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Abstract

Conventional chemical and even electrochemical Birch-type reductions suffer from a lack of 

chemoselectivity due to a reliance on alkali metals or harshly reducing conditions. This study 

reveals that a simpler avenue is available for such reductions by simply altering the waveform 

of current delivery, namely rapid alternating polarity (rAP). The developed method solves these 

issues, proceeding in a protic solvent, and can be easily scaled up without any metal additives or 

stringently anhydrous conditions.

The addition of hydrogen to an aromatic nucleus represents a widely used strategy for 

rapidly introducing complexity in synthesis.1 As such, the impact of the Birch reduction 

and related dearomatization strategies in organic synthesis cannot be overemphasized.2–5 

This foundational reaction of organic chemistry, taught at the undergraduate level, is also 

notorious for its harsh reaction conditions: liquid ammonia, elemental alkali metal (Li, Na, 

K), and a judicially chosen proton source (Figure 1A).2 Owing to the hazardous nature 

of these conditions, the search for more practical variants is still an active research topic 
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in modern organic synthesis 70+ years following its original disclosure. These efforts can 

be placed into two categories: (1) conditions that ablate inherent safety hazards (elemental 

alkali metal and liquid ammonia) and (2) improving the chemoselectivity and scope. Within 

the former category, various solid-supported reagent systems6–8 have been disclosed as well 

as mineral oil dispersions with crown-ether additives.9 In 2019 a practical electrochemical 

Birch variant inspired by Li-ion batteries was developed for ammonia and elemental Li-free 

arene reduction (Li-ion electroreduction, LER).10 Photochemical variants have also been 

described, although the scope and reaction times required are suboptimal.11,12 Recently 

the Koide group demonstrated that ammonia could be replaced by ethylenediamine (e.g., 

Benkesser modification13–15) to further enhance practicality.16 Although some of these 

studies enabled practical and scalable Birch reduction, the chemoselectivity was revealed 

to be analogous to conventional Birch reduction. Regarding chemoselectivity, the procedure 

employing LiDBB is notable, since it is widely used for reduction of electron-deficient 

heteroarenes with good tolerance of esters.17 This Communication discloses the finding that 

simply modifying the waveform of electrolysis (rapid alternating polarity, rAP) can lead 

to a new level of chemoselectivity for (hetero)arene reduction. This operationally simple 

protocol proceeds at ambient temperature in protic solvent without the need of sacrificial 

anode or metal additives, and tolerates functional groups that are notoriously challenging to 

accommodate by conventional methods.

The canonical Birch reduction is typically applicable to only a limited number of 

heterocycles. The lack of chemoselectivity of the process is evident in the absence of a 

literature precedent for reduction of a trivial heterocycle methyl 2-thiophenecarboxylate 1 
(Figure 1A). This is because Birch reduction of thiophenecarboxylic acid poses an issue 

of ring fragmentation.18 The ester functionality could cause a chemoselectivity issue such 

as overreduction. Accordingly, the reduction product 2 was previously accessed by careful 

Birch reduction of thiophene-2-carboxylate Li salt, followed by mild esterification.19

Intrigued by the absence of such an example, several representative Birch reduction 

conditions were applied on this simple substrate 1 (Figure 1B). Not surprisingly, standard 

Birch conditions5 (entry 1) resulted in complete decomposition of the starting material. 

The most recent modification16 (entry 2) showed attenuated reactivity, yet extensive 

decomposition was still observed. Although Donohoe’s LiDBB method20 (entry 3) afforded 

the product in 39% yield, the highly sensitive nature of DBB (necessitating stringent 

degassing) and its removal are problematic. Additionally, in this particular case the cost 

of DBB ($915/mol, TCI) surpasses the cost of the starting material itself ($571/mol, TCI). 

Regarding the electrochemical conditions, LER10 (entry 4) also led to decomposition. 

Although simple electrolysis of 1 under DC current in THF/EtOH with RVC electrodes 

resulted in decomposition (entry 5), it actually showed some peaks in the crude NMR 

indicative of trace dearomatization products. In striking contrast, under otherwise identical 

conditions, simply changing the waveform to rapid alternating polarity (rAP, entry 6) 

afforded 83% of the desired product (crude NMR shown in Figure 1). Sinusoidal waveform 

was found to be less effective than rAP (see Supporting Information (SI)).

Subsequent optimization was pursued using a less reactive substrate 3 as shown in Table 1. 

In the initial attempt, a diminished yield (29%) was observed due to the higher aromaticity 
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of this compound compared to 1, along with the formation of benzyl alcohol (BnOH) 

presumably formed via carbonyl reduction. Standard Na- or Li-based chemical conditions 

as well as LER on 3 did not afford any 1,4-diene product 4 (see SI). Instead, various 

over-reduced products and fragmentation-derived products predominated. A systematic 

study of chemical and electrochemical parameters revealed that dimethylsulfide (DMS) 

could be employed as a sacrificial electron-donor to improve the yield (Table 1, Panel A). 

Thus, the rest of the optimization was conducted using 3.0 equiv of DMS. Electrodes and 

electrolytes were found to be critical to achieve good reactivity (Table 1, Panel B and C). 

In particular, the combination of RVC electrodes with tetraalkylammonium salts exhibited 

superior reactivity among various conditions screened. As demonstrated in our previous 

rAP study,21 the electrochemical driving force delivered is a function of both current and 

frequency (Table 1, Panel D). Thus, either decreasing pulse width (increasing frequency) or 

reducing current resulted in decreased conversion. Constant potential rAP22 gave a similar 

product distribution to constant current rAP. Since a slight warming of the reaction was 

noted (from 23 to 35 °C; see SI), submerging the reaction vessel in a 0 °C ice bath further 

increased the desired product yield to 59% (best yield) by suppressing BnOH formation. The 

nature of solvent and pH of the reaction (Table 1, Panel E) also affected the ratio of the arene 

reduction vs the carbonyl reduction. Lastly, several control experiments under direct current 

conditions were performed to provide a comparison with the rAP-based method (Table 1, 

Panel F). Although constant current as well as constant potential experiments at −2.3 V (see 

SI for cyclic voltammogram of 3) afforded a small amount of 4 in some cases, the yield 

and the extent of carbonyl reduction were by no means similar to the case of the rAP-based 

method. These results are supportive of the documented fundamental reactivity difference 

between rAP and DC in other studies.23,24

Table 2 demonstrates the reaction generality. Various (hetero)arenes can be reduced 

chemoselectively under operationally simple conditions without the need for any expensive 

reagents or additives (Table 2A). Complementary to standard Birch reduction, rAP reduction 

is most suitable for electron-deficient (hetero)arenes. The success of the reaction is 

predictable based on the reduction potential of an arene and a functional group that can 

be easily measured using CV (empirical guidance for FG tolerance is summarized in Table 

2A). Thus, synthetically useful yields are obtained when a target arene has a more positive 

reduction potential than those of other functional groups (Ered,arene > Ered,FG). As such, 

electron-deficient heteroarenes exhibit the broadest functional group tolerance with ester 

(5–10, 12, 14–16), nitrile (7), allyl group (11), epoxide (8), and even alkyl chloride (13). 

Electron-deficient arenes are slightly less reducible than electron-deficient heterocycles, and 

the functional group compatibility of this class is more limited. Nevertheless, synthetically 

useful handles such as allyl (21), alkyne (22), ester (23, 24, 27), boronate ester (25), alkyl 

chloride (26), and nitrile (27, 28) were well-tolerated. A halogen atom directly connected 

to an arene was also tolerated (20, 22–25). Notably, differentiation of two arenes was 

possible as exemplified in 17–20 and 25. Achieving such chemoselectivity was found to 

be challenging under conventional Birch reduction conditions as a mixture of products was 

obtained even if the two arenes are most electronically differentiated (Table 2A, chemical 

Birch for obtaining 18). Nonconjugated arenes can be reduced to afford 29 and 30 in 

this method, though the yields were moderate due to the low reactivity. Borderline cases 
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also exist when Ered,arene is close to Ered,FG, and such cases were exemplified in the 

reduction of 31 and 32. In accord with this simple rubric, when a functional group is 

more easily reducible, the method is unable to favor the reduction of (hetero)arenes (33–35). 

To demonstrate the utility of this method, a collection of readily available heteroarenes 

36–38 were enlisted for accessing partially desaturated heterocycles (Table 2B). Subsequent 

alkylation could also be a useful derivatization as exemplified in 42 (Table 2C). Throughout 

39–42, previous syntheses necessitate 4–6 steps involving denovo ring construction;19,25–27 

this method subverts conventional multistep ring construction by repurposing existing, 

readily available heteroarenes.

The mechanistic details of this reaction are of great interest due to the notable reactivity 

difference observed between DC and rAP. Although detailed mechanistic study is beyond 

the scope of this communication, several pieces of empirical evidence are presented in 

Figure 2 that help to rationalize the differences in bulk reactivity.28 For instance, the 

reduction potential of 43 (<–3 V)29 resides far outside the solvent electrochemical window 

(Figure 2A, solvent CV), yet rAP delivered the product in 45% NMR yield. In contrast, 

under otherwise identical conditions employing a standard DC waveform resulted in mostly 

recovered starting material, together with the observation of active gas evolution from 

the cathode. This gas evolution was also noted at the working electrode after measuring 

the CV of the solvent. We hypothesized that hydrogen gas was being formed on the 

cathode (reductive) in the protic medium. To prove the existence of H2 qualitatively, simple 

hydrogenation experiments were performed; namely, either DC or rAP was applied to the 

reaction solvent including cyclooctene in the presence of Pd/C catalyst (Figure 2B).30 A 

considerable quantity of hydrogenated product 45 was observed in the DC electrolysis, 

while 45 was below the GC/MS detection limit in the rAP experiment. The extent of proton 

reduction could also be reflected to the basicity of the reaction medium; transesterification 

product 46 was observed under DC conditions, whereas no such product was observed under 

rAP conditions when the reduction of 1 was interrupted. Consistent with these findings 

are literature reports of CO2 or CO reduction using pulsed potential instead of DC that 

produces less H2.31–36 Collectively, these experiments support the mechanism summarized 

in Figure 2C. During the cathodic phase, (hetero)arene reduction is taking place through 

direct SET, leading to the same regioselectivity outcome as conventional Birch reduction. 

Chemoselectivity follows the reduction potential of the (hetero)arene and those of existing 

functionalities. Proton reduction, a pathway that normally competes to diminish reactivity 

toward arene reduction, is largely suppressed by applying rAP. This effect also explains 

improved chemoselectivity under rAP conditions by removing side reactions promoted 

under a highly basic environment. During the anodic phase, DMS is presumably oxidized to 

generate an α-ethoxy derivative. Analogous species 47 was detected in GC analysis of crude 

reaction mixture when heavier Et2S was used instead of DMS. A small amount of solvent 

oxidation may also take place during the anodic phase.

The suppression of proton reduction may enable new types of chemoselective (hetero)arene 

reduction by running reactions deliberately under acidic conditions (Figure 2D), which is 

challenging under conventional DC electrolysis or Birch reduction. An interesting case 

was indeed found in the reduction of 48. Standard rAP reduction furnished debrominated 
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dihydropyrolidine 49 in 40% yield via dissociative electron transfer, a common phenomenon 

during single-electron reduction of halogenated arenes. In striking contrast, running the 

same reaction in the presence of 10 equiv of AcOH furnished dihydropyrrolidine 50 
in 65% yield, maintaining the usef ul C–Br bond. As expected, the corresponding DC 

electrolysis under identical conditions required a much longer reaction time (6 h, 45 

“equiv” of electrons) due to the competing proton reduction, and only delivered 11% of 

50 with incomplete conversion. Another dramatic benefit for suppressing proton reduction 

was found during scale-up efforts (Figure 2E). After introducing several modifications to 

be more process-friendly (see SI for reoptimization), rAP-based conditions successfully 

afforded the product 2 in 84% isolated yield on 50 mmol scale, whereas DC electrolysis 

resulted in full recovery of 1 under identical reaction conditions.37 Again, a large volume 

of gas evolution was observed during DC electrolysis, rendering the arene reduction 

unfavorable under such simple conditions.

This study demonstrates another compelling example of how the outcome of an 

electrochemical transformation can be completely altered simply by changing the waveform 

of current delivery. This time, chemoselective (hetero)arene reduction under rAP is shown 

to complement the scope of conventional chemical or electrochemical arene reductions. The 

enhanced reactivity as well as higher chemoselectivity can be explained by a suppression of 

competing proton reduction by the easily accessible rAP waveform. On preparative scales, 

no specialized equipment or engineering is required. On larger scales, a simple signal 

amplifier and signal generator can be employed (see SI). Although further in-depth analysis 

of the mechanism is necessary, the implications of this unique mode of reaction control may 

hold great promise not only for chemoselective reductions of organic compounds in protic 

media but also for electrochemical CO2 reduction as well as nitrogen fixation in which 

proton reduction often competes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Background of arene reduction and discovery of efficient electroreductive dearomatization 

by rAP. (A) Practical and chemoselective arene reduction is an unsolved challenge in 

organic synthesis. (B) Case study with challenging chemoselectivity. rAP gave clean 

arene reduction without neccesitating special additives, whereas DC electrolysis under the 

identical conditions resulted in decomposition (Y-axis of the crude NMRs was adjusted to 

the same scaling).
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Figure 2. 
Mechanistic studies and synthetic advantage of outcompeting proton reduction. (A) Gas 

evolution was notable during DC electrolysis (including CV), whereas little gas evolution 

was observed with rAP. (B) Direct detection of H2 gas and resulting pH change in the 

reaction probed by transesterification. (C) Overview of cathodic and anodic reactions. (D) 

rAP enables efficient arene reduction in the presence of acid with unique chemoselectivity, 

whereas DC electrolysis suffers proton reduction. (E) First example of large-scale 

electrolysis with rAP. Corresponding DC reduction resulted in complete recovery of the 

starting material due to the competing H2 evolution.
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