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ABSTRACT

Better biomarkers to predict death early in acute liver failure (ALF) are needed. To that end, we obtained early (study day 1)
and later (day 3) serum samples from transplant-free survivors (n¼28) and nonsurvivors (n¼30) of acetaminophen-induced
ALF from the NIH-sponsored Acute Liver Failure Study Group and from control volunteers (n¼10). To identify proteins that
increase early in serum during ALF, we selected individuals from this cohort for whom alanine aminotransferase was lower
on day 1 than day 3, indicating a time point before peak injury (n¼10/group). We then performed untargeted proteomics
on their day 1 samples. Out of 1682 quantifiable proteins, 361 were � 4-fold elevated or decreased in ALF patients versus
controls and 16 of those were further elevated or decreased � 4-fold in nonsurvivors versus survivors, indicating potential
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to predict death. Interestingly, 1 of the biomarkers was lactate dehydrogenase (LDH), which is already measured in most
clinical laboratories. To validate our proteomics results and to confirm the prognostic potential of LDH, we measured LDH
activity in all day 1 and 3 samples from all 58 ALF patients. LDH was elevated in the nonsurvivors versus survivors on both
days. In addition, it had prognostic value similar to the model for end-stage liver disease and outperformed the King’s
College Criteria, while a combination of model for end-stage liver disease and LDH together outperformed either alone.
Finally, bioinformatics analysis of our proteomics data revealed alteration of numerous signaling pathways that may be
important in liver regeneration. Overall, we conclude LDH can predict death in APAP-induced ALF.

Key words: drug-induced liver injury; acute liver injury; liver regeneration; biomarkers.

Acute liver failure (ALF) is a syndrome of encephalopathy, coagul-
opathy, and multi-organ dysfunction caused by loss of liver func-
tion secondary to acute liver injury. It is a relatively rare condition.
Indeed, the true incidence of ALF is unknown, and estimates vary
widely around the world (Bower et al., 2007; Ho et al., 2014;
Hoofnagle et al., 1995; Thanapirom et al., 2019; Weiler et al., 2020).
In the United States, crude estimates range from 5.5 to 31.2 cases
per million population per year (or around 1600–10 000 cases an-
nually; Bower et al., 2007; Hoofnagle et al., 1995). However, an
often-cited figure is 2000 total cases per year. Although it is rare,
ALF can be extremely devastating: Despite recent improvements
in patient outcomes, overall mortality remains high at around 25–
30% (Reuben et al., 2016). Currently, the major life-extending treat-
ment for ALF is a liver transplant. However, clinicians must decide
quickly when a transplant is needed because the time from hospi-
tal admission or onset of ALF to death is on the order of days
(Ostapowicz et al., 2002; Shakil et al., 2000).

Unfortunately, current liver biomarkers help little with the
decision to perform a transplant. The primary biomarker of liver
injury is serum alanine aminotransferase (ALT). Although ALT
is sensitive for detection of liver injury, it has limited prognostic
value (Karvellas et al., 2017; Kuroda et al., 2021; McGill and
Jaeschke, 2014). Although liver function tests like bilirubin, pro-
thrombin time (PT), and the international normalized ratio (INR)
correlate better with poor outcomes, they often peak late in ALF
progression when a liver transplant is no longer feasible.
Finally, prognostic scores like the model for end-stage liver dis-
ease (MELD), which includes bilirubin and INR, are helpful but
lack sufficient sensitivity and specificity to principally guide pa-
tient care (De Clercq et al., 2021). Thus, the identification and
validation of a new prognostic biomarker or panel of biomarkers
that can predict death early in ALF, before the peak of injury
and dysfunction, could dramatically improve the care of these
critically ill patients by allowing early activation of resources
necessary for liver transplantation.

Here, we used untargeted proteomics analysis to identify
candidate biomarkers to predict poor outcomes in patients with
acetaminophen (APAP)-induced ALF. We then selected one of
those biomarkers, lactate dehydrogenase (LDH), for further test-
ing and confirmation. Importantly, LDH is routinely measured
in many clinical laboratories and could be immediately imple-
mented as a simple prognostic biomarker in ALF in routine
practice if our results can be further verified. Finally, we used a
reverse translational approach with Ingenuity Pathway
Analysis (IPA) and subsequent Upstream Analysis to explore the
mechanistic significance of our untargeted proteomics results.

MATERIALS AND METHODS

Acute Liver Failure Study Group samples. Serum samples from 28 ran-
dom transplant-free survivors and 30 random nonsurvivors of

APAP-induced ALF were obtained from the Acute Liver Failure
Study Group (ALFSG) biorepository. ALF was diagnosed by
ALFSG investigators and defined as INR � 1.5, hepatic encepha-
lopathy, duration of illness < 26 weeks, and absence of chronic
liver disease. APAP toxicity was determined to be the etiology
based on a combination of patient-reported history of APAP
overdose, a detectable APAP level documenting ingestion, and
aminotransferase level of � 1000 IU/l. Due to hepatic encepha-
lopathy, consent was obtained from next of kin. Samples were
centrifuged at each ALFSG study site to obtain serum and stored
at �80�C for later distribution and analysis. Demographic and
laboratory data provided with the samples included daily values
for serum ALT, aspartate aminotransferase (AST), total bilirubin
(Tbili), PT, and creatinine (Cre) during hospitalization; age; sex;
race; and ethnicity. Internal review board (IRB) approval was
obtained at each ALFSG study site and the study was conducted
in accordance with the 1975 Declaration of Helsinki.

Volunteer subjects. Ten volunteers without liver disease and with
reported recent therapeutic APAP exposure were recruited at the
University of Arkansas for Medical Sciences (UAMS) in Little
Rock, Arkansas, USA. Recent therapeutic exposure was consid-
ered useful to control for the effects of APAP itself, though not es-
sential for the study. Each subject was informed of the potential
risks and benefits of the study and signed a consent form. After
enrollment, a blood sample was collected from each subject and
serum was separated by centrifugation. The study protocol was
reviewed and approved by the UAMS IRB and the study was con-
ducted in accordance with the 1975 Declaration of Helsinki.

Untargeted proteomics. Abundant serum proteins were depleted
with HighSelect Top14 resin (Thermo) according to the manu-
facturer’s instructions. Proteins were reduced and alkylated
prior to digestion with sequencing grade modified porcine tryp-
sin (Promega) using S-Trap columns (Protifi). Tryptic peptides
were then separated by reverse phase XSelect CSH C18 2.5 um
resin (Waters) on an in-line 150 � 0.075 mm column using an
UltiMate 3000 RSLCnano system (Thermo). Peptides were eluted
using a 60 min gradient from 98:2 to 65:35 buffer A:B ratio (buffer
A¼ 0.1% formic acid, 0.5% acetonitrile; buffer B¼ 0.1% formic
acid, and 99.9% acetonitrile). Eluted peptides were ionized by
electrospray (2.2 kV) followed by mass spectrometric analysis
on an Orbitrap Exploris 480 mass spectrometer (Thermo). To as-
semble a chromatogram library, 6 gas-phase fractions were ac-
quired on the Orbitrap Exploris with 4 m/z DIA spectra (4 m/z
precursor isolation windows at 30 000 resolution, normalized
automatic gain control (AGC) target 100%, maximum inject time
66 ms) using a staggered window pattern from narrow mass
ranges using optimized window placements. Precursor spectra
were acquired after each DIA duty cycle, spanning the m/z
range of the gas-phase fraction (ie, 496–602 m/z, 60 000
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resolution, normalized AGC target 100%, maximum injection
time 50 ms). For wide-window acquisitions, the Orbitrap
Exploris was configured to acquire a precursor scan (385–
1015 m/z, 60 000 resolution, normalized AGC target 100%, maxi-
mum injection time 50 ms) followed by 50� 12 m/z DIA spectra
(12 m/z precursor isolation windows at 15 000 resolution, nor-
malized AGC target 100%, maximum injection time 33 ms) using
a staggered window pattern with optimized window place-
ments. Precursor spectra were acquired after each DIA duty cy-
cle. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE
(Perez-Riverol et al., 2019) partner repository with the dataset
identifier PXD029576.

Proteomics data analysis. Following data acquisition, data were
searched using an empirically corrected library and a quantita-
tive analysis was performed to obtain a comprehensive proteo-
mic profile. Proteins were identified and quantified using
EncyclopeDIA (Searle et al., 2018) and visualized with Scaffold
DIA using 1% false discovery thresholds at both the protein and
peptide level. Protein exclusive intensity values were assessed
for quality using an in-house ProteiNorm app, a tool for system-
atic evaluation of normalization methods, imputation of miss-
ing values and comparisons of multiple differential abundance
methods (Graw et al., 2020). Normalization methods evaluated
included log2 normalization (Log2), median normalization
(Median), mean normalization (Mean), variance stabilizing nor-
malization (Huber et al., 2002), quantile normalization (Bolstad,
2021), cyclic loess normalization (Ritchie et al., 2015), global ro-
bust linear regression normalization (Chawade et al., 2014), and
global intensity normalization (Global Intensity; Chawade et al.,
2014). The individual performance of each method was evalu-
ated and verified by comparing of the following metrics: total
intensity, pooled intragroup coefficient of variation, pooled
intragroup median absolute deviation, pooled intragroup esti-
mate of variance, intragroup correlation, sample correlation
heatmap (Pearson), and log2-ratio distributions. The normalized
data were used to perform statistical analysis using linear mod-
els for microarray data (limma) with empirical Bayes (eBayes)
smoothing to the standard errors (Ritchie et al., 2015). Proteins
with a false discovery rate (FDR)-adjusted p value < .05 and a
fold change > 2 were generally considered significant. For
biomarker identification, we focused on biomarkers elevated
� 4-fold in ALF survivors versus controls and further elevated
� 4-fold in nonsurvivors versus survivors of ALF to ensure more
robust results. Analyzed data are available to academic
researchers upon request.

LDH measurement. LDH activity was measured using a standard
kinetic assay based on the loss of NADH absorbance in the reac-
tion mixture. Briefly, each serum sample was diluted in 1�
phosphate-buffered saline and mixed with 60 mM potassium
phosphate buffer (pH 7.5) containing 0.7 mM pyruvate and
216 mM NADH in at least 1 well of a 96-well plate. The plate was
then placed into a UV/Vis spectrophotometer and absorbance at
340 nm was monitored over 3 min in 11 s intervals at 37�C.
Activity was calculated using the Beer-Lambert equation and
expressed in international units per liter (U/l).

Pathway analysis. Pathway analysis and subsequent Upstream
Analysis of the untargeted proteomics data were performed us-
ing IPA software (Qiagen, Germantown, Maryland). LogFC cut-
offs of �1 to 1 and a p value cutoff of .05 were used in the initial
core analysis.

Statistical analyses. Sensitivity, specificity, likelihood ratios, and
posttest probabilities were calculated using standard equations
(Deacon, 2009). Data normality was tested using the Shapiro-Wilk
test. For normally distributed data, groups were compared
using Student’s t test. For nonnormally distributed data, groups
were compared using a t test on ranks. Logistic regression
was used to screen for associations between biomarkers and out-
come, and receiver operating characteristic (ROC) curves were
used to visualize the associations. The equation to combine MELD
score and LDH values was MELD-LDH¼�5.844 þ (0.682*log(LDH))
þ (2.702*log(MELD)), derived using multiple logistic regression
and modified to optimize results. All statistical analyses were per-
formed in SigmaPlot 12.5 (Systat, San Jose, California) or R 3.6.1 (R
Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Participant Demographics
Table 1 provides a summary of demographics and clinical labo-
ratory data from the days 1 and 3 samples for all ALF survivors
and nonsurvivors, as well as data from control subjects.

Discovery Proteomics
To identify candidate biomarkers with potential to predict poor
outcomes in ALF, we performed untargeted proteomics analysis
of the day 1 samples from a subset of 10 participants from each
group. Individuals in the subsets were chosen because their day 1
samples were collected before ALT peaked during hospitalization,
indicating that they represent an early time point in the progression
of ALF, to increase the likelihood that our candidate biomarkers will
have utility early in the course of acute liver injury. Table 2 provides
demographic and laboratory data for these subgroups.

Using untargeted proteomics, we were able to quantify 1682
proteins across all serum samples from the ALF patients and
volunteers. To ensure identification of the most robust and
promising biomarker candidates, we excluded proteins that
were < 4-fold elevated or < 4-fold decreased in serum from ALF
survivors compared with healthy volunteers, leaving 221 ele-
vated and 140 decreased (Figure 1A). Tables 3 and 4 list the top
20 proteins in each category (increased and decreased). From
the remaining proteins, we further excluded those that were
< 4-fold elevated or <4-fold decreased in samples from ALF
nonsurvivors compared with survivors. This left us with 13

Table 1. All Participant Demographics and Laboratory Data

Parameter Control
Volunteers S NS

N 10 28 30
Female (%) 5 (50) 19 (68) 20 (67)
Median age (range) 45 (23–66) 31 (19–70) 36 (18–67)
Race and ethnicity

White, non-Hispanic (%) 8 (80) 26 (93) 27 (90)
Black, non-Hispanic (%) 2 (20) 1 (3.5) 2 (6.7)
White, Hispanic (%) 0 (0) 1 (3.5) 1 (3.3)
Other (%) 0 (0) 0 (0) 0 (0)

Peak ALT (U/l), mean 6 SE 17 6 2 4513 6 920 3406 6 531
Peak Tbili (mg/dl), mean 6 SE NA 5.5 6 0.6 8.6 6 1.2
Peak Cre (mg/dl), mean 6 SE NA 3.4 6 0.6 3.4 6 0.3
Peak MELD, mean 6 SE NA 28 6 2 39 6 1
Days from enrollment to

Peak ALT, mean 6 SE
NA �0.52 6 0.2 �0.27 6 0.2

Abbreviations: S, survivors; NS, nonsurvivors; NA, not available.
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biomarker candidates that were at least 4-fold elevated in ALF
versus controls and again 4-fold higher in ALF nonsurvivors ver-
sus survivors, and another 3 biomarker candidates that were at
least 4-fold decreased in the ALF survivors versus controls and
again 4-fold decreased in nonsurvivors versus survivors
(Figure 1B). Table 5 lists all 16 of these biomarker candidates.
ROC curve analysis further revealed that all 16 had better overall
sensitivity and specificity for death (as indicated by greater
areas under the curve [AUC]) than either the commonly used
MELD score or presentation ALT in the ALF patients (Figure 2).

To determine which of these 16 biomarker candidates are most
promising for clinical use, we ranked them based on AUC and calcu-
lated specificity for death at 90% sensitivity, sensitivity at 90% specif-
icity, and positive posttest probability at 90% sensitivity as well
(Table 5). We were intrigued to discover that LDH-M (encoded by the
LDHA gene) was among the biomarker candidates with greatest po-
tential for clinical use as a prognostic marker to predict death in ALF
based on these metrics. Importantly, clinical laboratories routinely
measure total LDH activity in circulation. Furthermore, total LDH re-
leased into serum during liver injury should consist almost entirely

of LDH-M. Most LDH in cells and serum exists as 1 of 5 tetrameric
isoforms (LDH1 through LDH5), each composed of various combina-
tions of 2 major subunits (LDH-M and LDH-H). The dominant tetra-
mer in the liver is LDH-5, which is made up of 4 LDH-M subunits. It
follows, therefore, that most or all LDH activity in serum during liver
injury is from LDH-M.

Confirmation of LDH
To further explore the prognostic utility of LDH, we measured
total LDH activity in both days 1 and 3 serum samples from all

Figure 1. Untargeted proteomics revealed 16 biomarker candidates that differentiate nonsurvivors and survivors. Day 1 serum samples from survivors (n¼10) and non-

survivors (n¼10) of acetaminophen-induced acute liver failure (ALF) and healthy controls (n¼10) were subjected to untargeted proteomics. A, Volcano plot displaying

results for ALF survivors versus volunteer controls. B, Volcano plot displaying the 13 proteins that were � 4-fold elevated in ALF survivors versus control and � 4-fold

further elevated in nonsurvivors versus survivors and the 3 proteins that were � 4-fold decreased in ALF survivors versus control and � 4-fold further decreased in

nonsurvivors versus survivors.

Table 3. Top 20 Proteins Elevated in Serum in ALF Patients Versus
Control Subjects

Protein Log2FC Adjusted p Value

MAVS 15.2 3.2 � 10-9

CTPS2 12.8 3.2 � 10�7

EIF4E 12.7 2.2 � 10�6

IGHV3-72 10.8 4.7 � 10�3

SRSF1 10.5 5.9 � 10�4

ITGB2 9.65 1.0 � 10�3

LACTB2 9.38 1.1 � 10�3

TTC36 9.27 3.3 � 10�3

AP2B1 9.15 1.8 � 10�3

RAB8B 8.90 8.7 � 10�4

RAB8A 8.90 8.7 � 10�4

APOL2 8.87 3.4 � 10�3

ALDOB 8.83 9.3 � 10�17

CES1P1 8.69 6.9 � 10�4

SEPT9 8.30 6.7 � 10�3

LILRB2 7.91 1.3 � 10�2

RPL6 7.84 1.6 � 10�3

EHD1 7.30 1.0 � 10�3

PSMB4 7.04 3.5 � 10�19

C19orf12 6.90 7.3 � 10�3

Abbreviations: Log2FC, log base 2 fold-change; ALF, acute liver failure.

Table 2. Untargeted Proteomics Subgroup Demographics and Laboratory
Data

Parameter Control
Volunteers

S NS

n 10 10 10
Sex (% female) 5 (50) 5 (50) 5 (50)
Age (median, range) 45 (23–66) 32 (19–46) 33 (18–67)
Race and ethnicity

White, non-Hispanic (%) 8 (80) 8 (80) 7 (70)
Black, non-Hispanic (%) 2 (20) 1 (10) 2 (20)
White, Hispanic (%) 0 (0) 1 (10) 1 (10)
Other (%) 0 (0) 0 (0) 0 (0)

Peak ALT (U/l) (mean 6 SE) 17 6 2 8275 6 1494 7493 6 992

Abbreviations: S, survivors; NS, nonsurvivors.
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58 of the ALF patients. Consistent with our untargeted proteo-
mics results, total LDH was significantly higher in serum sam-
ples from the nonsurvivors compared with the survivors on
both days 1 and 3 (Figs. 3A and 3B). In addition, ROC analysis
revealed that LDH performed similarly overall to the MELD score

in our ALF cohort (Figs. 3C and 3D, and Table 6). To determine if
the combination of LDH and MELD score can predict outcome
better than MELD alone, we performed multiple logistic regres-
sion and tested a modified form of the resulting curve fit as a
novel prognostic score. Indeed, the novel MELD-LDH score
tended to outperform both LDH alone and MELD alone in the
day 3 samples (Figure 4 and Table 6), though not on day 1.
Finally, the sensitivity of LDH and MELD-LDH at 90% specificity
compared favorably to the King’s College Criteria (KCC) as well,
which had similar specificity of 90% (day 1) and 100% (day 3) but
sensitivity of just 20% (day 1) and 19% (day 3). These data indi-
cate that LDH may be a more convenient biomarker for progno-
sis in ALF than MELD or the KCC due to similar or even
modestly better performance, without the need for multiple
tests or calculation. They also demonstrate that the combina-
tion of MELD and LDH further improves prediction.

Upstream Analysis
To explore the mechanistic significance of our proteomics data,
we next used IPA software to perform Upstream Analysis of our
untargeted proteomics data. Upstream Analysis is a bioinfor-
matics approach that looks at differences in gene expression or,
in this case, protein levels between groups and identifies the
likely signaling pathways that were activated or suppressed to
cause those differences based on the prior literature. This ap-
proach revealed likely activation of 16 signaling pathways and
likely deactivation or suppression of 8 others (Table 7).
Interestingly, several of the pathways that appeared to be acti-
vated are known to be involved in cell proliferation and/or liver
regeneration, warranting exploration in future studies.

DISCUSSION

There is a critical need for better tools to predict death and
therefore transplant-need early in ALF. This is particularly true
for APAP-related injury because it evolves rapidly. One study
found that most patients with APAP toxicity have either died,
received a transplant, or recovered by day 5 after hospital ad-
mission (Reddy et al., 2016). Prognostic indexes such as the
MELD score and the KCC are helpful, but insufficient. The MELD
score, for example, has sensitivity and specificity of just 60–70%
each for prediction of death in ALF at commonly used cutoff val-
ues (De Clercq et al., 2021). The KCC have better specificity, but
similarly poor sensitivity (De Clercq et al., 2021). Newer scores
have been developed with better performance than MELD or
KCC, but include analytes that are not yet common. In addition,
these indexes can be onerous for the clinician because they re-
quire consideration of multiple test results and sometimes man-
ual calculation, as most clinical laboratories do not validate such
scores nor provide them in-house. Identification of a single,
widely available test that can predict death at least as well as
current prognostic scores could facilitate faster life-saving deci-
sions. In this study, we found that LDH, which is routinely mea-
sured in clinical laboratories, predicted death approximately as
well as the MELD and KCC in our APAP-induced ALF cohort.
Furthermore, our data indicate that the combined MELD-LDH
score proposed herein improves prediction over either MELD or
LDH alone. It is not clear why LDH would predict poor outcome
better than similar enzyme markers like ALT, but one possibility
is that some LDH is released by extrahepatic tissues and could
therefore serve as an indicator of impending multi-organ dys-
function. In any case, these results should now be verified in
larger patient cohorts that include other ALF etiologies. In addi-
tion, optimal cutoff values for LDH should be determined.

Table 4. Top 20 Proteins Decreased in Serum in ALF Patients Versus
Control Subjects

Protein Log2FC Adjusted p-value

NARS �6.15 1.3 � 10�2

CYP3A4 �5.64 7.2 � 10�8

OSGEP �5.33 2.3 � 10�10

LRRC59 �5.27 3.4 � 10�2

F7 �5.09 1.5 � 10�9

SPP2 �4.84 7.4 � 10�9

CUL4A �4.71 6.4 � 10�4

INHBC �4.64 5.7 � 10�12

RARRES2 �4.62 1.3 � 10�11

IGLC6 �4.46 4.8 � 10�13

VTN �4.40 1.0 � 10�6

APOC4 �4.28 8.0 � 10�9

HPSE �4.23 2.5 � 10�6

CFHR5 �4.23 1.4 � 10�10

PROC �4.21 3.5 � 10�12

PGP �4.09 5.5 � 10�7

EIF2S2 �4.01 2.4 � 10�2

CFHR4 �3.79 3.4 � 10�8

FARP1 �3.71 1.9 � 10�5

APOF �3.70 1.7 � 10�6

Abbreviations: Log2FC, log base 2 fold-change; ALF, acute liver failure

Table 5. Candidate Biomarker Ranking

Protein AUC

Specificity
(%) at 90%
Sensitivity

Sensitivity
(%) at 90%
Specificity

PTPþ (%)
at 90%
Sensitivity

Increaseda

LDHA/LDH-M 0.91 80 60 66
FBP2 0.88 70 80 56
ANP32A 0.87 80 80 66
FBP1 0.87 70 70 56
QDPR 0.87 60 70 49
RIDA 0.86 40 70 39
FABP1 0.84 50 60 44
ADH1B 0.8 50 40 44
ADH1A 0.79 30 30 44
MDH1 0.78 70 30 56
IDH1 0.76 70 30 56
ASS1 0.74 50 50 44
HIST1H4A 0.69 70 0 56

Decreasedb

APOC2 0.88 70 60 56
FVII 0.87 70 70 56
PSMD11 0.8 40 50 39

Reference markers
MELD 0.47 20 13 31
ALT 0.39 0 10 0

PTP calculation is based on 30% pretest probability of death.

Abbreviations: PTPþ, positive posttest probability.
aIncreased �4-fold in ALF survivors versus controls and �4-fold further in non-

survivors versus survivors.
bDecreased �4-fold in ALF survivors versus controls and �4-fold further in non-

survivors versus survivors.
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A point of technical innovation in our work is the use of
untargeted proteomics directly in human samples. Surprisingly,
although there has been considerable interest in identifying
and developing novel prognostic biomarkers in ALF over the

last 20 years (De Clercq et al., 2021), untargeted proteomics has
never before been applied to patient samples for this purpose.
One prior study did use an untargeted proteomics approach in a
porcine model of ALF, but only one of the resulting markers was

Figure 2. Receiver operating characteristic (ROC) curves for the 16 biomarker candidates. Day 1 serum samples from survivors (n¼ 10) and nonsurvivors (n¼10) of acet-

aminophen-induced acute liver failure and healthy controls (n¼10) were subjected to untargeted proteomics. A–F, ROC curves for the elevated biomarkers. G–H, ROC

curves for the decreased biomarkers.
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tested in humans (Wang et al., 2017). Interestingly, the latter bio-
marker was fructose-1,6-bisphosphatase 1 (FBP1), which was
also elevated in nonsurvivors in our cohort. Other potential
prognostic biomarkers of interest from our proteomics data in-
clude malate dehydrogenase 1 (MDH1), argininosuccinate syn-
thetase 1 (ASS1), and fatty acid-binding protein 1 (FABP1). All 3
have been proposed as biomarkers to detect drug-induced liver
injury (McGill et al., 2014; Schomaker et al., 2013; Vazquez et al.,

2020), and there is evidence that FABP1 can also predict poor
outcomes in ALF (Karvellas et al., 2017, 2021). Altogether, our
proteomics data confirm these earlier results, and indicate that
further exploration of FBP1 and FABP1 as prognostic biomarkers
is also warranted.

Our data may also provide insight into mechanisms of
APAP-induced liver injury and regeneration. We used Upstream
Analysis to explore changes in signaling pathways between sur-
vivors and nonsurvivors. The validity of comparing cell signal-
ing between these 2 groups using serum is based on 2
assumptions. First, we assume that hepatocellular damage
results in release of most cell proteins into the extracellular mi-
lieu such that the serum proteins provide a glimpse of internal
cell processes. Second, we assume that the extent of cell dam-
age and protein release is similar between the 2 groups based
on the fact that there was no significant difference in serum
ALT between the survivors and nonsurvivors. Several interest-
ing signaling mediators appeared to be activated in the nonsur-
vivors. For example, liver kinase b1 (LKB1) is thought of as a
tumor suppressor that limits cell proliferation. Consistent with
that idea, LKB1 KO mice have accelerated regeneration in the
partial hepatectomy model (Maillet et al., 2018). So, it is possible
that activation of LKB1 reduced regeneration in the nonsurvi-
vors in this study, contributing to their decline. On the other

Figure 3. Serum lactate dehydrogenase (LDH) activity was greater in the nonsurvivors of acetaminophen-induced acute liver failure than the survivors. Total LDH ac-

tivity and alanine aminotransferase (ALT) were measured in serum from all nonsurvivors (n¼30) and survivors (n¼28) on study days 1 and 3. Model for end-stage liver

disease (MELD) scores were also obtained when available (n¼20 for survivors and 29 for nonsurvivors). A, LDH activity on day 1. B, LDH activity on day 3. C, Receiver op-

erating characteristic (ROC) curves for LDH, ALT, and MELD score on day 1. Area under the curve (AUC) values are displayed in the bottom right corner. D, ROC curves

for LDH, ALT, and MELD score on day 3. AUC values are displayed in the bottom right corner. Differences in AUC values for MELD-LDH versus MELD and MELD-LDH ver-

sus LDH were statistically significant (p< .05) on day 3. Boxes show the 25th to 75th percentiles. Whiskers show the 10th and 90th percentile values. Lines show median

values. Dots represent outliers.

Table 6. Comparison of MELD-LDH With Other Metrics

Metric AUC
(95% CI)

Specificity at
90% Sensitivity

Sensitivity at
90% Specificity

Day 1
MELD 0.69 15 31
LDH 0.67 22 34
MELD-LDH 0.68 30 41
Day 3
MELD 0.80 55 43
LDH 0.86 67 62
MELD-LDH 0.93* 75 86

Abbreviations: MELD, model for end-stage liver disease; LDH, lactate dehydroge-

nase; AUC, area under the curve.

*p< .05 versus MELD or LDH alone.
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hand, it was also reported that hepatocyte growth factor (HGF)
treatment induces proliferation and phosphorylation of both
LKB1 and AMPK in primary mouse hepatocytes and that knock-
down of LKB1 reduces the HGF-induced AMPK phosphorylation
and proliferation (V�azquez-Chantada et al., 2009). Those data in-
dicate that LKB1-AMPK signaling can actually mediate hepato-
cyte proliferation in mice. Consistent with the latter, Merlen
et al. (2014) also reported that AMPKa1 KO mice have delayed
liver regeneration after partial hepatectomy. Similar to LKB1,
there is evidence that the aryl hydrocarbon receptor (AhR) and
Forkhead Box O3 (FOXO3) can suppress hepatocyte prolifera-
tion. Chronic activation or overactivation of AhR also reduces
liver regeneration in vivo (Mitchell et al., 2006), while

overexpression of FOXO3 reduces hepatocyte proliferation
in vitro (Shizu et al., 2016). The role that each of the signaling
mediators plays in APAP-induced liver injury and subsequent
regeneration should be resolved in future studies.

Although our results are interesting, this study suffers from
several major weaknesses. First, our ALF groups were relatively
small. Additional studies with larger cohorts are needed.
Second, our ALF groups included only those with APAP-induced
ALF. It is not yet clear how the results would translate to non-
APAP ALF. Third, we did not have information with regard to
the use, timing, or regimen of NAC treatment for most of the
patients. It is possible that some of the differences between
groups can be explained in part by differences in treatment.
That will need to be considered in future studies. Finally, serum
is not a well-validated specimen type for exploration of cell sig-
naling during liver injury, which could limit the accuracy of our
Upstream Analysis results. Future work should address these
deficiencies.

CONCLUSIONS

Overall, we conclude that LDH is a promising, widely available
biomarker to predict poor outcome in APAP-induced ALF with
performance roughly equivalent to the MELD score.
Furthermore, in our cohort of ALF patients, the combination of
MELD and LDH together predicted outcome modestly better
than either MELD or LDH alone. In future human studies, we
plan to verify our results using larger patient cohorts with a va-
riety of ALF etiologies and to establish optimal LDH and MELD-
LDH cutoff values for prognosis. Finally, we will explore the sig-
nificance of our Upstream Analysis results using preclinical
models of APAP-induced liver injury.
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