Skip to main content
. 2022 Jun 8;16:908330. doi: 10.3389/fnins.2022.908330

TABLE 2.

Exact parameters of the used deep convolutional network (FSDD data set).

Layer Type Input-output-dim Activation Characteristics
1 Convolution 2D 9,131, 30, 1; 9,102, 1, 32 ReLu
2 MaxPooling 2D 9,102, 1, 32; 4,551, 1, 32 Pool size: (2, 1)
3 DropOut 4,551, 1, 32; 4,551, 1, 32 Droupout: 0.2
4 Convolution 2D 4,551, 1, 32; 4,547, 1, 64 ReLu
5 MaxPooling 2D 4,547, 1, 64; 2,273, 1, 64 Pool size: (2, 1)
6 DropOut 2,273, 1, 64; 2,273, 1, 64 Dropout: 0.2
7 Convolution 2D 2,273, 1, 64; 2,272, 1, 32 ReLu
8 MaxPooling 2D 2,272, 1, 32; 1,136, 1, 32 Pool size: (2, 1)
9 DropOut 1,136, 1, 32; 1,136, 1, 32 Dropout: 0.2
10 Flatten 1,136, 1, 32; 36,352
11 Dense 36,352; 400 ReLu
12 DropOut 400; 400 Dropout: 0.2
13 Dense 400; 50 ReLu
14 Dense 50; 10 Softmax