2 < 0.1) increased from 10 
to 43 (Additional file  1: Table  S5). All the results were 
expected since MTAG analysis, by borrowing the correla-
tion among multiple traits, should be more powerful than 
single-trait analysis. The genomic inflation factor λGC of 
MTAG​LBD was 1.061. The maxFDR for MTAG​LBD was 
0.024, suggesting no overall inflation due to violation of 
the homogeneous assumption.

SNP‑level analysis
ASSET analysis and SNP‑based pleiotropy
In one-sided ASSET analysis, 2160 of 2388 signifi-
cant SNPs in MTAG analysis (90.45%) were verified in 
ASSET analysis (Additional file 1: Table S3), two-sided 
ASSET analysis illustrated that no SNPs were both posi-
tively and negatively associated with the subset of traits 
(Additional file 1: Table S3). Among these 2160 verified 
SNPs, 1880 SNPs (about 87.04%) were included in the 
trait subset {LBD, PD}, followed by 185 SNPs (about 
8.56%) in the trait subset {LBD, AD}, and 95 (4.40%) 
SNPs in the trait subset {LBD, AD, PD}. Note that most 
SNPs identified for the trait subset {LBD, PD} were in 
the 17q21.31 region, whose complex LD structure can 
result in a relatively long genomic risk locus (Table  2), 
thus leading to much more SNPs being included in the 
set of LBD and PD than the set of LBD and AD. Nota-
bly, no SNPs were included in the trait subset {LBD}, 
indicating that most of the observed significant SNPs 
in MTAG​LBD may probably be the potential pleiotropic 
SNPs shared with AD and/or PD.

We further summarized the number and propor-
tion of 2160 verified SNPs in each subset of traits for 
20 genomic risk loci (Table 3). Those loci in which both 
the majority of confirmed SNPs as well as the top SNPs 
can be assigned to a specific subset of traits, were con-
sidered to be potential pleiotropic loci. For loci 2q14.3, 
11q12.2, and 19q13.32, the majority of confirmed SNPs 
were in the trait subset {LBD, AD} and the top SNPs 
in these loci were also confirmed with an optimal trait 
subset {LBD, AD}, suggesting these three loci may be 
the pleiotropic loci between LBD and AD. Especially 
in 19q13.32, the optimal trait subset for all confirmed 
SNPs was {LBD, AD}. For loci 1q22, 4p16.3, 4q22.1, 
5q12.1, and 17q21.31, the majority of confirmed SNPs 
were in the trait subset {LBD, PD}, and the top SNPs 
in these loci were also confirmed with the optimal trait 
subset {LBD, PD}, suggesting these five loci may be the 

Table 1  Pairwise genetic correlation among LBD, AD, and PD 
using LDSC

LBD Lewy body dementia, AD Alzheimer’s disease, PD Parkinson’s disease, rg 
genetic correlation estimate, se standard error

*P value reached the Bonferroni-corrected significance level P < 0.0167 (0.05/3)

Trait1 Trait2 rg se P

LBD PD 0.6352 0.1880 0.0007*

LBD AD 0.6603 0.2001 0.0010*

AD PD 0.2136 0.0860 0.0130*

https://github.com/YinLiLin/CMplot
http://locuszoom.org/
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pleiotropic loci between LBD and PD. Especially in loci 
4q22.1 and 5q12.1, the optimal trait subset for all con-
firmed SNPs was {LBD, PD}. The dominant trait sub-
set as well as the optimal trait subset for top SNPs at 
5q33.3, 6p21.1, 8p21.1, 10p14, and 16p11.2 was {LBD, 
AD, PD}, which may provide insights into the overlap-
ping etiology and pathogenesis for all three diseases. 
Note that none of the confirmed SNPs is located in loci 
2q24.3, 4p15.32, 10q26.1, 11q25, and 12q24.31. All con-
firmed SNPs at 3q27.1 and 8p22 were included in trait 
subset {LBD, PD}; nevertheless, the corresponding top 
SNPs, rs10513789 and rs620490, were included in opti-
mal trait subset {PD}.

In summary, we confirmed 13 genomic risk loci sig-
nificantly associated with LBD, 3 were likely to be shared 
with AD, 5 shared with PD, and 5 shared with both AD 
and PD. The heritability explained by 13 top SNPs of these 
loci was estimated to be 0.70%, which could account for 
6.24% (0.0070/0.1122) of the overall heritability of LBD. 
Specifically, 5 out of these 13 loci overlapped with that 
identified from GWASLBD, and genes closest to top SNPs 
in these loci were APOC1, BIN1, SNCA, TMEM175, and 
UBQLN4. Eight loci have not been found to be associated 
with LBD in previous GWASLBD, and top SNPs in these 
regions were mapped to genes CLU, ELOVL7, FDFT1, 
FBXL19-AS1, HAVCR2, KANSL1, NCOR1, and TREML2.

Fig. 2  Manhattan plots of GWASLBD (a) and MTAG​LBD (b). The x-axis denotes the chromosomal position, and the y-axis shows the −log10 P value. 
The horizontal black line corresponds to the genome-wide significance threshold (P < 5 × 10−8). Labels are the chromosome regions where 
genomic risk loci are located. Note that the Manhattan plots were plotted at P values truncated by 1 × 10−60 for better visualization
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Functional annotations
We summarized the variant annotations through FUMA 
for 2160 SNPs with both Pmtag and Passet less than 5 × 
10−8 (Additional file 1: Table S6). Most variants (92.36%) 
were located in non-coding regions, such as intronic 
and intergenic regions; only a few SNPs were exonic 
variants, including 46 (2.13%) exonic variants of cod-
ing RNA and 31 (1.44%) exonic variants of non-coding 
RNA. The most significant exonic variant of coding RNA 
was rs112849259 (Pmtag = 1.16 × 10−83, mapped gene: 

TOMM40) in 19q13.32 locus, followed by rs7412 (Pmtag 
= 6.99 × 10−44, mapped gene: APOE) in 19q13.32 locus, 
and rs34311866 (Pmtag = 1.35 × 10−27, mapped gene: 
TMEM175) in 4p16.3 locus. The exonic variant of non-
coding RNA in 4q22.1 locus, rs2245801, was significant 
in both GWASLBD and MTAG​LBD (Pgwas = 3.06 × 10−8, 
Pmtag = 4.17 × 10−22, mapped gene: SNCA-AS1). The 
variant with the highest CADD score was rs17651549 
(Pmtag = 1.69 × 10−24, CADD score 26.8) in 17q21.31 
locus, which is an exonic variant of MAPT. RegulomeDB 

Table 2  Genomic risk loci and corresponding top variants identified by FUMA using SNPs with Pmtag < 5 × 10−8 in MTAG​LBD

Genomic risk loci are identified by FUMA merging the LD blocks of independent significant SNPs that are closely located to each other (< 250 kb); chromosome loci 
represent the chromosomal regions containing genomic risk loci; n.sig represents the number of SNPs with Pmtag < 5 × 10−8 in the locus; trait subset is the optimal 
trait subset of top SNP identified by ASSET

Top SNP Genomic risk 
loci

Chromosome 
loci

n.sig Pgwas Pmtag Passet Trait subset Variant 
annotion

nearestGene

rs35603727 1:155024309–
156300731

1q22 11 4.06 × 10−7 2.25 × 10−21 1.67 × 10−20 LBD, PD Intronic UBQLN4

rs6733839 2:127839474–
127894851

2q14.3 41 4.16 × 10−9 1.64 × 10−31 5.20 × 10−37 LBD, AD Intergenic BIN1

rs1474055 2:169091942–
169166282

2q24.3 7 6.32 × 10−1 2.97 × 10−10 7.96 × 10−12 PD Intergenic STK39

rs10513789 3:182704808–
182833363

3q27.1 27 9.88 × 10−1 1.44 × 10−12 2.15 × 10−12 PD Intronic MCCC1

rs34311866 4:819789–
1030779

4p16.3 83 1.40 × 10−6 1.35 × 10−27 1.18 × 10−25 LBD, PD Exonic TMEM175

rs4389574 4:15706502–
15743332

4p15.32 6 9.02 × 10−1 1.37 × 10−8 1.04 × 10−12 PD Intronic BST1

rs1372518 4:90513519–
91127134

4q22.1 215 1.01 × 10−7 2.66 × 10−26 1.17 × 10−32 LBD, PD UTR5 SNCA

rs1867598 5:60011636–
60489094

5q12.1 16 1.21 × 10−1 4.34 × 10−9 1.87 × 10−12 LBD, PD Intronic ELOVL7

rs9790947 5:156506352–
156568510

5q33.3 4 3.60 × 10−1 1.98 × 10−8 3.37 × 10−9 LBD, AD, PD Intronic HAVCR2

rs13216201 6:41140984–
41166310

6p21.1 6 7.14 × 10−2 9.18 × 10−10 1.41 × 10−10 LBD, AD, PD Intronic TREML2

rs4731 8:11666337–
11674897

8p23.1 1 2.04 × 10−2 3.09 × 10−8 6.25 × 10−8 LBD, AD, PD Exonic FDFT1

rs620490 8:16695418–
16739127

8p22 15 5.56 × 10−1 3.41 × 10−9 4.29 × 10−9 PD ncRNA_intronic RP11-13N12.1

rs1532278 8:27456253–
27468862

8p21.1 12 9.05 × 10−3 6.35 × 10−14 2.24 × 10−21 LBD, AD, PD Intronic CLU

rs11257240 10:11707563–
11720620

10p14 3 9.92 × 10−2 3.60 × 10−8 6.48 × 10−11 LBD, AD, PD Intergenic RP11-138I18.2

rs117896735 10:121372328–
121710488

10q26.1 4 9.63 × 10−1 8.46 × 10−9 1.94 × 10−9 PD Intronic INPP5F

rs12453 11:59856028–
60041296

11q12.2 1 2.16 × 10−1 9.52 × 10−9 2.72 × 10−27 LBD, AD Exonic MS4A6A

rs7185007 16:30571910–
31155458

16p11.2 145 6.65 × 10−3 6.10 × 10−14 1.05 × 10−11 LBD, AD, PD Intergenic FBXL19-AS1

rs6502490 17:15868291–
16240507

17p12 1 4.13 × 10−2 4.46 × 10−8 6.19 × 10−8 LBD, PD Intronic NCOR1

rs2532307 17:43460181–
44865603

17q21.31 1605 4.83 × 10−2 3.84 × 10−26 3.68 × 10−21 LBD, PD Intronic KANSL1

rs157595 19:45192348–
45734751

19q13.32 185 1.58 × 10−19 4.24 × 10−145 1.39 × 10−205 LBD, AD Intergenic APOC1
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scores showed that the variant rs17572495 (Pmtag = 1.36 
× 10−23) had a relatively higher regulation level, which 
was also in the 17q21.31 locus located in the 5′UTR of 
MAPT. Note that both rs17651549 and rs17572495 were 
verified to be in the optimal subset of trait {LBD, PD} 
from the ASSET analysis, which further highlighted the 
role of MAPT in the shared genetic etiology of LBD and 
PD.

Independent signals within loci
We performed GCTA-COJO analysis in 13 verified 
MTAG​LBD-associated loci. In addition to the 4q22.1 and 
19q13.32 loci, no additional independent SNPs were 
identified in other loci after conditioning on the top vari-
ant (Additional file 1: Table S7). Of interest, 1555 SNPs in 
17q21.31 were included in optimal trait subset {LBD, PD} 
in ASSET analysis, but only the top SNP rs2532307 was 
identified as an independent signal. Besides, the addi-
tional two independent SNPs in the 4q22.1 region were 
rs11931074 (conditional P = 1.74 × 10−20) and rs356177 
(conditional P = 2.64 × 10−10). Ten additional independ-
ent signals were identified in the APOE locus, which was 
presumably due to its complex LD structure, highlighting 
the significance of this region to the co-pathology of LBD 
and AD.

SNP credible sets within loci
A total of 1111 SNPs in 90% credible sets were identi-
fied for 13 genomic risk loci (Additional file 1: Table S8). 
Among the 5 loci identified in GWASLBD, 90% credible 

sets of 4 loci (1q22, 2q14.3, 4p16.3, and 19q13.32) con-
tained only the top SNP (PP > 0.99). While in the 4q22.1 
locus, five SNPs were identified in its 90% credible set 
with the top SNP rs1372518 (PP = 0.56, mapped gene: 
SNCA) included. For another 8 loci, there were multiple 
SNPs in their 90% credible sets. For example, 17q21.31 
locus, in which only one independent signal was identi-
fied by GCTA-COJO, there were as many as 966 SNPs in 
the 90% credible set.

Colocalization analysis
Among the 13 genomic risk loci, colocalization analysis 
totally identified 7 loci with PP3 or PP4 larger than 0.75 
(Table 4). Three loci (2q14.3, 8p21.1, and 19q13.32) were 
suggested to share the same causal variant between LBD 
and AD. For 8p21.1 locus, the optimal trait subset was 
{LBD, AD, PD} from the ASSET analysis; however, colo-
calization analysis found shared causal variant between 
LBD and AD (PP4 = 0.8264) rather than LBD and PD 
(PP4 = 0.0400), with top SNP identified as potential 
shared causal variant (rs1532278, PP4 = 0.2850, mapped 
gene: CLU). Besides, both 1q22 (PP4 = 0.9893) and 
4p16.3 (PP4 = 0.9976) were suggested to share the same 
causal variant between LBD and PD. The 4q22.1 locus 
with PP3 larger than 0.75 was suggested to share distinct 
causal SNPs between LBD and PD. Besides, the 16p11.2 
locus was colocalized between LBD and AD as well as 
LBD and PD, in line with the findings from the ASSET 
analysis that the dominant trait subset of this locus was 
{LBD, AD, PD}. In addition, for these 13 genomic risk 
loci, the PP4 of each SNP in each locus were provided in 
Additional file  1: Table  S9; the SNP with the maximum 
PP4 was considered as the most likely shared causal vari-
ant. The LocusZoom plots were displayed in Additional 
file 2: Figs. S1-S13.

Functional enrichment analysis
Enrichment analysis results of GARFIELD were shown 
in Additional file  1: Table  S10. We observed signifi-
cant enrichment of significant SNPs from MTAG​LBD in 
several regulatory and functional categories: (1) SNP 
enrichment in genic regions suggested that these SNPs 
were significantly enriched in exon region (OR = 6.58, 
P = 1.09 × 10−7) (Fig. 3a); (2) SNPs located at DNase 
I hypersensitive sites showed highly significant enrich-
ment in several tissues, with colon identified as the 
most significant enrichment (OR = 5.10, P = 2.74 × 
10−7) (Fig.  3b); (3) SNP enrichment in different chro-
matin state associated regions revealed that the tran-
scribed regions were significantly enriched in different 
tissues (embryonic stem cell: OR = 6.18, P = 4.25 × 
10−8; liver: OR = 5.55, P = 5.26 × 10−8; blood: OR = 
5.13, P = 1.76 × 10−7) (Fig. 3c). Significant enrichment 

Table 3  The number of verified SNPs in each subset of traits

The unverified loci including 2q24.3, 3q27.1, 4p15.32, 8p22, 8p23.1, 10q26.1, and 
17p12 were not listed

“–” represents no SNP was significant (Passet < 5 × 10−8) in this subset of traits

LBD Lewy body dementia, AD Alzheimer’s disease, PD Parkinson’s disease

Chromosome 
loci

SNP number SNP number in each subset of traits

LBD LBD, AD LBD, PD LBD, AD, PD

1q22 7 – – 6 1

2q14.3 41 – 29 – 12

4p16.3 74 – – 71 3

4q22.1 189 – – 189 –

5q12.1 16 – – 16 –

5q33.3 4 – – – 4

6p21.1 6 – – – 6

8p21.1 12 – 3 – 9

10p14 3 – – – 3

11q12.2 1 – 1 – –

16p11.2 81 – – 36 45

17q21.31 1567 – – 1555 12

19q13.32 152 – 152 – –
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was also found in enhancers of blood (OR = 6.59, P 
= 1.02 × 10−7). Interestingly, although the repressed 
regions were also significantly enriched, their odds 
ratios were all less than one; and (4) SNP enrichment 
in regulatory regions determined by histone modifica-
tions showed significant enrichment in distinct cells or 
tissues (Fig.  3d). The most significantly enriched his-
tone marker was H3K36me3 in the blood vessel (OR = 
7.04, P = 3.06 × 10−10), which has been confirmed to 
be associated with transcribed portions of genes.

Gene‑level analysis
Prioritization of candidate genes
Overall, 69 candidate genes were identified to be associ-
ated with LBD at the significance level PfastBAT < 2.02 × 
10−6 (Additional file 1: Table S11). A total of 110,760 tissue-
specific genes were included in TWAS analysis, and 467 
tissue-specific genes (98 unique genes) were identified at 
tissue-specific Bonferroni-corrected significance level (Addi-
tional file  1: Table  S12). Finally, 40 genes were commonly 
identified by both GCTA-fastBAT and TWAS analyses 
(Additional file 1: Table S13), including APOC1 (PfastBAT = 
1.02 × 10−120, PTWAS = 2.38 × 10−8), SNCA (PfastBAT = 5.20 
× 10−35, PTWAS = 1.82 × 10−11), TMEM175 (PfastBAT = 1.38 
× 10−24, PTWAS = 1.21 × 10−11), MAPT (PfastBAT = 3.76 × 
10−19, PTWAS = 3.72 × 10−18), CLU (PfastBAT = 6.25 × 10−10, 
PTWAS = 1.23 × 10−8), and FBXL19 (PfastBAT = 4.73 × 10−15, 
PTWAS = 5.47 × 10−14).

Pathway enrichment
We used g:Profiler to perform pathway enrichment anal-
ysis for 40 candidate genes commonly detected by both 
GCTA-fastBAT and TWAS analyses. A total of 31 sig-
nificantly enriched pathways were identified (Additional 
file  1: Table  S14) at a Bonferroni-corrected significance 
level (adjusted P < 0.05). These pathways were primarily 
synaptic-vesicle function, protein and lipid-related, such 
as vesicle-mediated transport (GO:0016192, adjusted 
P = 2.89 × 10−3), synaptic vesicle cycle (GO:0099504, 
adjusted P = 1.25 × 10−2), neurofibrillary tangle assem-
bly (GO:1902988, adjusted P = 1.55 × 10−2), and protein-
lipid complex (GO:0032994, adjusted P = 1.33 × 10−2).

Discussion
In the present study, using the largest LBD, AD, and PD 
GWAS summary data to date, we performed a compre-
hensive large-scale genome-wide cross-trait analysis, 
followed by various SNP-level and gene-level genetic 
approaches, to deeply investigate the genetic archi-
tecture of LBD as well as the shared genetic etiology of 
LBD, AD, and PD. Overall, we found a significant posi-
tive genome-wide genetic correlation between LBD and 
AD, LBD and PD, and AD and PD. The genetic corre-
lation was highest between LBD and AD, followed by 
between LBD and PD and between AD and PD. Vari-
ous multi-trait analyses identified 13 common genetic 
loci for LBD including 5 previously reported loci (1q22, 

Table 4  Summary of colocalization results in 13 genomic risk loci

LBD Lewy body dementia, AD Alzheimer’s disease, PD Parkinson’s disease, PP posterior probability; PP3 PP of both traits are associated but with distinct causal variants, 
PP4 PP of both traits are associated and share a single causal variant, Best causal SNP with the highest PP4 is considered to be the causal variant in the genomic risk 
loci
a PP3 or PP4 larger than 0.75
b The potential causal SNP was the top SNP in the locus

Chromosome loci LBD-AD LBD-PD

PP3 PP4 Best Causal PP3 PP4 Best causal

1q22 0.0064 0.0370 rs35603727b 0.0105 0.9893† rs35603727b

2q14.3 0.0002 0.9998a rs4663105 0.0198 0.1529 rs4663105

4p16.3 0.0213 0.4839 rs34311866b 0.0023 0.9976a rs34311866b

4q22.1 0.0432 0.5154 rs7680557 1.0000a 0.0000 rs356203

5q12.1 0.0001 0.0012 rs4647170 0.0212 0.3983 rs75646569

5q33.3 0.0023 0.1630 rs6555853 0.0002 0.0168 rs9790947b

6p21.1 0.0014 0.2463 rs34346157 0.0002 0.0602 rs13216201b

8p21.1 0.0009 0.8264a rs1532278b 0.0000 0.0400 rs1532276

10p14 0.0012 0.4398 rs7920721 0.0000 0.0021 rs11257240b

11q12.2 0.0070 0.2948 rs7926354 0.0001 0.0033 rs11512743

16p11.2 0.0809 0.7554a rs889555 0.1608 0.7843a rs8050588

17q21.31 0.1041 0.4977 rs2532276 0.1068 0.5140 rs58879558

19q13.32 0.0208 0.9792a rs114536010 0.0277 0.0984 rs157595b
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2q14.3, 4p16.3, 4q22.1, 19q13.32) and 8 novel biologically 
plausible genetic associations (5q12.1, 5q33.3, 6p21.1, 
8p23.1, 8p21.1, 16p11.2, 17p12, 17q21.31), among which 
APOC1 (19q13.32), SNCA (4q22.1), TMEM175 (4p16.3), 
CLU (8p21.1), MAPT (17q21.31), and FBXL19 (16p11.2) 
were also identified by gene-level analysis. In addition to 
focusing on cis-regulation of genetic variants on proximal 
genes, we have also searched the large-scale whole blood 

trans-eQTL summary statistics from eQTLGen [54] to 
explore the trans-regulation evidence of the top SNP in 
each locus, while no SNPs were found to be trans-eQTL.

Of note, the regulatory mechanisms underlying LBD 
seem to be distinct and more complex in the locus 4q22.1 
compared with that underlying AD and PD. Taking the 
locus 4q22.1 as an example, for MTAG​LBD, the cod-
ing gene SNCA was mapped by the top SNP rs1372518 

Fig. 3  GARFIELD enrichment of SNPs with Pmtag < 5 × 10−8 in MTAG​LBD. Enrichment in genic regions (a), DHS (hotspots) regions of different tissues 
(b), chromatin states of different tissues (c), and histone modified regions of different tissues (d). The horizontal axis represents the enrichment odds 
ratios of each annotation category derived from logistic regression, and the vertical axis shows the corresponding −log10 P values. The dashed line 
corresponds to the significance threshold of P = 0.05/1005. The size of the dots indicates the number of independent SNPs in a specific annotation. 
The color of the dots in c and d indicates different tissue types
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located at the 5′UTR of SNCA, but for GWASLBD, the 
top SNP in this locus, rs7680557, was close to the gene 
SNCA-AS1, which overlaps with 5′UTR of SNCA and is 
well-known to regulate SNCA expression by encoding a 
long non-coding antisense RNA [9]. In addition, another 
independent SNP rs11931074, which is an intron vari-
ant of the gene SNCA with its polymorphism being sug-
gested to be associated with PD [55, 56], was identified in 
locus 4q22.1 from GCTA-COJO analysis. Colocalization 
analysis also highlighted this locus with distinct causal 
SNPs between LBD and PD, suggesting the potentially 
different roles of this locus in the pathogenesis of PD and 
LBD [10].

Functional enrichment analysis illustrated that LBD-
associated variants were mainly enriched in regions 
relevant to gene transcription and activation, such as 
exon regions, transcribed region enhancers, and histone 
marker H3K36me3. Interestingly, tissue enrichment 
analysis based on DHS annotation showed that gastroin-
testinal tissues, including the colon and small intestine, 
had a high degree of enrichment. A pathoanatomical 
study of LBD has found that alpha-synuclein aggregated 
in the distal esophagus, stomach, and colon [57]. Braak 
et al. hypothesized that abnormal alpha-synuclein accu-
mulation would begin in the gut and further progress 
to the brain in a prion-like manner through the vagus 
nerve, which has been confirmed by animal experiments 
[58–60].

Both the SNP-level analysis and gene-level analy-
sis converged on the same relevant risk loci, the same 
potential causal variants as well as the same risk genes, 
including previously discovered genes associated with 
LBD (SNCA [4q22.1], APOC1 [19q13.32]), and three 
potential novel genes CLU (8p21.1), MAPT (17q21.31), 
and FBXL19 (16p11.2).CLU, which encodes clusterin, 
a glycoprotein associated with AD, binds α-synuclein 
aggregated species and is present in Lewy bodies, 
intraneuronal aggregates mainly composed of fibril-
lary α-synuclein [61, 62]. A recent experimental study 
suggested that extracellular clusterin blocks the bind-
ing site of α-synuclein fibrils, limits the uptake of 
α-synuclein fibrils by astrocytes, then probably leads 
to aggregation of clusterin and formation of Lewy bod-
ies, and hence, contributes to the α-synucleinopathy 
[61]. By querying the super-enhancer database (SEdb) 
[63, 64], we found that the top SNP rs1532278 in locus 
8p21.1 was located in super-enhancers of multiple 
tissues, including the dorsolateral-prefrontal cortex, 
H1-hESC cell, and intestine. These super-enhancers 
overlap with the CLU region and are closely related to 
the activation of CLU, suggesting the role of enhancers 
in the pathogenesis of LBD.

MAPT, the gene encoding microtubule-associated pro-
tein tau, is well-established known to play a critical role 
in tauopathies implicated in AD [65, 66]. MAPT is char-
acterized by two main haplotypes, termed H1 and H2; a 
previous study has indicated the role of H1G in suscepti-
bility to dementia with Lewy Bodies [67]. In addition, an 
animal study suggested that reducing tau does not affect 
α-synuclein expression and does not prevent α-synuclein 
inclusion formation [68]. Another animal study suggested 
that targeting tau oligomers benefits a mouse model of 
α-synucleinopathy with protection from cognitive and 
motor deficits, decrease of toxic tau oligomers levels [69]. 
These animal studies suggested that tau may be occurring 
downstream or independent of the pathological conver-
sion of α-synuclein and may be a viable therapy for treat-
ing diseases with the interaction of tau and α-synuclein 
like LBD [69].
FBXL19 encodes a member of the Skp1-Cullin-

F-box family of E3 ubiquitin ligases which could 
regulate the ubiquitination and degradation of inflam-
matory cytokines, such as interleukin (IL)-1β, IL-33, 
and tumor necrosis factor-α (TNF-α). Previous studies 
have suggested that the upregulation of pro-inflamma-
tory cytokines plays different roles in both neuro-
degeneration and neuroprotection [70, 71]. Besides, 
understanding the pro-inflammatory cytokine sign-
aling pathways involved in the regulation of AD is 
significant for the development of therapeutic strate-
gies [71]. For example, IL-33 signaling has been dem-
onstrated to play diverse but significant roles in the 
homeostasis of the central nervous system diseases 
such as neurodegenerative diseases [71]. FBXL19 pro-
tein could serve as a negative regulator to inhibit the 
IL-33-mediated signaling by regulating the ubiquitina-
tion and degradation with a potential neuroprotection 
effect [71, 72].

Pathway enrichment analysis suggested an impor-
tant role of pathways involving synaptic vesicle func-
tion, neurofibrillary tangle, and lipids. The α-synuclein 
pathology was confirmed to be featured by both LBD 
and PD [73, 74]. Previous experimental studies have 
suggested that overexpression of α-synuclein would 
reduce the release of neurotransmitter by inhibiting 
the reclustering of synaptic vesicles after endocytosis 
[75]. Such biological process would produce a physi-
ological defect in synaptic vesicle recycling before 
detectable neuropathology. Besides, most cases of 
LBD are often accompanied by varying degrees of AD 
pathology, including neurofibrillary tangles (NFTs) 
and senile plaques [76]. Tau is the major structural 
component of NFTs that intraneuronal aggregates of 
hyperphosphorylated and misfolded tau that become 
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extraneuronal when tangle-bearing neurons die, which 
would contribute to cognitive impairment [77–79]. 
Previous studies have also suggested the coexistence 
of tauopathies and synucleinopathies in LBD [80]. In 
addition, neocortical α-synuclein, tau, and amyloid 
pathologies can co-occur at the advanced stage of 
LBD, suggesting a potential synergistic interaction of 
these pathologies [81]. Specifically, experimental stud-
ies in animal and cell model systems have shown that 
pathogenic species of synuclein fibrils can facilitate 
the trans-synaptic spread of both tauopathy and synu-
cleinopathy with strain-like properties, which would 
aggravate the severity and progression of LBD [81]. A 
recent systematic review also indicated that compared 
to people with pure dementia with Lewy bodies, those 
with mixed Lewy body and AD neuropathologies suf-
fered more severe cognitive impairment before death 
[82]. The underlying co-pathology of these common 
neurodegenerative diseases suggested the potential 
value of simultaneous prevention and treatment of 
these diseases.

Our study is not without limitations. First, we only 
focused on European ancestry due to the current large-
scale GWASs of LBD, AD, and PD were only available for 
the European population. Further investigation is needed 
to explore the genetic architecture of LBD in other popu-
lations. Second, the genetic associations of rare variants 
were unable to be evaluated since SNPs with MAF less 
than 0.01 were automatically filtered in MTAG analysis.

Conclusions
In summary, our findings provide strong evidence of 
genetic correlations between LBD and AD as well as LBD 
and PD. We identified novel LBD-associated genetic loci 
as well as novel LBD-associated genes. We also high-
lighted the critical role of neurofibrillary tangles in the 
development of LBD. More importantly, our findings not 
only advance the understanding of genetic determinants 
of LBD but also provide novel insights into the shared 
genetic etiology of LBD, AD, and PD from functional 
and biological pathway levels. Shared common biological 
mechanisms could provide novel insight to simultane-
ously prevent and treat these diseases.
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