TABLE 2.
Exact parameters of the used deep convolutional network (FSDD data set).
| Layer | Type | Input-output-dim | Activation | Characteristics |
| 1 | Convolution 2D | 9,131, 30, 1; 9,102, 1, 32 | ReLu | |
| 2 | MaxPooling 2D | 9,102, 1, 32; 4,551, 1, 32 | Pool size: (2, 1) | |
| 3 | DropOut | 4,551, 1, 32; 4,551, 1, 32 | Droupout: 0.2 | |
| 4 | Convolution 2D | 4,551, 1, 32; 4,547, 1, 64 | ReLu | |
| 5 | MaxPooling 2D | 4,547, 1, 64; 2,273, 1, 64 | Pool size: (2, 1) | |
| 6 | DropOut | 2,273, 1, 64; 2,273, 1, 64 | Dropout: 0.2 | |
| 7 | Convolution 2D | 2,273, 1, 64; 2,272, 1, 32 | ReLu | |
| 8 | MaxPooling 2D | 2,272, 1, 32; 1,136, 1, 32 | Pool size: (2, 1) | |
| 9 | DropOut | 1,136, 1, 32; 1,136, 1, 32 | Dropout: 0.2 | |
| 10 | Flatten | 1,136, 1, 32; 36,352 | ||
| 11 | Dense | 36,352; 400 | ReLu | |
| 12 | DropOut | 400; 400 | Dropout: 0.2 | |
| 13 | Dense | 400; 50 | ReLu | |
| 14 | Dense | 50; 10 | Softmax |