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Abstract 

Background:  Microbial communities in the human body, also known as human 
microbiota, impact human health, such as colorectal cancer (CRC). However, the differ-
ent roles that microbial communities play in healthy and disease hosts remain largely 
unknown. The microbial communities are typically recorded through the taxa counts 
of operational taxonomic units (OTUs). The sparsity and high correlations among OTUs 
pose major challenges for understanding the microbiota-disease relation. Furthermore, 
the taxa data are structured in the sense that OTUs are related evolutionarily by a hier-
archical structure.

Results:  In this study, we borrow the idea of super-variant from statistical genetics, 
and propose a new concept called super-taxon to exploit hierarchical structure of 
taxa for microbiome studies, which is essentially a combination of taxonomic units. 
Specifically, we model a genus which consists of a set of OTUs at low hierarchy and is 
designed to reflect both marginal and joint effects of OTUs associated with the risk of 
CRC to address these issues. We first demonstrate the power of super-taxon in detect-
ing highly correlated OTUs. Then, we identify CRC-associated OTUs in two publicly 
available datasets via a discovery-validation procedure. Specifically, four species of 
two genera are found to be associated with CRC: Parvimonas micra, Parvimonas sp., 
Peptostreptococcus stomatis, and Peptostreptococcus anaerobius. More importantly, 
for the first time, we report the joint effect of Parvimonas micra and Parvimonas sp. 
(p = 0.0084) as well as that of Peptostrepto-coccus stomatis and Peptostreptococcus 
anaerobius (p = 8.21e-06) on CRC. The proposed approach provides a novel and useful 
tool for identifying disease-related microbes by taking the hierarchical structure of taxa 
into account and further sheds new lights on their potential joint effects as a commu-
nity in disease development.

Conclusions:  Our work shows that proposed approaches are effective to study the 
microbiota-disease relation taking into account for the sparsity, hierarchical and cor-
related structure among microbes.

Keywords:  Colorectal cancer, Microbiota-disease association studies, Microbiome 
joint effects, Super-Taxon
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Background
The human microbiome is an integral component in the maintenance of immune system 
and health [1]. It has been shown to be associated with many diseases including diabe-
tes, obesity and colorectal cancer [2–4].

In microbiome studies, 16S ribosomal RNA (rRNA) sequencing approach, which pro-
files bacterial community by sequencing the 16S rRNA marker gene, has been widely 
used. Microbial count data are represented using operational taxonomic units (OTUs) 
from 16S rRNA sequencing. The study of microbiome with OTUs has led to successful 
findings for many complex diseases. For instance, Duvallet et  al. [5] conducted meta-
analysis over 28 public case–control gut microbiome studies spanning ten diseases to 
identify disease-specific and shared microbiotas. Nolan-Kenney et al. [6] studied asso-
ciation between smoking and gut microbiome in Bangladesh. However, the effect attrib-
uted to microbiome factors is still far from well understood [7]. One important feature 
of the count data is that not all taxa may be present in each sample which leads to lots 
of zero values for some of the OTUs [8]. The sparsity of taxa counts certainly bring chal-
lenges in the association study of microbiome factors. The other impediment is the 
focus on the joint effect of individual OTUs. Although there has been growing interests 
to study the community of bacteria, viruses, and microbial eukaryotes as a whole and 
to identify microbe–microbe interactions for complex diseases [7, 9], surprisingly, less 
progress has been made in this direction due to the high correlations among individual 
OTUs. On top of that, the OTUs are related to one another by an evolutionally hier-
archical structure. Appropriate use of this hierarchical information is expected to offer 
more insights.

There are previous studies on finding CRC associated microbes. Most studies apply 
a univariate test to detect significant differences in relative abundances of OTUs indi-
vidually, such as t-test or nonparametric Wilcoxon test [10, 11]. These tools are unable 
to account for the sparsity issue in OTUs data. Zero-beta inflated regression is another 
popular method for univariate association between individual OTU and disease pheno-
type [12]. However, all the univariate tests ignore the correlations among OTUs, which 
might lead to an inefficient detection. Another category of finding CRC-associated 
microbes focuses on predictive modeling, such as random forest [4, 5], which regards 
an OTU as CRC-associated if it is kept in the final predictive model after tree prun-
ing. However, these analyses focus more on prediction accuracy instead of associations 
which is a potential gap we aim to fill in this work. For finding the effects for a com-
munity or set of OTUs on diseases, unweighted UniFrac and weighted UniFrac distance 
metrics analysis [13] are normally carried out, however, these methods fail to quantify 
the contribution of each individual OTU.

To overcome the issues mentioned above, we borrow the idea of super-variant 
which has been adopted in genome-wide association studies and brain imaging genet-
ics [14–16]. In this study, we propose a new concept called super-taxon for micro-
biota-disease association studies. Super-taxon, a combination of taxonomic units, is 
constructed based on hierarchical information of taxa at different levels according 
to various scientific relevance. For example, a super-taxon can be a genus that con-
sists of OTUs at species-level. The super-taxon is expected to reflect both the mar-
ginal and joint effects of contributing OTUs on diseases. It has been shown that the 
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super-variants in genetic studies are easy to detect, and the aggregated signals are 
stable in their associations with the responses [14–16]. By exploiting the proposed 
methods, not only can we find the association for a microbiome community, but also 
report the top contributing individual OTUs.

We apply our method to two datasets for colorectal cancer, Baxter et  al. [4] and 
Zeller et  al. [10] respectively. Our methods identify and validate two significant 
genera. More importantly, our methods can use the hierarchical information to go 
beyond genera-level for identifying the joint effects of OTUs at species-level: two 
sets of OTUs that might jointly influence CRC, one consisting of Peptostreptococcus 
stomatis and Peptostreptococcus anaerobius (p = 8.21e-06), the other one including 
Parvimonas micra and Parvimonas sp. (p = 0.0084), which sheds light on the future 
research to study the joint effects of microbial community on diseases.

Materials and methods
Methodology details

The method consists of four steps, and a flowchart of the method is presented Fig. 1. In 
the first step (Fig. 1b), OTUs are divided into OTU sets or blocks which will be discussed 
in detail later. In the second step (Fig. 1c), within each block, a tree-based approach will 
be used to generate a ranking of OTUs based on the depth importance measures that 
account for their marginal contribution to the phenotype. In the third step (Fig. 1d), we 
empirically determine the number of top OTUs to form a super-taxon as describe in 
detail as follows. In the last step (Fig. 1e), top OTUs within each local block are then 
aggregated into a super-taxon and marginal logistic regression is applied to associate the 
super-taxon with the phenotype. We describe details in each step as follows.

Fig. 1  Method Overview. a OTUs in a sample are displayed. b OTUs are divided into sets/blocks by 
biological group (Genus, Family, Order, Class). c Within each set, a tree-based method is utilized to obtain the 
importance measure of each OTU and form a ranking of OTUs in terms of their marginal contribution to the 
disease status. d Empirically determine the number of top OTUs to form a super-taxon. e Top OTUs within 
each set/block are then aggregated into a super-taxon (STB and STC are both considered for OTU presence or 
abundance)
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Set partition

OTUs are first divided into sets by their sequence similarity or biological clustering 
through RDP classifier [17]. The hierarchical information will be utilized to assist in 
partition at different levels (Genus, Family, Order, Class).

Ranking

We consider the following generalization of the logistic model,

where F  is a function not limited to be linear, i is subject index ( i = 1, . . . , n ), Yi 
indicates the disease status, vi = vi,1g , . . . , vi,Jg

T  includes Jg OTU features in an OTU 
set g  for. i-th subject, and zi denotes all confounding covariates to be adjusted. To 
estimate the unknown function F  , we consider the tree-based method which allows 
potential nonlinear relations and any possible interactions between OTUs.

We adopt the ranking approach and modify the aggregation approach in Hu et al. 
[14] to identify the super-taxon of OTUs. It is based on the ranked but generally weak 
association between an individual OTU and a disease of interest. Within each parti-
tioned set, OTUs are then ranked by their importance in terms of disease discrimi-
nation ability. To account for joint effects of multiple OTUs, the importance of each 
OTU is measured by the so-called depth-importance in a random-forest framework 
[18, 19], which is a proxy to its effect size and leads to an ordering of OTUs within 
the set. Specifically, for a set of OTU features g  , we construct forest f  consisting of 
a total number of 
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where Lt is the depth of node t and Gt is the χ.2 independence test statistics of 
node t . The calculation of depth importance considers both effect size and depth of 
an OTU in the tree. We refer the readers to previous random-forest framework for 
more detailed calculations on depth importance score [18, 19]. Then the overall depth 
importance score for vjg is given by
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the OTU with the largest overall depth importance score is the 4-th 
OTU, i.e., d1g = 4 . Thus, we end up with ordered OTUs and their ranks 
dg =

(

d1g , . . . , d5g
)T

= (4, 2, 3, 1, 5)T  . For i-th subject, let vi,djg be the value of djg-th 
OTU in g-th set. Define

The creation of xig aims to provide guidance on selecting best cut-off in the following 
steps.

Best cut‑off selection

To select the top OTUs, we first need to define how to form a super-taxon from top 
OTUs. There are two ways of formation. One is called super-taxon for binary features 
(STB), where the OTUs data are turned into binary one, indicating that we only care 
about the presence or absence of an OTU. The other is named as super-taxon for contin-
uous features (STC), where the OTUs data are kept as original and abundance informa-
tion can be utilized. Both STB and STC are proposed to deal with the sparsity issue and 
complementary each other under various sparsity levels. For STB, the variable is turned 
into binary for each threshold; that is, for a threshold c,
Sig = I

(

xig < c
)

,
where I(·) is the indicator function, and c ∈

{

x1g , . . . , xng
}

 . For STC, the variable is 
turned into mean of non-zero features for each threshold; that is, for a threshold c,

where I(·) is the indicator function, and c ∈
{

x1g , . . . , xng
}

 . Both transformations 
are designed to reduce the effect from the unobserved taxa within the set. While STB 
focuses more on the effect of taxa’s presence, STC further takes the expression level 
into account. For different sparsity levels of taxa, STB and STC are expected have their 
own advantages. With the formed super-taxon, a univariate logistic regression is carried 
out to investigate its effect, and the final threshold is the one gives the smallest p-value 
among all possible thresholds.

Marginal associations

With selected OTUs, a super-taxon can be constructed with those OTUs in the depth-
importance-ordered OTU list and the total number of OTUs used to form the super-
taxon is the same as the final threshold. The logistic regression is performed to assess the 
association and effect between a super-taxon and disease status. We refer readers to Hu 
et al. [14] for more details.

xig =

{
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}
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Simulation setup

In the simulation, performance of our proposed method in detecting differentially 
expressed OTU features was evaluated. We adopt the same model for generating the 
synthetic OTUs data as in Osborne et al. [20] to account for high correlations among 
OTUs. We compare our method with four classical methods listed below.

(1)	 DESeq2 [21]: an RNA-seq based method that models the observed OTU abun-
dances using negative binomial (NB) distribution.

(2)	 Zero-inflated beta regression (ZIBR): an extension of the generalized linear model 
(GLM) approach that takes sparse nature of OTU data into account [12].

(3)	 Analysis of compositions of microbiomes with bias correction (ANCOM-BC) 
method [22]: it models observed abundances using an offset-based log-linear 
model. It was shown to control the false discovery rate (FDR) and competed very 
well with other methods in terms of power in a review paper on comparing statisti-
cal methods in differential abundance analysis for microbiome data [22].

(4)	 The original method, super-variants, proposed in Hu et  al. [14]: it captures the 
potential interactions among OTUs through random-forest model for binary fea-
tures without splitting OTUs into sets, which can be considered as a special case of 
our approach based on OTU level.

Specifically, to mimic the dependence among OTUs, we simulate correlated OTUs 
from the following model [20].

where Y  is a binary covariate to mimic the case-control study, with Y = 0 for N2  sub-
jects and Y = 1 for the other N2  subjects. Of them, ni is the total count in i-th sample. 
hi is the relative abundances and αi is the absolute abundance. Through � , we can cap-
ture the correlations among OTUs. Following Osborne et al. [20], we set B0j ∼ U(6, 8) 
with probability of 0.2 and B0j ∼ U(2, 4) with probability of 0.8, which allows that 
some variables have larger counts and others to be sparser, as common in microbiome 
data. This controls the average sparsity for OTUs to be around 0.6 in the simulated 
dataset.

For evaluating type I error rate, we set B to 0. � is generated from the random graph 
as described in Osborne et al. [20]. The simulation is carried with N = 800 subjects and 
1000 OTUs into 20 sets or blocks (50 OTUs per block). Since there are multiple blocks, 
we evaluate type I error rate through family-wise error rate (FWER), where an error is 
made if any set is rejected. To control the family-wise error rate, we divide the data into 
two even sets. The first set is used for performing steps a–d in Fig. 1 while the second set 
is applied to the final step in Fig. 1. For the competing four methods, since they are only 

ni ∼ N (3000, 250)

Xi ∼ Multinomial(hi, ni)

hi ∼ Dirichlet(αi)

log (αi) ∼ MVN (YiB+ B0,�)
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able to perform univariate testing for each OTU, the FWER in this case is calculated if a 
set is rejected if any OTU in the set is rejected. The FWER is calculated at nominal level 
0.05.

In terms of power evaluation, as in the previous setting, we simulate 800 samples with 
1000 OTUs into 20 blocks (50 OTUs per block). Of those, only 40 OTUs are associ-
ated with the binary covariates and scattered evenly in the first 4 blocks (10 true OTUs / 
block). We simulate elements in B as follows:

(1)	 For 40 binary covariates associated OTUs, Bj ∼ U(0.5, 1) with probability of 0.5 
and Bj ∼ U(0.1, 5) with probability of 0.5.

(2)	 For the rest of OTUs, Bj = 0.

� is generated from the random, hub and cluster graph as described in Osborne et al. 
[20]. The power performances are evaluated based on two perspectives. First, we evalu-
ate the block-level identification rate, defined as the number of times a block is selected 
over 500 repeats. For ZIBR, ANCOM-BC and super-variants, since they all gener-
ate results for single OTU-level testing, a block is regarded as selected if any OTU in 
the block is selected. We also evaluate the sensitivity (TP/(TP + FN)), specificity (TN/
(FP + TN)), precision (TP/(TP + FP)) in terms of block-level selection. Second, for 
assessing the OTU-level identification, we also report the average sensitivity, specificity 
and precision over repeats.

To further investigate the effects of sparsity levels on methods performance, more 
numerical studies are conducted to compare the performances of STB and STC under 
various sparsity levels. The goal of these studies is to provide some empirical experience 
about the scenarios where one method gains over the other. Specifically, by varying spar-
sity levels, we investigate on the cases where STB outperforms STC and vice versa to 
provide some guidance for practical usage.

The same model is used to simulate correlated OTUs. Again, we simulate 800 samples 
with 1000 OTUs into 20 blocks (50 OTUs per block). Of those, only 40 OTUs are associ-
ated with the binary covariates and scattered evenly in the first 4 blocks (10 true OTUs / 
block). � is generated from random graph. We simulate elements in B as follows:

(1)	 For 10 binary covariates associated OTUs in 1st block, Bj ∼ U(0.1, 0.5).
(2)	 For 10 binary covariates associated OTUs in 2nd block, Bj ∼ U(−0.5,−0.1)

(3)	 For 10 binary covariates associated OTUs in 3rd block, Bj ∼ U(0.5, 1)

(4)	 For 10 binary covariates associated OTUs in 4th block, Bj ∼ U(−1,−0.5)

(5)	 For the rest of OTUs, Bj = 0.

Additionally, we set B0j ∼ U(a, a+ 2) with probability of 0.2 and B0j ∼ U(2, 4) with 
probability of 0.8, where a controls sparsity level. The sparsity varies from 0.4 to 0.8 with 
a ranging from 4 to 8. The performance is evaluated through block-level identification 
rate, sensitivity, specificity and precision in terms of block-level selection.
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Simulation results
Type‑I error and power results

For Type I error evaluations, the FWERs for STB and STC are 0.0378 and 0.0622 
respectively, indicating that both methods can control the FWER around 0.05. For the 
other three competing methods, ZIBR has FWER of 0.0752, which has slightly infla-
tion. The super-variant approach from Hu et al. [14] controls FWER well with value 

Table 1  Block-level identification rate over 500 replications for four true blocks under three graph 
structures

� is set to reflect the correlations among OTUs. Random graph structure indicates that OTUs are correlated with each other 
randomly. The hub and cluster graphs capture some aspects of biological networks, such as highly connected nodes and 
community structure. More details can be found in Osborne et al. [20]

Method Graph type Block 1 Block 2 Block 3 Block 4 Average (SD)

STB Random 0.8289 0.9918 1 0.8598 0.9201 (0.0885)

STC 0.9401 1 0.6736 1 0.9034 (0.1558)

ZIBR 0.8223 0.8595 0.9814 0.9835 0.9117 (0.0831)

ANCOM-BC 1 1 1 1 1 (0)

Hu et al. [14] 0.0020 0.4633 0.1388 0 0.1510 (0.2181)

STB Hub 0.7478 0.7917 1 0.9364 0.8690 (0.1188)

STC 0.9670 1 1 1 0.9917 (0.0165)

ZIBR 0.6865 0.7726 1 1 0.8648 (0.1601)

ANCOM-BC 1 1 1 1 1 (0)

Hu et al. (2020) 0.0082 0.2238 0.1458 0 0.0944 (0.1091)

STB Cluster 0.7868 1 1 1 0.9467 (0.1066)

STC 0.9510 1 0.9787 0.7975 0.9318 (0.0918)

ZIBR 0.7361 0.7961 0.7682 0.9506 0.8128 (0.0951)

ANCOM-BC 1 1 1 1 1 (0)

Hu et al. [14] 0.0040 0.3300 0.1360 0 0.1175 (0.1551)

Table 2  Average of sensitivity, specificity, precision and standard deviations for block-level 
identification over 500 replications

Different graph types are set to reflect various correlation structures among OTUs. Random graph structure indicates that 
OTUs are correlated with each other randomly. The hub and cluster graphs capture some aspects of biological networks, 
such as highly connected nodes and community structure. More details can be found in Osborne et al. [20]

Method Graph type Sensitivity (SD) Specificity (SD) Precision (SD)

STB Random 0.9201 (0.1178) 0.9996 (0.0049) 0.9988 (0.0157)

STC 0.9034 (0.1219) 1 (0) 1 (0)

ZIBR 0.9117 (0.1228) 1 (0) 1 (0)

ANCOM-BC 1 (0) 0 (0) 0.2 (0)

Hu et al. [14] 0.1510 (0.1255) 0.9719 (0.0326) 0.5806 (0.4815)

STB Hub 0.8690 (0.1250) 1 (0) 1 (0)

STC 0.9917 (0.0447) 0.9869 (0.0255) 0.9581 (0.0814)

ZIBR 0.8648 (0.1404) 1 (0) 1 (0)

ANCOM-BC 1 (0) 0 (0) 0.2 (0)

Hu et al. [14] 0.0945 (0.1213) 0.9588 (0.0307) 0.3634 (0.4739)

STB Cluster 0.9467 (0.1025) 0.9975 (0.0123) 0.9919 (0.0395)

STC 0.9318 (0.1115) 1 (0) 1 (0)

ZIBR 0.8128 (0.1340) 1 (0) 1 (0)

ANCOM-BC 1 (0) 0 (0) 0.2 (0)

Hu et al. [14] 0.1175 (0.1259) 0.9655 (0.0323) 0.4630 (0.4966)
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of 0.0449. ANCOM-BC has FWER of 0 while DESeq2 has FWER of 0.6894, indicating 
that DESeq2 fails to control Type I error and thus, will be excluded from later power 
comparison. Since both STB and STC as well as the other three competing methods, 
ZIBR, ANCOM-BC and super-variants control the FWER at a desired level,

With regards to power evaluations, the block-level results are shown in Tables 1 and 2. 
Our methods outperform the original super-variant approach in all scenarios. For com-
parison with other approaches, while there is no all-time winner, our proposed methods 
perform better than ZIBR in terms of the identification rates of block level in most of the 
scenarios. More importantly, the averaged identification rates of the proposed methods 
are comparable to or higher than those of ZIBR. This pattern is particularly profound for 
the scenarios of hub and cluster. In addition, across three graph structures, both STB and 
STC can achieve higher sensitivity than ZIBR while the specificity and precision remain 
comparable. Although ANCOM-BC achieves high identification rates, but it turns out to 
have extremely low specificity and precision of block level in all scenarios which implies 
that it may predict everything into positives without providing useful information.

In terms of the OTU-level identification (Table 3), starting from sensitivity, STB/STC 
and ZIBR are comparable, while ANCOM-BC has higher values. For specificity, STB/
STC and ZIBR achieve high values while specificity for ANCOM-BC is low. Regarding 
precision, STB and STC can achieve high precision while ZIBR and ANCOM-BC do not 
perform equally well in this case. This may be because both ZIBR and ANCOM-BC do 
not account for the correlations among OTUs, which might be a disadvantage compared 
with our proposed method. Similar to block-level results, ANCOM-BC can achieve high 
sensitivities but has lower specificity and precision, which impedes its usefulness. Across 
all scenarios, STB and STC show significantly better performance than the original 
super-variant approach, which indicates that the utilization of hierarchical information 
in our methods helps with OTUs discovery.

Table 3  Average of sensitivity, specificity, precision and standard deviations for OTU-level 
identification over 500 replications

Different graph types are set to reflect various correlation structures among OTUs. Random graph structure indicates that 
OTUs are correlated with each other randomly. The hub and cluster graphs capture some aspects of biological networks, 
such as highly connected nodes and community structure. More details can be found in Osborne et al. [20]

Method Graph type Sensitivity (SD) Specificity (SD) Precision (SD)

STB Random 0.2815 (0.0609) 0.9979 (0.0015) 0.9073 (0.0438)

STC 0.1377 (0.0724) 0.9993 (0.0011) 0.9528 (0.0637)

ZIBR 0.1463 (0.0486) 1 (0) 0.5083 (0.2771)

ANCOM-BC 0.7225 (0.0152) 0.6084 (0.0078) 0.1702 (0.0048)

Hu et al. [14] 0.0047 (0.0005) 0.9993 (0.0006) 0.4520 (0.4915)

STB Hub 0.3067 (0.0425) 0.9986 (0.0009) 0.9218 (0.0557)

STC 0.1183 (0.0310) 0.9991 (0.0017) 0.9198 (0.1473)

ZIBR 0.1439 (0.0910) 0.9999 (0.0012) 0.4827 (0.2760)

ANCOM-BC 0.7927 (0.0154) 0.5204 (0.0168) 0.1465 (0.0032)

Hu et al. [14] 0.0025 (0.0046) 0.9991 (0.0005) 0.2194 (0.4068)

STB Cluster 0.3255 (0.0513) 0.9974 (0.0018) 0.9065 (0.0533)

STC 0.1339 (0.0425) 0.9998 (0.0004) 0.9851 (0.0354)

ZIBR 0.1160 (0.0811) 0.9993 (0.0033) 0.3760 (0.2261)

ANCOM-BC 0.8107 (0.0155) 0.5789 (0.0228) 0.1749 (0.0073)

Hu et al. [14] 0.0034 (0.0048) 0.9992 (0.0005) 0.3280 (0.4667)



Page 10 of 18Dai et al. BMC Bioinformatics          (2022) 23:243 

Comparison of STB and STC under various sparsity levels

To provide researchers with more guidance on the utilization of STB and STC in real 
applications, we focus on comparing the performance of STB and STC under different 
sparsity levels in this section. The block-level identification rate of STB and STC under 
various sparsity levels are shown in Fig. 2. With the sparsity increases from 0.4 to 0.8, 
the average identification rates of first four blocks for both STB and STC decrease since 
less information are provided in the data. STB outperforms STC at lower sparsity levels 
(< 0.6) while STC works better in presence of higher zero proportion (> 0.6). When there 
are more zeros in taxa count data, the abundance of the counts will play a vital role in 
determining the associations, which might be the reason why STC outperforms STB in 
the high sparsity scenarios.

We also compare STB and STC with other methods, including ZIBR, ANCOM-BC 
and the original super-variant method in Hu et al. [14] as displayed in Additional file 1: 
Fig. S1. When the sparsity increases from 0.4 to 0.8, the average identification rates of 
first four blocks for ZIBR decrease but the original super-variant method is more robust 
to sparsity changes. Similar to the power results in the previous section, STB and STC 
perform better than ZIBR and the original super-variant method. While the identifica-
tion rates and sensitivities are higher for ANCOM-BC, the low specificities and preci-
sions indicate that it may predict everything into positives which limits its usefulness.

The x-axis shows the values of a in the simulation studies controlling sparsity levels. 
With a ranging from 4 to 8, the sparsity level varies from 40 to 80%. Bar plot displays the 
sparsity/zero proportions of simulated OTUs. Dot and line plots demonstrate the aver-
age identification rate of first four blocks versus different sparsity levels (red and circle: 
STB; blue and triangle: STC).

Fig. 2  Average block-level identification rate of first four blocks between STB and STC
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Real data analysis
In this section, we apply our proposed method to two datasets about colorectal can-
cer, from Baxter et  al. [4] and Zeller et  al. [10], respectively. Duvallet et  al. [5] pre-
processed the raw 16S sequencing data into raw OTU table that are ready to use 
(MicrobiomeHD database: https://​doi.​org/​10.​5281/​zenodo.​569601). Following the 
filtering recommendations applied by Duvallet et  al. [5], we remove samples with 
fewer than 100 reads and OTUs with fewer than 10 reads, as well as OTUs which 
are present in fewer than 1% of samples within the dataset. We calculate the relative 
abundance of each OTU through dividing its value by the total reads per sample. For 
Baxter’s data, we end up with 490 samples (CRC: 120, Health: 370) and 27, 354 OTUs, 
which are partitioned into 163 blocks (genus) by RDP classifier [5]. For Zeller’s data, 
we include 116 samples (CRC: 41, H: 75) and 82, 665 OTUs. The Baxter’s data are 
used as the discovery set since the dataset contains more samples, and Zeller’s data 
are used for verification. Compared to former work from Baxter et al. [4] which used 
leave-one-out and tenfold cross-validations for assessing model performance, we vali-
date our findings by an external dataset to give rise to more reliable and convincing 
results. A super-taxon is chosen to be a genus consisting of related species, which 
can reflect evolutionally hierarchical structure. We choose genera-level analyses since 
it is the highest level that we can get for taxonomy assignments. Additionally, most 
previous studies [4, 5, 10] also focused on genera-level analyses, which can provide 
us a more reasonable comparison. However, depending on the interest of researchers, 
other hierarchical levels can be used. We end up with 163 genera, leading to the sig-
nificance level for discovery set as 0.05/163 = 3.07e-4.

Since we need to randomly divide the discovery set into two even part to control 
type-I error as we claim in the simulation studies, to ascertain the stability of the 
associations, we repeat the division 10 times and retain the significant super-taxa and 
their contributing OTUs at each repetition. Typically, microbiota-disease association 
analyses do not include an internal assessment, but we replicate our procedure 10 
times as a safeguard strategy for detecting potential and stable signals without dra-
matically increasing the computational burden. Finally, for super-taxa that are con-
sistently selected across multiple repeats (at least 2 out of 10 repetitions), we conduct 
analyses in the complete discovery dataset (Baxter’s dataset) and verification set (Zel-
ler’s dataset) to further validate their associations.

For verification, since the OTU sequence lengths in two datasets are different (Baxter: 
250 bp, Zeller: 200 bp), we need to find the OTU sequences in the verification dataset 
that align with significant OTU sequences in the discovery set. To achieve this, we apply 
BLAST algorithm [23–25] to calculate the sequence identity score between two datasets. 
The identity score is proved to be a valid measure of sequence similarity [26]. Specifi-
cally, for each significant OTU in the discovery set, we find the OTU in the verification 
set that has the largest sequence identity score with that significant OTU. The signifi-
cance level is 0.05 divide by number of significant blocks in the discovery set.

For the results of 10 repetitions, under STB framework, both block 84 and block 
107 are selected in all repetitions. STC performs similarly to STB, where it identifies 
block 84 in all repetitions and block 107 in 9 out of 10 repetitions. We validate the 
blocks that are frequently selected to representatively form 2 super-taxa, including 

https://doi.org/10.5281/zenodo.569601
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block 107 and block 84 for both STB and STC. Tables  4 and 5 give their estimated 
effects on complete discovery set and verification set for STB and STC respectively. 
Only block 107 is significant in the verification set (p = 1.55e-04) under STB frame-
work while the two blocks are both validated to be significant in the Zeller’s dataset 
(block 107: p = 8.21e-06; block 84: p = 0.0084) by using STC.

For OTU-level identification, STB identifies two OTUs, denovo670 and denovo1172 
for block 107. For STC, it discovers the same sets OTUs for block 107. Additionally, 
it also uncovers three OTUs for block 84, including denovo596, denovo3935 and 
denovo8735. For better biological interpretation, the identified OTUs are assigned to 
a specie according to NCBI BLAST [27], and the assignments are shown in the sec-
ond table in Tables 4 and 5.

To further validate the joint effects of multiple OTUs within a block, we com-
pare the Akaike information criterion [28] for regressions only including individual 
OTU with the one with our super-taxon. For STC, the AIC values are 498.0397 and 
518.7474 for block 107 and block 84, respectively. Meanwhile, the minimum AIC 

Table 4  Real data results for STB

Marginal Effects of 2 Super-taxa on Baxter’s dataset (discovery set) and Zeller’s dataset (verification set) are displayed in 
Table 4. The selected OTUs and their mapping to species are in Table 4

(a)

Super-taxon Discovery Verification

Odds ratio (95% CI) P-value Odds ratio (95% CI) P-value

Block 107 8.4851 (4.3838, 16.4234) 2.21e-10 4.2538 (2.0093, 9.0057) 1.55e-04

Block 84 5.5873 (3.2172, 9.7034) 1e-09 1.7073 (0.9901, 2.9441) 0.0543

(b)

OTU Super-taxon Genus Species

denovo670 Block 107 Peptostreptococcus Peptostreptococcus anaerobius

denovo1172 Block 107 Peptostreptococcus Peptostreptococcus stomatis

Table 5  Real data results for STC

Marginal Effects of 2 Super-taxa on Baxter’s dataset (discovery set) and Zeller’s dataset (verification set) are displayed in 
Table 5. The selected OTUs and their mapping to species are in Table 5

(a)

Super-taxon Discovery Verification

Odds Ratio (95% CI) P-value Odds Ratio (95% CI) P-value

Block 107 9.2060 (4.4911, 18.8705) 1.35e-09 9.0996 (3.4478, 24.0160) 8.21e-06

Block 84 5.5723 (3.1147, 9.9690) 7.11e-09 3.4140 (1.3696, 8.5101) 8.42e-03

(b)

OTU Super-taxon Genus Species

denovo670 Block 107 Peptostreptococcus Peptostreptococcus anaerobius

denovo1172 Block 107 Peptostreptococcus Peptostreptococcus stomatis

denovo596 Block 84 Parvimonas Parvimonas micra

denovo3935 Block 84 Parvimonas Parvimonas sp.

denovo8735 Block 84 Parvimonas Parvimonas sp.
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for regression models with individual OTU is 529.2436 based on denovo596, which 
implies that the model based on super-taxon (joint effects) identified by our approach 
better fits the data. By further comparing the odds ratios (OR), we observe that OR is 
much higher for the model with super-taxon, indicating that the presence and enrich-
ment of multiple OTUs may result in higher risk of CRC. Combining results from 
both methods, we finally identify two genera: Parvimonas and Peptostreptococcus 
with five OTUs belonging to four species: Peptostreptococcus stomatis, Peptostrep-
tococcus anaerobius, Parvimonas micra and Parvimonas sp.which are significantly 
associated with CRC.

Discussion
In this study, we propose a new concept called super-taxon to group several OTUs 
together based on hierarchical information of taxa as the joint effect factor. Associations 
between the super-taxon and the disease are expected to be more stable than that of a 
single OTU and may enhance the power of detection. We propose the average of non-
zero and binary transformation of OTUs involved in a super-taxon as translated value 
to reduce the effect of un-presented taxa. In simulations, we demonstrate that the pro-
posed method can be more powerful than the other association method in the dataset 
with lots of zeros and signals with correlated structure. We also provide empirical sug-
gestions that STC outperforms STB when lots of zeros are presented in the data. Finally, 
we apply our method to two datasets for colorectal cancer, one as discovery set and the 
other as verification set to generate reliable results. We repeat the analyses for 10 times 
to consolidate more convincing and trustworthy findings and results. Our methods 
uncover several colorectal cancer associated genera from a fresh angle as well as identify 
the novel joint effects of two groups of OTUs for further investigation.

In the simulation studies, we notice that STB outperforms STC when sparsity in the 
data is low while STC works better in presence of high sparsity. In practice, we suggest 
that researchers should try both STB and STC, but more attention should be focused 
on trying STB for less sparse data and STC for data with more zeros since STC can take 
advantage of the abundance information of OTUs in such case.

For real data application, the average sparsity of the two datasets is around 90%. Based 
on our simulation results, STC may perform better than STB, which agrees with what we 
have observed. Besides, there are overlapping between the findings from STB and STC, 
which further validates our approaches.

We identify the associations of Peptostreptococcus genus and Parvimonas genus with 
CRC [29, 30], which have been reported in previous studies [5, 31]). In the paper of 
Duvallet et al. [5], they grouped OTUs by taking the summation of the abundance across 
those OTUs and performed univariate test from group-level. However, such methods 
are unable to detect individual OTU and their joint effects on diseases. Though Shal 
et al. [31] performed random forest analyses at OTU-level, which could potentially cap-
ture the joint effects, they were unable to provide an estimation of joint effect sizes that 
can be achieved through our approach. On top of the two genera, we also report the 
joint effect of Peptostreptococcus stomatis and Peptostreptococcus anaerobius, as well 
as joint effect of Parvimonas micra and Parvimonas sp. on CRC. We demonstrate that by 
considering joint effects, the model fits datasets better with lower AIC values. We also 
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reveal that the presence and enrichment of multiple OTUs might result in higher risk of 
CRC in marginal logistic regressions.

The composition of OTUs in each taxonomy levels (Class, Order, Family and Genus) 
are added to provide more insights on different hierarchical levels and associated effects 
on CRC. For both class and order level, there is only one class (Clostridia) and one order 
(Clostridiales) that are selected over twice across 10 iterations with the STC method in 
the discovery set. But they are not verified on the external validation set (p = 0.4220). In 
terms of family level, STC identifies the Clostridiales_Incertae Sedis XI family 8 times 
out of 10 iterations which is further verified on the validation set (OR = 3.58, p = 0.0081). 
The Clostridiales_Incertae Sedis XI family consists of six OTUs (Additional file  1: 
Table  S1). Apart from Parvimonas reported at genera-level, there are two more gen-
era identified, Anaerococcus and Peptoniphilus, indicating potential interactive effects 
among three genera on CRC. Our recommendation is that there is no best hierarchy to 
use in real practice and balance exists between higher taxonomic resolution and lower 
detection power, which can depend on different needs and scientific relevance of micro-
biome studies. On the one hand, coarsen scale of taxonomy may lead to a model los-
ing interpretability power. On the other hand, focusing on high resolution data may fail 
to detect associations between aggregated taxonomic units and disease manifestation 
should they exist at low resolution levels. Based on our findings, family or genera-level 
can give more meaningful and interpretable results. In summary, our approach allows 
researcher to use hierarchical information to learn how microbes function as a commu-
nity for disease manifestation and provides estimated joint effect size for increasing dis-
ease risks.

The marginal biological effects of Peptostreptococcus stomatis, Peptostreptococcus 
anaerobius, Parvimonas micra and Parvimonas sp. on CRC have been studied previously. 
Parvimonas micra can disrupt the normal functioning of the NOD2 signaling pathway 
in periodontitis [32], which could potentially lead to a protumorigenic and inflamma-
tory environment. One previous study indicates that Parvimonas sp. Oral taxon 110 and 
Parvimonas sp. Oral taxon 393 are enriched in CRC patients’s microbiota [33]. Stud-
ies have shown that patients with Peptostreptococcus stomatis (P. stomatis) and Pepto-
streptococcus anaerobius (P. anaerobius) have an increased risk of developing CRC [34, 
35]. P. stomatis is a mild saccharolytic and fermented product producer, including ace-
tic, isobutyric, isovaleric, and isocaproic acids [36]. It might contribute to the acidic and 
hypoxic tumor microenvironment, which supports bacterial colonization. P. anaerobius 
enrichment in CRC patient stool and tissue has been validated by a previous study [35]. 
It also reports that P. anaerobius interacted with Toll-like receptor 2 (TLR2) and Toll-like 
receptor 4 (TLR4) on colon cells to reactive oxygen species accumulation, which sup-
ports cholesterol synthesis and cellular proliferation.

In addition, we find that two identified OTUs, denovo3935 and denovo8735 for Parvi-
monas genus belong to the same species, Parvimonas sp., which might imply that the 
potential sub-species exist.

For the additional two genera identified at family level, Anaerococcus and Pepton-
iphilus, Anaerococcus is more prevalent in patients with CRC compared to controls 
[37]. Peptoniphilus is also observed to be enriched in CRC patients [38]. Anaerococ-
cus, Parvimonas, Peptoniphilus and Peptostreptococcus are all gram-positive anaerobic 
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cocci (GPACs) [39]. One of the species in Anaerococcus genus, Anaerococcus prevotii 
can produce urease in the gastrointestinal tract (GI) that interrupts the nitrogen recy-
cling and results in products including ammonia, which are harmful to the host health. 
One species Peptoniphilus asaccharolyticus under Peptoniphilus genus has similar same 
metabolism in the host GI [40]. The analogous mechanism of two genera is an indication 
of their joint effects on CRC development and motivates us for future investigation.

Although there are some arguments on the high noise and low quality of the sequence 
data especially for species-level or beyond, with the advanced sequencing technology, 
our methods will provide a valid and useful tool to go beyond species-level to identify 
strains of bacteria, and even genomic variants in those strains [41] as well as their asso-
ciations with diseases. Apart from that, the compositionality feature of OTUs poses 
challenges for analysis using standard conventional statistical procedures, including 
non-independency of OTUs and potential interactions between them. In this sense, 
mass univariate regression commonly used in genome-wide association studies is not 
feasible. One may adopt regression-based method and account for the unit sum of the 
covariates simultaneously [42]. However, this approach requires imposing a linear con-
straint on regression coefficients, which complicates computation and may not take 
interaction terms into account. Nevertheless, we consider tree-based method as a sen-
sible choice in our study. With the application of random forest model, it can deal with 
autocorrelations between OTUs and alleviate compositionality problems as suggested by 
Ranganathan and Borges [43] and Knights et al. [44]. Other works using random forest 
to develop predictive model for microbiome data include Baxter et al. [4] and Duvallet 
et al. [5] for studying CRC.

The most important finding of our work is the identification of the joint effects 
between P. anaerobius and P. stomatis, and that between Parvimonas micra and Parvi-
monas sp. Although the marginal effects of individual species such as P. stomatis and P. 
anaerobius on CRC have been reported and potentially joint effects between them were 
studies by Shah et al. [31], to the best of our knowledge, there have been few attempts on 
unrevealing their joint effects. Hence, identifying joint effects of OTUs and providing an 
estimation of joint effect sizes on CRC are of great importance to potentially decrease 
cancer risk and perhaps even improve diagnosis, treatment stratification, and therapy. 
One possible explanation of the joint effect between P. anaerobius and P. stomatis is that 
P. stomatis leads to the intestinal dysbiosis of P. anaerobius in CRC patients. P. stomatis 
is capable of producing lysylphosphatidylglycerol (LPG), a major component of the bac-
terial membrane. LPG synthesis contributes to bacterial virulence since it participants in 
the resistance mechanism against cationic antimicrobial peptides produced by the host’s 
immune system and by competing microorganisms [45]. The competition could contrib-
ute to the intestinal dysbiosis of P. anaerobius by either mitigating inflammation through 
reducing indole-3-propionic acid (IPA) and indoleacrylic acid (IA) levels [46] or affect-
ing other symbiotic microbes such as Prevotella bivia [47]. However, no functional study 
on joint effects between P. stomatis and P. anaerobius or between Parvimonas micra and 
Parvimonas sp. in colorectal tumor development exist to date, which requires further 
research and attention.

As a final remark, we should note that although the proposed method enjoys impor-
tant advantages, it can be extended and improved. For instance, it may be helpful to 
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incorporate more hierarchical structure information to better group the OTUs. In addi-
tion, the sample size of real datasets adopted here is limited to draw more significant 
conclusions.

Conclusions
In this paper, we propose a new concept called super-taxon for microbiota-disease asso-
ciation studies, and present STB and STC to identify joint effects of microbiomes on 
CRC. Compared to state-of-the-art differential abundance analysis approaches, STB and 
STC yield better identification performance in situations where microbes are highly cor-
related. We discover and verify two known genera with CRC while innovatively identify 
and estimate joint effects of multiple OTUs on CRC. These findings consolidate benefits 
of proposed approaches and provide potential directions for better understanding the 
roles of microbes in CRC.
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