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C A N C E R

Liver cancer heterogeneity modeled by in situ genome 
editing of hepatocytes
Mei Tang1,2†, Yang Zhao1,2†, Jianhui Zhao2,3,4†, Shumei Wei5, Mingwei Liu6, Nairen Zheng6, 
Didi Geng1, Shixun Han1, Yuchao Zhang1, Guoxuan Zhong1, Shuaifeng Li1, Xiuming Zhang7, 
Chenliang Wang1, Huan Yan1, Xiaolei Cao1, Li Li8, Xueli Bai2,3,4, Junfang Ji1,2, Xin-Hua Feng1,2, 
Jun Qin6, Tingbo Liang2,3,4*, Bin Zhao1,2,3,9*

Mechanistic study and precision treatment of primary liver cancer (PLC) are hindered by marked heterogeneity, 
which is challenging to recapitulate in any given liver cancer mouse model. Here, we report the generation of 
25 mouse models of PLC by in situ genome editing of hepatocytes recapitulating 25 single or combinations 
of human cancer driver genes. These mouse tumors represent major histopathological types of human PLCs 
and could be divided into three human-matched molecular subtypes based on transcriptomic and proteomic 
profiles. Phenotypical characterization identified subtype- or genotype-specific alterations in immune micro-
environment, metabolic reprogramming, cell proliferation, and expression of drug targets. Furthermore, 
single-cell analysis and expression tracing revealed spatial and temporal dynamics in expression of 
pyruvate kinase M2 (Pkm2). Tumor-specific knockdown of Pkm2 by multiplexed genome editing reversed the 
Warburg effect and suppressed tumorigenesis in a genotype-specific manner. Our study provides mouse PLC 
models with defined genetic drivers and characterized phenotypical heterogeneity suitable for mechanistic 
investigation and preclinical testing.

INTRODUCTION
Primary liver cancer (PLC) is the third leading cause of cancer-
related mortality worldwide, and treatments are very limited (1). 
Hepatocellular carcinoma (HCC) accounts for 75 to 85% of PLC, 
and intrahepatic cholangiocarcinoma (ICC) makes up 10 to 15%, 
besides other rare types. Thirty percent to 40% of HCC patients 
may be eligible for surgical resection or transplantation. However, 
for advanced HCCs, only a few multikinase inhibitors providing 
very limited survival benefits are available (2, 3). However, immu-
notherapy using checkpoint inhibitors, such as anti–PD-1 and 
anti–PD-L1, has shown promising results for advanced HCC (4). 
Noteworthy, a combination of anti–PD-L1 and anti-VEGF (vascular 
endothelial growth factor) antibodies results in better efficacy than 
sorafenib (5). ICC is more difficult to diagnose and to treat com-
pared with HCC and has worse prognosis (6). While much hope has 
been placed in the identification of novel targets through molecular 
profiling, it was obscured by the heterogeneity in the cause, genetics, 
and phenotypes of PLC. Mutations of cancer driver genes are major 

triggers of liver tumorigenesis. Recent investigations of the HCC 
and ICC genomes had revealed vastly different mutational landscape 
among patients and identified recurrently affected gene loci, such as 
TERT promoter, TP53, CTNNB1, MYC, and RAS (7–11). These 
findings not only highlighted the need for functional characteriza-
tion of these aberrations but also suggested a daunting challenge in 
developing preclinical models.

Hydrodynamic force generated by pressurized injection of solu-
tion into the blood vessel could breach the endothelium and the 
closely associated hepatocyte plasma membrane. This approach was 
successfully used in mice to deliver transposons and CRISPR-Cas9 
(clustered regularly interspaced short palindromic repeats–CRISPR-
associated protein 9) systems into hepatocytes. Hepatocytic genome 
could thus be edited by transposon integration or CRISPR-Cas9–
mediated nonhomologous end joining (12). Such an approach 
has revealed susceptibility of mature hepatocytes to malignant 
transformation (13, 14). In this study, we have generated a plasmid 
toolbox for the expression of transgenes or short hairpin RNAs 
(shRNAs) in Piggybac (PB) transposons, as well as single-guide 
RNAs (sgRNAs) and Cas9 for in situ genome editing of mouse 
hepatocytes. Selection of genetic combinations for genome editing 
was guided by the mutational landscape of human PLC. We thus 
produced primary mouse liver tumors in 25 genotypes representing 
major histopathological types of PLC. Further molecular profiling 
identified three human-matched molecular subtypes of mouse 
tumors reflecting heterogeneity and dynamics in treatment-related 
phenotypes. By multiplexed genome editing, we demonstrated a 
genotype-specific essential role of pyruvate kinase M2 (Pkm2) in 
metabolic reprogramming and liver tumorigenesis. We thus pro-
vide an integrated platform including an expandable plasmid 
toolbox for in situ genome editing, a biobank of mouse liver 
tumors, and corresponding multiomic datasets, which allows fur-
ther investigation and targeting of heterogeneous phenotypes of 
liver cancer.
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RESULTS
In situ genome editing generates a panel of genetically 
defined mouse liver tumors
To induce liver tumors representing heterogeneous phenotypes as a 
result of diverse genetic drivers, we first consulted the mutational 
landscape of HCC. Twenty-two potential driver genes were selected 
by mutational frequency from seven human HCC cohorts with 
diverse etiological factors and ethnic origins (table S1). FGF19 and 
CCND1 in the same amplicon were included as a single-event 
F/C. Mutations in the TERT promoter region were omitted because 
of long telomeres in laboratory mouse strains (15). NRAS was 
mutated in about 0.8% of HCC (11, 16), while KRAS was mutated in 
as high as 30% of ICC (10). We used NRAS (labeled as RAS below) 
since it was successfully used to induce liver tumorigenesis in a simi-
lar setting (17). Genetic combinations of two events were chosen on 
the basis of the pattern of co-occurrence (fig. S1A). Since expression 
of myristoylated AKT together with the intracellular domain of the 
NOTCH1 receptor (NICD) has been reported to induce ICC from 
mouse hepatocytes (18), we included this combination to increase 
phenotypical diversity. Activation of oncogenes was mimicked by 
transgenes carried by PB transposons, which encoded epitope-
tagged wild-type or constitutively active proteins (Fig. 1A and fig. 
S1B). Expression of transgenes was confirmed by immunoblotting 
and immunohistochemistry (IHC) (fig. S1, C and D). Inactivation 
of tumor suppressors was mimicked by CRISPR-Cas9–mediated 
knockout (Fig. 1A). Cas9 and sgRNAs were coexpressed from a 
plasmid (fig. S1E), and for genotypes involving two tumor suppres-
sors, liver-specific heterozygous Cas9 transgenic mice were used to 
increase the efficiency of gene editing. sgRNAs were evaluated by 
the T7 endonuclease 1 (T7E1) mismatch detection assay in tissue 
culture (fig. S1F). For Tp53, a germline knockout strain that is free 
of liver tumor at 6 months of age was also used (19).

Each plasmid combination was hydrodynamically injected to an 
average of 12 mice, and 2 to 3 mice were sacrificed per month, or 
when symptoms of tumorigenesis such as abdominal enlargement 
were evident. While 11 single or combinations of plasmids did not 
elicit tumorigenesis, 25 successfully induced liver tumors, including 
5 single genes, 5 Tp53+X combinations, 6 CTNNB1+X combina-
tions, 6 MYC+X combinations, 2 PI3K+X combinations, and 
AKT+NICD (table S2). These genetic alterations were found in 
29.8% of human HCC (Fig. 1B). Fourteen combinations induced 
tumors in >40% of mice (high efficiency; table S2). As expected, 
single driver genes were less efficient; for instance, neither CTNNB1 
nor MYC induced tumorigenesis by 6 months. However, the 
CTNNB1+MYC combination drastically induced tumorigenesis in 
all mice within 2 months (Fig. 1C). In general, MYC combinations 
drove fast tumorigenesis, followed by those containing CTNNB1. 
Among Tp53 combinations, Tp53 KO+MYC reached 80% efficiency 
at 2 months, while sgTp53+sgPten reached 40% efficiency at 8 months, 
but other sgTp53 combinations showed much lower efficiency or 
failed (Fig. 1C).

We thereafter referred to tumors by their driver genes as geno-
types. Representative livers are shown in fig. S2A. Expression of 
driver genes was confirmed by IHC staining of the epitope tag 
(fig. S2B). Five IHC-negative genotypes were confirmed by mRNA 
expression (fig. S2C). Noteworthy, the expression of these genes 
could be detected by IHC soon after injection (fig. S1D), suggesting 
subdued protein expression during tumorigenesis. Successful knock-
out of tumor suppressors was determined by T7E1 assay using 

tumor samples (fig. S2D). Editing of the Tp53 locus in sgTp53+sgRb1 
tumors was confirmed by genomic DNA sequencing, although it 
evaded T7E1 detection possibly because of the nature of indels 
(insertion or deletion mutations; fig. S2D). The size and number of 
nodules on liver sections were quantified from anti-HA (hemagglutinin) 
tag stainings or, when not available, from hematoxylin and eosin 
(H&E) stainings (Fig.  1D). Nodules were defined by a size of 
0.04 mm2, which was about 50 cells, or larger on paraffin sections 
(fig. S2E). By k-means clustering analysis, three tumorigenesis 
patterns were found (fig. S2F). Group 1 was featured by one to three 
large tumors per section in most cases, and group 3 was featured by 
many small nodules. Group 2 was intermediate in number and size. 
Notably, two distinct patterns were induced by RAS. RAS I was the 
major type with many nodules in sizes of normal distribution, and 
RAS II was found in 10% of mice as an overwhelmingly large and 
stiff tumor (Fig. 1D and fig. S2A), which were characterized sepa-
rately below. Together, a panel of genetically defined mouse liver 
tumors in 25 genotypes was generated by in situ genome editing.

Molecular profiling revealed three subtypes of  
mouse liver tumors
Fourteen high-efficiency genotypes and three low-efficiency geno-
types with sufficient samples (fig. S3A) were subjected to transcrip-
tomic and proteomic profiling, whole-exome sequencing (WES), 
and histopathological analysis. Eight low-efficiency genotypes, includ-
ing sgTp53+sgRb1, sgTp53+JAK1, sgTp53+MET, CTNNB1+sgArid2, 
MYC+sgCdkn2a, MYC+EGFR, PI3K+sgRb1, and EGFR, were not 
further analyzed because of insufficient number of samples. Genotype-
centered characteristics are summarized in Table 1. For transcrip-
tomic analysis by RNA sequencing (RNA-seq), three tumors for 
each genotype, but two for CTNNB1+NFE2L2, were used. Unsupervised 
clustering indicated similar transcriptomic profiles within geno-
types (fig. S3B and table S3). Because of the similarity of sham-
operated Institute of Cancer Research (ICR) strain and C57/BL6 strain 
controls, only ICR datasets were used for further analysis. We com-
pared the transcriptome of each genotype to The Cancer Genome 
Atlas (TCGA) cohort of human HCC using the transcriptome overlap 
measure (TROM) method for cross-species analysis (20). The results 
indicated that each genotype was similar to 0.9 to 27.8% of human 
HCC, with an average of 13.0% (Table 1 and fig. S3C).

Hierarchical consensus clustering revealed the three transcrip-
tomic subtypes M1-M3 among 53 mouse liver tumors (Fig. 2A and 
fig. S3D). Multidimensional scaling (MDS) plot confirmed distinc-
tions of the three subtypes (fig. S3E). mRNA signatures of subtypes 
were identified by a supervised analysis (table S3). We next applied 
M signatures to a previously reported dataset of 56 mouse liver 
tumors generated by N-nitrosodiethylamine (DEN), TAK1HEP 
(TAK1), MUP-uPA + high-fat diet (MUP), and Stelic Animal Model 
(STAM) methods (21). By the nearest template prediction (NTP) 
analysis, STAM tumors were heterogeneous with M1, M2, or M1/2 
features, likely due to extremely high mutation frequency in this 
model (fig. S3F). TAK1 tumors were M1 or M2 or could not be 
classified. Tumors induced by DEN were all M3, and MUP tumors 
were mostly M1. These results suggested M signatures as widely 
applicable tools in classifying mouse models of liver cancer.

Proteomic profiles classified human HCC into subgroups associated 
with clinical and molecular attributes (22, 23). We selected seven 
genotypes representing M1-M3 subtypes for proteomic analysis 
using a label-free technique on a mass spectrometry (MS) platform 
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that has characterized a large cohort of human HCC under similar 
quality control (22). Detection of the proteome was stable across 
samples (fig. S4A). On average, 3724 proteins per tumor and 3165 
proteins per normal liver tissue were identified (fig. S4B and table 
S4). Hierarchical consensus clustering identified three proteomic 
subgroups (Fig. 2B and fig. S4C). Proteomic or transcriptomic pro-
files resulted in identical allocation of tumors (Fig. 2, A and B); thus, 
the proteomic subtypes were still referred to as M1-M3. Pairing of 
transcriptomic and proteomic profiles revealed 6091 mRNA-protein 
pairs with an overall positive correlation (median r = 0.45; fig. S4D 

and table S4), and 3119 pairs (51.2%) had significant positive 
correlation [r > 0, false discovery rate (FDR) < 0.05]. Among 1138 
genes with no correlation in their mRNA and protein expression 
levels (−0.2 < r < 0.2, FDR > 0.05), 252 genes were differential to 
normal liver on the protein level, highlighting the extra strength of 
proteomic analysis (fig. S4E and table S4). Proteins involved in 
mitochondrial respiratory electron transport were repressed on the 
protein level in all subtypes. A similar observation has been made in 
human HCC (23). Nontranscriptional inhibition of mitochondrial 
respiration genes found in Gao’s HCC cohort and our mouse 

Fig. 1. Generation of genetically defined mouse liver tumors by in situ genome editing. (A) Overview of model generation and characterization. For model characterization, 
the number of samples analyzed for each genotype was labeled. (B) Genetic combinations used for making mouse liver tumor models. Frequencies were calculated from 
pooled Memorial Sloan Kettering (MSK), Asan Medical Center (AMC), and TCGA cohorts. Genes marked in red are oncogenic, and genes in blue are tumor suppressive. 
Successful models are underlined and darker shaded in the pie graph. (C) Cumulative ratio of tumorigenesis at the indicated time after injection. (D) Size and number of 
nodules induced by different genetic combinations. Violin plots showing the median (black solid line) and distribution of sizes. Box plots showing the median and inter-
quartile range of nodule number. Typical nodule patterns in anti-HA IHC are shown on the right. Scale bar, 5 mm.
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Fig. 2. Molecular profiling revealed three subtypes of mouse liver tumors. (A) Transcriptomic subtypes and their histopathological features. Heatmaps were organized 
by M cluster grouping for molecular subtypes, histopathology, and mRNA signatures of biological processes, mRNA signatures of metabolism, and cell types by 
MCP-counter. Tumors are in columns, grouped by the M cluster membership. (B) Proteomic subtypes of mouse liver tumors. Heatmap depicts relative abundance 
(Z score) of signature proteins (row) in tumors (column). Classification of tumors using the M proteomic signatures and human HCC proteomic signatures is indicated on 
top. Biological functions of signature proteins were analyzed by enrichment of MsigDB ontologies.
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tumors was confirmed in an independent cohort of HCC (fig. S4F), 
which thus might be a common feature of liver tumorigenesis. 
Together, three molecular subtypes of mouse liver tumors were 
revealed by transcriptomic and proteomic profiles.

Mouse liver tumors exhibit human-matched  
subtype-specific phenotypes
We next determined the disease relevance of mouse M subtypes. 
Human HCC could be subgrouped according to transcriptomic sig-
natures, for example, using the Hoshida S1-S3 and Boyault G1-G6 
standards (24,  25), and by proteomic signatures into the Gao’s 
S-Me, S-Pf, and S-Mb or Jiang’s S-I, S-II, and S-III subgroups 
(22, 23). Using the NTP method (26), all mouse tumors could be 
classified by the S1-S3 or G1-G6 transcriptomic signatures (Fig. 2A 
and table S3). Similarly, profiled mouse tumors were enriched for at 
least one of the human HCC proteomic signatures (Fig. 2B and 
table S4). Furthermore, unsupervised clustering of a mixture of 
mouse and human tumors revealed grouping by matching subtypes 
rather than species (fig. S5). These findings indicate the relevance of 
mouse M1-M3 subtypes to human HCC. Relationships of specific 
M subtypes to human molecular subtypes were further discussed below.

M1 includes four genotypes and was transcriptomically similar 
to human S1 or G1-G2 (Fig. 2A). The human S1 subgroup was 
featured by activation of a cholangiocarcinoma-like HCC (CLHCC) 
signature, which predicts poor prognosis (27). Most M1 tumors 
were also molecularly classified as CLHCC (Fig. 2A). This observa-
tion recapitulated pathological features revealed by histological 
analysis, for which mice were assigned into specific PLC subtypes by 
evaluating the histopathological features of the five largest tumors 
on H&E-stained liver sections (Figs. 2A and 3A and table S5). Three 
of the four genotypes in M1 exhibited pathological features of 
ICC. While AKT+NICD tumors were well-differentiated ICC as 
previously reported (18), both RAS II and sgTp53+sgPten tumors 
were combined HCC and ICC (cHCC-ICC), a rare type of PLC 
showing both hepatocellular and biliary epithelial differentiation 
(28). RAS II was mixed-type cHCC-ICC, in which HCC and ICC 
components were mixed without clear boundaries. sgTp53+sgPten 
tumors were mostly combined-type cHCC-ICC with clearly defined 
areas of HCC and ICC in the same tumor. Compound mutation of 
TP53 and PTEN was also found in combined-type cHCC-ICC (29). 
M1 tumors were also enriched for a signature of Hippo pathway 
inactivation (Fig. 2A), which was reported to induce dedifferentia-
tion of mature hepatocytes (30, 31). Note that the hydrodynamic 
injection method mostly transfects hepatocytes according to previous 
studies (32), suggesting dedifferentiation or transdifferentiation as 
the underlying mechanism for the formation of ICC traits. Consist
ently, both HCC compartment, as marked by the expression of 
hepatocyte nuclear factor 4  (Hnf4a), and ICC compartment, as 
marked by the expression of keratin 19 (Krt19), were positive for 
the expression of the driver gene or its downstream marker gene 
(Fig. 3B). Furthermore, HA+Hnf4a+Krt19+ cells were identified in 
Ras II and sgTp53+sgPten tumors (Fig. 3B), suggesting a transition 
state during transdifferentiation.

Proteomic signatures allocated RAS II of the M1 subtype into the 
human S-III or S-Me subgroups (Fig. 2B). S-III is distinguished by 
aggressive characteristics including activation of integrin and Rho 
guanosine triphosphatase (GTPase) pathways (22). Consistently, 
the M1 proteomic signature was most notably featured by actin 
filament organization and Rho signaling (Fig.  2B). Furthermore, 

the M1 subtype was also enriched for focal adhesion and cytoskeletal 
genes on the transcriptional level (Fig. 2A). Remodeling of the cyto-
skeleton is often accompanied by altered extracellular matrix. 
Consistently, fibrosis was most profound in the ICC-related M1 
subtype as revealed by Sirius red staining (Figs. 2A and 3C). Mild 
fibrosis was also found in three CTNNB1-containing genotypes.

In human HCC, the immune-high subtype was associated with 
poor differentiation, positive Krt19, and S1 or G2 transcriptomic 
subclasses (33). Analysis of transcriptomic profiles using the Micro-
environment Cell Populations-counter (MCP-counter) method for 
estimating the abundance of tissue-infiltrating immune cells (34) 
indicated that the M1 subtype was highly immune cell infiltrated 
(Fig. 2A). IHC staining confirmed marked infiltration of CD45+ cells 
in 98.7% of M1 subtype tumors (Fig. 3D). Furthermore, macrophages, 
T cells, and immunosuppressive regulatory T cells (Tregs) were also 
enriched in M1 tumors (Fig. 3D), which was consistent with proteomic 
findings of S-III tumors (22). These findings suggested a direct role 
of driver genes in the establishment of distinct tumor immune micro-
environment. Together, M1 mouse liver tumors were similar to those 
of respective human subtypes with features of hepatocyte dediffer-
entiation and ICC-like properties, remodeling of the cytoskeleton 
and related fibrosis, and heavy infiltration of immune cells.

The M2 subtype was featured by highly proliferative hepatic 
stem cell–like HCC
M2 includes seven genotypes driven by CTNNB1 or MYC combina-
tions, which were mostly conventional HCC of the World Health 
Organization (WHO) standard (35), except a few clear cell or 
steatohepatitic HCC of the MYC+PI3K genotype, and the MYC+F/C 
genotype as hepatoblastoma (HB) (Fig.  2A). HCCs were further 
graded according to the Edmondson-Steiner system (36), which 
indicated most tumors in grade II, except Tp53 KO+MYC tumors 
mostly in grade III (Fig. 2A and fig. S6A). Notably, genotypes in-
volving activation of the phosphatidylinositol 3-kinase (PI3K) path-
way were prone to steatosis regardless of molecular subtype, which 
was further confirmed by oil red staining (Fig.  2A and table S5). 
MYC+F/C tumors exhibited features of embryonal epithelial type 
HB (Fig. 3A). Notably, MYC+F/C tumors were characterized by 
extramedullary hematopoiesis, which was also found in many HBs 
(37). IHC staining confirmed abundant Ly76+ nucleated erythroblasts 
and anucleate mature erythrocytes, B220+ B cells, MPO+ granulo-
cytes, immature Ly6G+ neutrophils lacking nuclear fragmentation, 
and, less abundantly, CD34+ hematopoietic stem cells (fig. S6B). 
Transcriptomic analysis indicated that MYC+F/C tumors resembled 
the robust Cluster 2 (rC2) and C2A subtype HB (fig. S6C), which 
were highly proliferative (38).

M2 tumors were transcriptomically similar to human S2-S3 or 
G3 and fell into proteomic subgroups S-Pf (Fig. 2, A and B). M2 
tumors strongly enrich for a signature of epithelial cell adhesion 
molecule (EpCAM)–positive HCC (Fig.  2A). In addition, IHC 
staining indicated high expression of -fetoprotein (AFP) in global 
or focal patterns in M2 tumors (fig. S6D). Double positivity of 
EpCAM and AFP expression defines a hepatic stem cell–like HCC 
subtype with poor prognosis (39), and these are features of the 
human S2 subtype. Thus, M2 tumors feature a state of stemness 
different from dedifferentiation found in M1. An exception is the 
CTNNB1+RAS genotype, which was pathologically featured by intra-
tumor pseudoglands (sometimes lined with HA+Krt19+ epithelium) 
filled with bile (fig. S6, E and F) and was transcriptionally also 



Tang et al., Sci. Adv. 8, eabn5683 (2022)     22 June 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  R E S O U R C E

7 of 20

enriched for CLHCC signatures (Fig. 2A). While a similar phenotype 
has been reported in tumors induced by CTNNB1+MET using a 
similar strategy (40), we did not observe a similar phenotype in other 
CTNNB1 combination–induced tumors. These findings suggest 
that cooperation between CTNNB1 and a common downstream 
signaling of RAS and MET, for example, the mitogen-activated pro-
tein kinase pathway, might be responsible for the phenotype. The 

stemness of M2 was accompanied by strong proliferation, as ob-
served by high mitotic figure in histopathological analysis (Fig. 2A). 
Furthermore, transcriptomic and proteomic profiles consistently 
identified strong activation of protein synthesis, DNA replication, 
and cell cycle progression in M2 tumors (Fig. 2, A and B, and tables S3 
and S4). Thus, the M2 subtype was featured by highly proliferative 
hepatic stem cell–like HCC.

Fig. 3. M1 tumors were featured by dedifferentiation, fibrosis, and immune infiltration. (A) Representative images of histopathological subtypes of mouse and human 
liver tumors. Scale bars, 80 m. H, human; M, mouse. (B) Traits of hepatocyte dedifferentiation. Multiplex IHC staining was done. pAKT marked inactivation of Pten. Scale bars, 
50 m. (C) Degree of fibrosis in mouse liver tumors. Sirius red staining was performed on liver sections, and representative tumors in three genotypes are shown for each degree. 
Scale bars, 80 m. (D) Immune infiltration in mouse liver tumors. Liver sections were stained with anti-CD45, anti-CD3, anti-FOXP3, and anti-F4/80 antibodies by IHC. Representative 
strong and weak stainings are shown on the left, and quantifications are on the right. Scale bars, 100 m. Results are representative of at least three independent experiments.
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The M3 subtype was featured by retention of liver function 
and liver metabolism
The M3 subtype contained tumors driven by single genes and three 
other combinations, which were transcriptomically similar to 
human S3 or G5-G6, and fell into proteomic subgroups S-Mb and 
S-I (Fig. 2, A and B). These human subtypes were highly overlapping 
and were characterized by retention of liver functions, especially 
liver-specific metabolic pathways, and thus have the best prognosis 
compared to their sister subtypes (22, 23, 41). Consistently, proteins 
of lipid metabolism were most abundant in M3 signature proteins 
(Fig. 2B). Notably, steatohepatitic HCCs were mostly found in the 
M3 subgroup, and foamy histiocyte-like HCCs were found in two 
PI3K-containing genotypes (Figs. 2A and 3A). Furthermore, analy-
sis of the transcriptome also revealed enrichment of liver-specific 
functions such as metabolism of ketone body, vitamin, steroid 
hormone, drug, and bile acid (Fig.  2A). Consistently, MDS plot 
confirmed a closer distance of M3 to normal liver tissue (fig. S3E). 
As expected, using prognosis-related human HCC subtyping signa-
tures, such as the Seoul National University Recurrence (SNUR) 
signature of early recurrence (42), CLHCC, Silence of Hippo, and 
EpCAM signatures, M3 tumors were classified as the better prog-
nostic group (Fig. 2A). Markedly different pathological characters 
were found in the two types of RAS nodules. In contrast to RAS II, 
which was mixed cHCC-ICC with profound cell proliferation, the 
M3 genotype RAS I was like conventional HCC with accumulation 
of fat and glycogen (fig. S6G). Higher protein level of RAS was 
found in type I nodules (fig. S6, G and H). Thus, divergent pheno-
types may be caused by RAS-induced premalignant senescence pro-
gram and differential cell death–related microenvironment (43, 44). 
Together, M3 mouse liver tumors were characterized by liver func-
tion retention and liver metabolism.

Hotspot mutation of Ctnnb1 in M3 tumors
By pathological analysis, we observed cholestasis in two M3 geno-
types F/C and PI3K+F/C (Fig. 2A and fig. S7A). In human HCC, 
cholestasis is a feature of CTNNB1 mutant tumors possibly due to 
dysregulation of bile salt transporters (45). However, such a phenotype 
was not observed in CTNNB1-containing genotypes. Nevertheless, 
we found activation of liver-specific and canonical Wnt/-catenin 
target genes in F/C and, to a less degree, in PI3K+F/C tumors (fig. 
S7B). Since mutation of CTNNB1 is also a genomic feature of the 
human S3 and the overlapping G5-G6 subtypes of human HCC, we 
suspected that endogenous Ctnnb1 may be mutated in F/C and 
PI3K+F/C tumors. To explore the genomic landscape, WES was 
performed on a total of 14 mouse tumors in five genotypes (200× 
coverage) and their matched para-tumor tissues (100×) (fig. S8A 
and table S6). Somatic mutations were identified by pairwise 
comparison. Mutation rates were moderately higher in F/C and 
PI3K+F/C tumors but in a similar range between genotypes with a 
median of 0.3 mutations per megabase (Fig. 4A). This rate was lower 
than that observed in human HCC (1.9/Mb) (11) or other mouse 
models (2 to 122/Mb) (21). In somatic mutation profiles, excessive 
T>G transversions were found in RAS II and Tp53 KO+MYC 
tumors (fig. S8B). Clustering of mouse tumors and human cohorts 
based on weights of the human cancer mutational signatures revealed 
a general dissimilarity (fig. S8C). However, consistent with the 
function of Tp53, DNA damage repair–related signatures 15 and 
30 were enriched in Tp53 KO+MYC tumors. Eleven significantly 
mutated genes (SMGs; FDR < 0.2) were identified from 24,306 genes 

evaluated using MuSiC, and 5 SMGs were conserved in human 
(Fig.  4B). CTNNB1 was found recurrently mutated in F/C and 
PI3K+F/C tumors, and the variant allele fraction (VAF) was 
between 0.132 and 0.425. VAF for Eef1g, Arcn1, Htr3a, and Ear1 
was lower, varying between 0.048 and 0.176. EEF1G, ARCN1, and 
HTR3A were also altered in 0.5 to 1.6% of the TCGA cohort (11). 
Copy number variations (CNVs) were evaluated using Control-
FREEC (46). CNVs were overall infrequent, and chromosome losses 
or gains were only observed in Tp53 KO+MYC tumors (fig. S8D). In 
contrast, F/C and PI3K+F/C tumors were low in CNVs but instead 
had a higher ratio of single-nucleotide variants (SNVs) and indels 
(Fig. 4, B and C), demonstrating differential roles of driver genes in 
shaping the mutational landscape of liver tumors. Thirty-five genes 
were recurrently affected by CNVs, among which 21 were also iden-
tified in human HCC at a frequency higher than 1% (Fig. 4C).

Six hundred and forty-eight proteomic variants corresponding 
to 2.6% of DNA and RNA variants were identified in mouse tumors 
(Fig.  4D), in a range similar to that in human HCC (1.8%) (23). 
Mutation of Ctnnb1 exon 3, which encodes the degradation motif, 
was the only variant confirmed on all levels. Further cloning and 
sequencing of exon 3 from tumors of nine genotypes revealed 
human cancer hotspot mutations in additional genotypes, but still 
mostly in F/C and PI3K+F/C tumors (Fig. 4E and fig. S8E). While 
muscular transgenic expression of FGF19 was reported to cause liver 
tumors with Ctnnb1 mutation (47), the absence of Ctnnb1 hotspot 
mutations in MYC+F/C tumors suggested an insufficient role of 
FGF19. Various mutant alleles were commonly found in a single 
tumor (Fig. 4F). Furthermore, various SNVs in addition to a com-
mon SNV or indel were found, suggesting further mutation on a 
founder mutant allele. Staining confirmed subclonal nuclear accu-
mulation of Ctnnb1 protein in F/C and PI3K+F/C tumors (Fig. 4G), 
which was similar to that found in human HCC (48). These results 
suggest that both signals induced by FGF19 and long tumor latency 
were contributing to mutation of Ctnnb1 exon 3, a shared feature of 
human S3 HCC and mouse M3 liver tumors. Together, mouse liver 
tumors have genotype-specific features of genomic alterations.

Spatial and temporal dysregulation of drug targets  
in mouse liver tumors
Molecular targeted therapies are highly demanded for PLC. We 
analyzed the expression of 2892 drug targets documented by 
DrugBank (49). Seventy-three drug targets were found significantly 
dysregulated on mRNA or protein level in at least one of the geno-
types (FDR < 0.01; Fig. 5A and table S7). Sixty eight of these drug 
targets were also aberrantly expressed in human HCC on the protein 
or mRNA level (FDR < 0.01), while 13 of them have been identified 
by previous proteomic profiling of human HCC (fig. S9A) (22, 23). 
In general, abnormal expressions of drug targets were detected on 
both mRNA and protein levels in human and mouse. Notably, mis-
expression was more prevalent in mouse M1/M2 and the matching 
human S1/S2 subtypes, which were clinically more aggressive. Thus, 
our mouse models not only provided new candidate drug targets 
for PLC but also may serve as a platform for preclinical testing.

We then focused on Pyruvate kinase muscle (Pkm) for the fol-
lowing reasons: First, it was 1 of the 13 drug targets deregulated in 
both human and mouse tumors on mRNA and protein levels 
(Fig. 5A). Second, among deregulated metabolic processes, glycolysis 
was one of a few enhanced ones (Fig. 2A), with Pkm as a rate-limiting 
enzyme, which is important to consider for therapeutic inhibition. 
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Third, deregulated expression of PKM in cancer was widely docu-
mented, but the functional roles remain debated (50), which could 
be due to heterogeneity. Thus, our models may be useful in resolving 
the issue. Alternative splicing of PKM mRNA generates two distinct 
isoforms, PKM1 containing exon 9 and PKM2 including exon 10. 
Aberrant expression of PKM2 in association with poor prognosis 
has been reported in many cancers, including HCC, which we have 
confirmed (fig. S9, B and C). Analysis of RNA-seq data for the inclu-
sion of isoform-specific exons confirmed that Pkm2 was the dominat-
ing isoform of elevated Pkm in mouse tumors, and CTNNB1+RAS, 
CTNNB1+MYC, and MYC+RAS represented high, intermediate, or 
low expression of Pkm2, respectively (Fig.  5B). This observation 
was further confirmed by reverse transcription polymerase chain 
reaction (RT-PCR)–based absolute quantification of mRNA 
levels using exon-specific primers (fig. S9D). Genotype-dependent 
up-regulation of Pkm2 was also verified by IHC (Fig. 5C). We 
noticed intratumor heterogeneity of Pkm2 expression on the pro-
tein level. To determine tumor-specific expression of Pkm on the 
single-cell level, we performed single-cell RNA-seq (scRNA-seq) 

using three CTNNB1+RAS tumors. An average of 22,468 mapped 
reads per cell from a total of 18,213 single cells were obtained. In 
addition, an expression matrix of 18,770 genes in 14,958 cells per 
tumor was retained with 4.378% mitochondrion DNA, 0.056% 
hemoglobin, 7526 mean unique molecular identifier (UMI) counts, 
4246 median UMI counts, and 1744 median genes per cell. Two-
dimensional maps generated by uniform manifold approximation 
and projection (UMAP) revealed 17 distinct cell populations. Iden-
tities of cell clusters were assigned by the SingleR algorithm using a 
collection of mouse bulk RNA-seq datasets as the reference com-
pendium (51, 52), resulting in identification of hepatic tumor cells, 
immune cells, and other stromal cells (fig. S9E). Mapping of Pkm 
expression to these cell populations indicated a wide range of Pkm 
expression in different cells (fig. S9E). High expression of Pkm was 
found in most immune cells, fibroblasts, and endothelial cells 
(Fig.  5D). Unexpectedly, Pkm expression was heterogeneous and 
relatively low in tumor cells (Fig. 5D). It was reported that Pkm2 
plays a functional role in cancer stem cells (CSCs) (53). To deter-
mine whether Pkm was selectively expressed in certain CSC 

Fig. 4. Mutational profiles of mouse liver tumors. (A) Mutational burden of mouse liver tumors and human HCC (the TCGA cohort, 358 cases) by WES. Red line indicates 
the median. (B and C) SMGs (B) and genes with CNV (C) in mouse tumors. Alteration frequencies in mouse tumors are indicated on the left in bar graphs. Numbers of 
events found in individual tumors are indicated on top. (D) Overlap of nonsynonymous SNVs and single–amino acid variants detected in WES, RNA-seq, and LC-MS/MS. 
(E) Hotspot mutations of Ctnnb1 exon 3 in specific genotypes. Exon 3 of Ctnnb1 was cloned and sequenced for one to three tumors in each of the nine genotypes, and the 
presence of hotspot mutations is indicated in red. (F) Diversity of Ctnnb1 alleles in mouse tumors. Different alleles are indicated by color. Alleles from a single tumor 
sharing a common mutation are indicated by asterisks. (G) Nuclear localization of Ctnnb1 in mouse tumors. Two tumors for each of F/C and PI3K+F/C genotypes are 
presented. RAS I was a negative control, and CTNNB1+RAS was a positive control. Arrowheads point to nuclear Ctnnb1 in PI3K+F/C tumor 2. Scale bars, 40 m.
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Fig. 5. Spatial and temporal dysregulation of drug targets in mouse liver tumors. (A) Significantly deregulated drug targets (log2FC > 5, FDR < 0.01 for protein or 
log2FC > 2, FDR < 0.01 for mRNA) (row) in mouse tumors. Expression of homologs in human HCC is also shown. Genes in red were previously identified in human HCC by 
proteomic profiling. (B) Expression of Pkm isoforms in tumors. RNA-seq read coverage across Pkm exons 8 to 11 of samples in triplicates. PSI for exon 10 (Pkm2) is shown 
on the right. (C) Aberrant expression of Pkm2 protein in mouse tumors. Tumors indicated by asterisks. Scale bars, 80 m. (D) Quantification of Pkm expression in different 
cell populations of CTNNB1+RAS tumors. Box plots showing medians and interquartile ranges of log-transformed normalized UMI counts of Pkm. (E) Expression of Pkm in 
hepatocytes. Single hepatocytes were grouped by expression of eight CSC markers, and relative abundance (Z score) of Pkm in each cell (column) is indicated on top. 
(F) Pkm correlated with Cd44 and Cd24 on the mRNA level. Pearson correlation r values and P values are indicated. (G) Representative multiplexed IHC of Pkm2 and HA 
expression in lesions 3 to 55 days after injection. Scale bars, 50 m in days 3 and 10 and 100 m in day 40/55. Portions of Pkm2+ lesions were quantified from three mice 
at each time point for each genotype. Results are representative of three independent experiments.
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populations, we clustered 4191 tumor cells according to gene ex-
pression enrichment of multiple CSC markers, including Cd24, Cd44, 
EpCAM, Prom1, Thy1, Anpep, Cd47, and Afp (Fig. 5E). The highest 
expression of Pkm was found in a Cd44+Cd24+Cd47+Afp+ popula-
tion (Fig. 5E). Among all CSC markers examined, the mRNA level 
of Cd44 and Cd24 was significantly correlated with that of Pkm 
(r > 0.3, P < 0.001) (Fig. 5F). Thus, Pkm was preferentially expressed 
in CSC subpopulations besides stroma cells.

To determine the temporal dynamics of Pkm2 expression during 
tumor development, we further traced its expression from single 
tumor-initiating cells to established lesions. This experiment 
revealed markedly different dynamics between genotypes (Fig. 5G). 
While Pkm2 was constantly expressed during the establishment of 
CTNNB1+RAS lesions, it was only expressed from a later time point 
in CTNNB1+MYC lesions and was expressed at the beginning but 
quickly dimmed out in MYC+RAS lesions. This dynamic pattern 
was concealed in previous endpoint analyses. While CTNNB1 was 
reported to promote PKM2 transcription (54), our results suggest a 
more profound role of this function in established lesions. In con-
trast, RAS may induce Pkm2 expression at the tumor initiation 
stage. RAS alone also induced transient expression of Pkm2 during 
tumor initiation (fig. S9F). Together, this panel of mouse liver 
tumors revealed genotype- and subtype-specific abnormalities in 
expression of drug targets and demonstrated the ability in resolving 
spatial and temporal dynamics of the dysregulation.

Multiplexed genome editing revealed genotype-dependent 
addiction to Pkm2
To determine the functional role of Pkm2 in tumor cells, we de-
signed a multiplexed genome editing strategy, in which two Pkm2 
shRNAs were expressed simultaneously with CTNNB1 or RAS 
(Fig. 6A). The shRNAs were designed to target a region specific to 
Pkm2, and nonspecific effect on Pkm1 was excluded (fig. S10A). 
Knockdown of Pkm2 potently suppressed CTNNB1+RAS tumors as 
indicated by liver/body weight ratio and quantification of tumor 
burden from liver sections (Fig. 6, B to D). However, a similar effect 
was absent in MYC+RAS or CTNNB1+MYC tumors. Successful 
knockdown of Pkm2 was confirmed by IHC stainings (Fig. 6B), and 
in CTNNB1+RAS tumors, simultaneous down-regulation of Pkm1 
was observed (fig. S10B), possibly caused by indirect effect due to 
altered microenvironment. No compensatory expression of Pkm1 
was observed (fig. S10B). Two experiments further confirmed that 
inhibition of CTNNB1+RAS tumorigenesis was due to specific 
ablation of Pkm2 activity. First, individual Pkm2 shRNAs similarly 
repressed CTNNB1+RAS tumors (fig. S10C). Second, tumorigenesis 
could be rescued by ectopic expression of wild-type but not the 
kinase-inactive K367M mutant Pkm2 (Fig. 6, E to G). These results 
demonstrated a genotype-dependent essential role of Pkm2 in liver 
tumorigenesis.

Insensitivity of MYC+RAS tumors to Pkm2 knockdown was 
likely due to low expression of Pkm2. However, no response 
of CTNNB1+MYC  tumors was unexpected. We found that 
CTNNB1+RAS tumors were unique among M2 tumors in that they 
not only exhibited activation of glycolysis but also demonstrated 
strong down-regulation of genes related to the tricarboxylic acid 
(TCA) cycle and oxidative phosphorylation (Fig.  2A). However, 
sustained expression of TCA cycle and oxidative phosphorylation 
genes was found in CTNNB1+MYC tumors. Thus, energy metabo-
lism was reprogrammed more completely in CTNNB1+RAS tumors 

toward a typical Warburg effect, which may have led to addiction to 
Pkm2 and glycolysis. Knockdown of Pkm2 normalized the expression 
of glycolytic genes and glucose transporter Glut1 and shifted cellu-
lar metabolite composition in CTNNB1+RAS tumors (Fig. 6, H and I, 
and fig. S10D). However, in CTNNB1+MYC tumors, these changes 
were not observed. In addition, knockdown of Pkm2 caused a 
marked reduction of Cd24 and Cd44 in CTNNB1+RAS tumors, sug-
gesting impairment of the CSC compartment (Fig. 6J). Together, 
Pkm2 plays a genotype-specific role in metabolic reprogramming 
and liver tumorigenesis.

DISCUSSION
The heterogeneity of PLC requires therapies guided by improved 
patient classification. Despite substantial efforts in molecular sub-
typing of PLCs, clinical use was limited by the lack of druggable 
targets. Preclinical models that recapitulate the genomic and 
phenotypical heterogeneity of PLC have been crucial for target 
identification and preclinical testing. In contrast to previous mouse 
models exhibiting unpredictable heterogeneous molecular profiles, 
such as those observed in the STAM and TAK1 models (21), a panel 
of PLC mouse models with genotype-dependent phenotypes was 
made by in situ genome editing of hepatocytes. Genotype-centered 
molecular and histopathological characteristics, as well as relevance 
to human cancer, are summarized in Table 1. The stability of 
phenotypes relies on the use of human-guided top-ranked genetic 
combinations as tumorigenic drivers. An exception is the two 
phenotypes induced by RAS, which is likely due to interplay between 
differential RAS expression levels with the microenvironment. 
Although we could not rule out rare possibilities, the hydrodynamic 
injection method mainly transfects hepatocytes according to previ-
ous reports (32). However, versatile histopathological types beyond 
HCC were consistently observed in a genotype-dependent manner, 
including ICC, cHCC-ICC, and HB, demonstrating the plasticity of 
hepatocytes and the determinant role of driver genes. Molecular 
profiles separated mouse tumors into three human-matched molecu-
lar subtypes regardless of their histopathological characters. Shared 
molecular profiles had also been observed between human HCC 
and ICC (27, 55). These observations suggested an exciting possibility 
of common molecular targeted therapy beyond histopathological 
subtypes. Analysis of these mouse models also revealed distinct 
tumor immune microenvironments in association with molecular 
subtypes. Although further characterization would be important, it 
is reasonable to speculate that these models would be valuable in 
testing immunotherapies because of its orthotopic and mosaic nature 
in immunocompetent mice. However, care should also be taken in 
study design considering the impact of infrequent acquired muta-
tions and human-mouse differences in the immune system.

How genetic alterations drive PLC phenotypes remains largely 
unknown. We demonstrate that, to a large extent, a one-gene 
one-phenotype relationship does not exist. Instead, subtype-shared 
features could be induced by completely different driver genes. For 
instance, characteristic activation of DNA replication and cell cycle 
in M2 tumors was not restricted to tumors driven by MYC combi-
nations. On the contrary, MYC alone or when combined with RAS 
could not induce a similar change. These findings highlight the limita-
tion of isolated genomic alteration events as biomarkers and further 
support classification of molecular phenotypes as a promising alter-
native. Functional interaction between driver genes may play an 
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important role here. While the two-hit hypothesis of tumorigenesis 
was demonstrated by extensive experimental evidence, the precise 
mechanism is elusive for most cases. By mimicking clinically ob-
served genetic combinations, our models provide a platform for the 
investigation of functional interaction of driver genes. Note that 
some phenotypes observed in human tumors may not be recapitu-
lated by the expression of a respective mutant driver gene due to 
either interplay between multiple driver genes or differential ex-
pression levels. An example is the observation of cholestasis in 
genotypes of frequently acquired Ctnnb1 mutation but not in geno-
types using CTNNB1 transgene. Use of new methods, for instance, 

single-nucleotide editing of endogenous oncogenes, may further 
improve the models. In addition, while both germline Tp53 KO 
mice (Tp53 KO+MYC) and sgTp53 (sgTp53+sgPten) were used in the 
current model panel, extra caution should be taken in interpreting 
the results from Tp53 KO mice since mutation in nontumor cells 
may affect the phenotype, and sgTp53 would be preferred in future 
investigations.

Another important finding is that driver gene expression and 
molecular phenotypes may be subjected to dynamic change during 
tumorigenesis, such as that observed for Pkm2. While stage-specific 
gene expression plays a central role during embryonic development, 

Fig. 6. Knockdown of Pkm2 suppressed tumorigenesis induced by CTNNB1+RAS. (A) Illustration of plasmids used for Pkm2 knockdown and rescue in vivo. (B to 
D) Knockdown of Pkm2 suppressed CTNNB1+RAS tumors. Representative livers at 3 months after injection are shown. Knockdown of Pkm2 was confirmed by IHC staining 
(B). Scale bars, 80 m. Asterisks indicate tumors. Tumorigenesis was quantified by liver/body weight ratio (C) and tumor/liver area ratio (D). (E to G) Reexpression of Pkm2 
rescued liver tumorigenesis. Pkm2 wild type (WT) or a kinase-inactive K367M mutant was expressed for rescue. Experiments were similar to (B) to (D). Scale bars, 160 m. 
(H) Heatmap shows glycolytic genes (row) in indicated samples (column). (I) Knockdown of Pkm2 changed the composition of cellular metabolites in CTNNB1+RAS 
tumors. Untargeted metabolomic profiling was performed by GC-TOF/MS with six biological repeats for each genotype. Groups were separated by principal components 
analysis. (J) Knockdown of Pkm2 reduced mRNA levels of CSC markers as determined by RT-PCR. Data are presented as means ± SD of six biological repeats. Results are 
representative of three independent experiments. P values were calculated by Student’s t test. *P < 0.05; **P < 0.01.
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proof of this concept in tumorigenesis was limited by technical 
difficulty in pinpointing early lesions with a determined fate toward 
tumorigenesis. Nevertheless, in situ genome editing based on hydro-
dynamic injection creates a genetically marked minor population of 
tumor-initiating cells. This design unveiled genotype-dependent 
temporal dynamics of Pkm2 expression along the development of 
tumors. Such phenotypical dynamics is unlikely an exception but 
rather a norm of tumorigenesis that could be studied using a similar 
approach.

The mosaic nature of genome editing through hydrodynamic 
injection provides an additional advantage in investigating vital 
genes. For instance, PKM2 was shown to provide a growth advan-
tage of tumor cells (56). However, due to a broad role in metabo-
lism, germline knockout of Pkm2 leads to liver damage followed 
by tumorigenesis (57), which prevents determination of the tumor-
specific role of Pkm2. However, multiplexed genome editing allows 
knockdown of Pkm2 only in tumor cells, leaving the para-tumor 
tissue intact. Therefore, we demonstrated that Pkm2, a long-debated 
molecule in cancer, is required for primary solid tumors in a 
context-dependent manner by maintaining the CSC compartment. 
Noteworthy, Pkm2 was reported dispensable in liver tumors induced 
by MYC (58). Tumors induced by MYC+RAS or CTNNB1+MYC 
were also independent of Pkm2, likely due to distinct metabolic 
reprogramming. These observations not only highlight the impor-
tance to stratify patients for precision treatment but also demon-
strate the value of a model panel with diverse phenotypes, as well as 
tumor-restricted multiplexed genome editing in preclinical studies. 
To this end, subtype- or genotype-specific alterations of drug targets 
revealed by this study could be further investigated. Noteworthy, 
cabozantinib, a multikinase inhibitor approved for HCC treatment, 
was found to lead to decreased Pkm2 expression and stable disease 
in mouse liver tumors induced by c-MET+CTNNB1 or AKT+c-MET 
(59). The therapeutic value of PKM2 as a target is worthy of further 
investigation.

Recently, Molina-Sánchez and colleagues (60) reported a study 
of mouse liver tumors in nine MYC- or CYNNB1-containing geno-
types generated using a similar approach. They carefully investigated 
the influence of MYC expression levels on -catenin activity as a 
mechanism of intertumor heterogeneity. However, we are more 
focused on comprehensive characterization of a representative 
panel as a widely applicable resource for basic and translational 
research of liver cancer. To that end, we established and characterized 
double amounts of genotypes by histopathological and transcrip-
tomic profiling and additionally performed proteomic profiling 
and WES, which led to in-depth depiction of subtype features and 
M transcriptomic signatures generally applicable for classification 
of mouse liver tumors. Notably, there were only two overlapping 
genotypes between the two studies. Nevertheless, both studies 
support the use of mouse liver tumor panels generated by in vivo 
genome editing to tackle the heterogeneity problem of liver cancer. 
Furthermore, while the Molina-Sánchez study demonstrated the 
feasibility of primary cell lines from mouse tumors in evaluating 
drug response in vitro, we demonstrated a multiplexed genome 
editing strategy in functional characterization of drug targets in vivo. 
Thus, the studies are complementary in demonstrating the transla-
tional application of this kind of mouse liver tumor panels.

In summary, we provide an integrated resource comprising an 
expandable plasmid toolbox for in situ genome editing of mouse 
hepatocytes, a biobank of mouse liver tumors in different genotypes, 

and multiomic datasets revealing human-matched subtypes of mouse 
liver tumors. Our data can be a valuable resource for mechanistic 
study of heterogeneous abnormalities in liver cancer and for the 
evaluation of novel therapies in a preclinical setting, which may 
thus fill the gap in translating molecular subtyping to clinics.

MATERIALS AND METHODS
Mice and hydrodynamic injection
All animal experiments were conducted in accordance with proto-
cols approved by the Zhejiang University Animal Care and Use 
Committee. Four-week-old male ICR mice were purchased from 
Shanghai SLAC Laboratory Animal Company. Tp53 KO mice were 
a gift from Y. Cang. Cre-dependent Rosa26 Cas9 knockin mice from 
Z. Meng were crossed with Albumin-Cre mice from Y. Cang to 
obtain hepatocyte-specific Cas9 transgenic mice. Hydrodynamic 
injection was performed as previously described (61). Briefly, mice 
were anesthetized by isoflurane, and then plasmid DNA suspended 
in sterile Ringer’s solution in a volume equal to 10% of the body 
weight was injected in 5 to 7 s via the tail vein of mice. The amount 
of injected DNA was 50 g of transposon plasmids together with 
10 g of PB transposase plasmids (40 g + 15 g in addition to 20 g 
of Pkm2 plasmids in rescue experiments) or 50 g of pX330 plasmids 
encoding Cas9 and sgRNAs for model construction. Animals were 
monitored for up to a year. Animals were euthanized at specific 
time points after injection or when symptoms of tumorigenesis 
such as abdominal enlargement were evident. Livers were pictured 
and weighted, and tissues were then fixed or frozen for further 
processing.

H&E staining and IHC
Mouse livers were fixed in 10% neutral-buffered formalin for 24 hours 
at room temperature and processed for paraffin embedding accord-
ing to standard protocols. For frozen sections, livers were directly 
embedded in optimum cutting temperature compound and stored 
at −80°C. The tissue sections were deparaffinized and rehydrated 
through dimethylbenzene and graded ethanol. Tissue sections were 
stained with H&E using standard protocols. For IHC analysis, 
sections were boiled for 40 min in retrieval solution or treated with 
proteinase K (20 g/ml) for antigen retrieval. Subsequently, sec-
tions were stained with specific antibodies using the avidin-biotin 
complex system (Vector Laboratories). Table S8 details the anti-
bodies used for IHC. Signal was detected using the ABC kit, and 
3,3′-diaminobenzidine (DAB) (Vector Laboratories) was used as 
the substrate for color development. Sections were counterstained 
with hematoxylin solution. Sirius red and oil red stainings were per-
formed using respective kits (purchased from Servicebio) following 
the manufacturers’ instructions.

Fluorescent multiplexed IHC
Fluorescent multiplexed IHC was performed with the Opal 7-color 
Manual IHC Kit (Akoya, NEL861001KT) according to the 
manufacturer’s protocol. In brief, slides were deparaffinized, microwave-
treated in epitope retrieval buffer for 45  s at 100% power and an 
additional 15 min at 20% power, blocked in Opal Antibody Diluent/
Block at room temperature for 10 min, and incubated with the spe-
cific primary antibody overnight at 4°C, 10 min with the secondary 
horseradish peroxidase (HRP)–conjugated antibody Polymer HRP 
Ms + Rb at room temperature, and 10 min with Opal fluorophore 
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working solution. Slides were rinsed between staining steps with 1× 
tris-buffered saline with Tween 20 buffer and stripped between each 
round of staining via microwave treatment in antigen retrieval 
buffer. After the final microwave treatment, slides were stained 
with 4′,6-diamidino-2-phenylindole (DAPI) for 10 min followed 
by mounting. Images were acquired with a confocal microscope 
(LSM 880, Zeiss). Table S8 lists the antibodies used.

Histopathological review
Two to five mice of each genotype were subjected to histopathological 
review. H&E-stained slides were fully scanned into digital images 
for review. Images without genotype information were reviewed 
independently by pathologists S.W. and X.Z. Before slide review, 
pathological characteristics to be evaluated were discussed and 
criteria were set as described below mainly according to the WHO 
standard or specific reports. The five largest nodules (all nodules if 
less than five) on each section were evaluated. For heterogeneity in 
the degree of a phenotype, the highest degree was noted. For hetero-
geneity in phenotypical categories, if any category could not reach a 
minimum 70% of nodules, “heterogeneous” was recorded.

According to pathological characters, each mouse tumor 
was classified into one specific type including HB, ICC, HCC, or 
cHCC-ICC. For HCC, subtypes were determined on the basis of 
WHO classification (35). Mixed- and combined-type cHCC-ICC 
were determined as described (29, 62).

Tumor grade was scored on the basis of the features of cytoplasm, 
cytological atypia, Nuclear/Cytoplasmic (N/C) ratio, mitotic figures, 
and growth patterns according to the Edmondson-Steiner system (36). 
More specifically, grade I tumors showed eosinophilic cytoplasm with 
no cytological atypia, with near-normal N/C ratio and few mitotic 
figures, with bile droplets seen occasionally, and with trabecular 
growth patterns. Grade II tumors showed mild cytological atypia 
and high N/C ratio, with distinct nucleolus and many mitotic figures. 
Grade III tumors showed moderate cytological atypia with basophilic 
cytoplasm, with high N/C ratio and large and irregular nuclei, and 
with solid growth patterns. Grade IV tumors showed marked cyto-
logical atypia with scanty cytoplasm, and tumor cells were in spindle, 
irregular, and disordered arrangements. Special pathological features 
including hyaline bodies, Mallory bodies, cholestasis, macrovascu-
lar steatosis, and clear cell change were observed and scored as 
none or yes.

Pictures of H&E-stained human liver tumor sections with specific 
histopathological features were found from pathological databases 
of the Second Affiliated Hospital, Zhejiang University School of 
Medicine (Hangzhou, China) and the Children’s Hospital, Zhejiang 
University School of Medicine (Hangzhou, China). Samples were 
collected from years 2012 to 2018 with informed consent according 
to the Second Affiliated Hospital Ethics Committee and the Children’s 
Hospital Ethics Committee. The diagnosis of liver cancer was con-
firmed by pathological examinations.

Quantification and statistical analysis
H&E- or IHC-stained sections were scanned with a digital section 
scanner (KF-PRO-005) or Olympus VS120 at ×10 to ×40 magnifi-
cation. Quantification was performed with ImageJ, and GraphPad 
was used for statistical analysis. For quantification of nodule size 
and number from HA or H&E stainings, nodules of >0.04 mm2 
were quantified by ImageJ. K-means clustering method was used to 
distinguish three groups according to size and number by R package 

factoextra. Oil red stainings were quantified as the percentage of 
signal-positive area per field of view for three to five random views. 
Sirius red staining was quantified as the percentage of signal-
positive area in total nodule area per section. IHC staining of CD45 
and F4/80 was quantified as the percentage of signal-positive area in 
the 10 largest nodules (if available) per section. For quantification of 
CD3 and FOXP3, CD3+ and FOXP3+ cells were counted per square 
millimeter. For quantification of AFP, the IHC profile plug-in of 
ImageJ was used to determine the percentage contribution of four 
intensity categories, which were denoted as 0 (negative), 1 (low 
positive), 2 (positive), and 3 (high positive). Then, H score was 
calculated as (1 × % low positive) + (2 × % positive) + (3 × % high 
positive). The 10 largest nodules (if available) in each section were 
quantified for five mice.

Statistical analysis for comparing two experimental groups was 
performed using Student’s t tests. P value of <0.05 was considered 
statistically significant. Differences are labeled n.s. for not signifi-
cant, * for P < 0.05, ** for P < 0.01, and *** for P < 0.001. Analyses 
were performed with Prism 8 (GraphPad Software). Kaplan-Meier 
curves were used to analyze survival.

WES and analysis
Genomic DNA was isolated with the TIANamp Genomic DNA Kit 
(Tiangen). DNA quality was verified by the following two methods: 
(i) DNA degradation and contamination were monitored on 1% 
agarose gels; (ii) DNA concentration was measured using the Qubit 
DNA Assay Kit and the Qubit 2.0 Fluorometer (Life Technologies). 
WES was performed by Novogene (Beijing, China). Exome capture 
was performed using the Agilent SureSelect XT Mouse All Exon Kit 
(Agilent Technologies) according to the manufacturer’s protocols. 
After capture and enrichment with index tags, products were puri-
fied using AMPure XP system (Beckman Coulter, Beverly, USA) 
and quantified using the Agilent high sensitivity DNA assay on the 
Agilent Bioanalyzer 2100 System. DNA libraries were subjected to 
150–base pair (bp) paired-end sequencing on the Illumina NovaSeq 
platform. Following raw data quality control processing, high-quality 
clean data were aligned to the reference genome mm10 by BWA 
software (63) and Samblaster (64). Sambamba was used to mark 
PCR duplicates. SAMtools (1.0) was used to call single-nucleotide 
polymorphisms and indels. Somatic SNV, indel, and CNV were 
detected by muTect (1.1.4), Strelka (v1.0.13), and Control-FREEC 
(v6.7), respectively. SMGs were determined by MuSiC (Q < 0.05) 
(65). All genes with somatic mutations in mouse tumors were fur-
ther searched for known driver genes of human cancer consolidated 
from five sources (66–70). Only variants with “pass” status were 
considered for further analysis. Mutation spectrum and mutation 
signatures in tumor samples were analyzed by non-negative matrix 
factorization (0.22) (71) based on the frequency of mutations with 
96 categories. Documented 30 mutational signatures were obtained 
from COSMIC v3.1. The sources of somatic mutations were as 
follows: exome sequencing data from mouse liver tumor models 
(total N = 14, from RAS II, PI3K+F/C, Tp53 KO+MYC, F/C, and 
MYC+F/C, N = 3, 3, 3, 2, and 3, respectively) and human HCC (total 
N = 1222, from LIHC-INSERM, LIHC-AMC, LIHC-TCGA, and 
LINC-JP, N = 241, 231, 358, and 392, respectively) (7, 11, 72, 73). 
The proportion of mutations for each of the signatures within each 
genotype of mouse tumors and human HCC cohorts was calculated 
on the basis of their total mutation burden. Tumor mutation 
burden (TMB) was defined as the total number of nonsynonymous 
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somatic coding mutations within exonic regions. To calculate TMB, 
the total number of nonsynonymous somatic coding mutations 
counted was divided by the size of the coding sequence region cap-
tured by the HGSC VCRome 2.1 (LIHC-TCGA) or SureSelect XT 
Mouse All Exon Kit (mouse liver tumors). TMB was calculated with 
the software maftools (R package), which was log10-transformed, and 
a scatterplot was subsequently generated by maftools (R package). 
VAF was calculated using the PyClone method as described (74). 
Oncoprint was used to visualize multiple genomic alteration events 
by ComplexHeatmap (R package). Percentage of alteration events 
for each gene and the total number of mutations for each sample are 
shown. Genetic alterations of human HCC were analyzed and 
visualized by cBioPortal and OncoPrint, respectively.

RNA-seq and analysis
RNA was isolated with TRIzol reagent (Takara). RNA-seq was 
performed by Novogene (Beijing, China). RNA quality was verified 
by the following four methods: (i) RNA degradation and contami-
nation were monitored on 1% agarose gels; (ii) RNA purity was 
checked using the NanoPhotometer spectrophotometer (IMPLEN); 
(iii) RNA concentration was measured using the Qubit RNA Assay 
Kit and the Qubit 2.0 Fluorometer (Life Technologies); (iv) RNA 
integrity was assessed using the RNA Nano 6000 Assay Kit and the 
Bioanalyzer 2100 System (Agilent Technologies). A total of 1 g of 
RNA per sample was used as input material. Sequencing libraries 
were generated using the NEBNext UltraTM RNA Library Prep Kit 
for Illumina (NEB, USA) following the manufacturer’s recommen-
dations, and index codes were added to attribute sequences to each 
sample. In brief, mRNA was purified from total RNA using poly-T 
oligo-attached magnetic beads. Fragmentation was carried out 
using divalent cations under elevated temperature in the NEBNext 
First Strand Synthesis Reaction Buffer (5×). First-strand comple-
mentary DNA (cDNA) was synthesized using random hexamer 
primers and M-MuLV Reverse Transcriptase [ribonuclease (RNase) 
H minus]. Second-strand cDNA synthesis was subsequently per-
formed using DNA polymerase I and RNase H. In the reaction 
buffer, deoxynucleotide triphosphates (dNTPs) with deoxythymidine 
triphosphate (dTTP) were replaced by deoxyuridine triphosphate 
(dUTP). Remaining overhangs were converted into blunt ends via 
exonuclease/polymerase treatment. After 3′ adenylation, NEBNext 
Adaptors with a hairpin loop structure were ligated to the DNA 
fragments to prepare for hybridization. To preferentially select 
cDNA fragments of 250 to 300 bp, the library fragments were puri-
fied using an AMPure XP system (Beckman Coulter). Size-selected, 
adaptor-ligated cDNA was treated with 3 l of USER Enzyme (NEB) 
at 37°C for 15 min followed by 5 min at 95°C before PCR. PCR was 
performed with Phusion High-Fidelity DNA polymerase, Universal 
PCR primers, and Index (X) Primer. At last, products were purified 
(AMPure XP system), and library quality was assessed on the 
Agilent Bioanalyzer 2100 system. The clustering of the index-coded 
samples was performed on a cBot Cluster Generation System using 
the TruSeq PE Cluster Kit v3-cBot-HS (Illumina) according to the 
manufacturer’s instructions. After cluster generation, the library 
preparations were sequenced on an Illumina NovaSeq platform, 
and 150-bp paired-end reads were generated. A reference genome 
(mm10) index was built using Hisat2 v2.0.5, and paired-end clean 
reads were aligned to the reference genome using Hisat2 v2.0.5. 
Raw count data per gene were calculated using featureCounts 
v1.5.0-p3. Then, FPKM (fragments per kilobase of transcript per 

million mapped reads) of each gene was calculated on the basis of 
the length of the gene and read count mapped to this gene. 
Transcription levels quantified by FPKM were filtered to remove 
genes whose expression was quantified as zero in more than 75% of 
the tumor samples. A pseudo FPKM value of 1 was added to each 
element before the statistical test, and gene quantifications were 
subsequently log2-transformed. The DEseq2 (as implemented in R 
software) was used to assess genes that were differentially expressed 
between tumors and normal liver, followed by multiple testing us-
ing the Benjamini-Hochberg procedure. Genes with Benjamini-
Hochberg–adjusted P  <  0.05 and fold change [expressed as log2 
(ratio of average FPKM in tumor versus normal groups)] ≥ 1 were 
considered differentially expressed. The batch effect of RNA-seq 
data was evaluated by principal components analysis and corrected 
with ComBat in SVA (R package, www.bioconductor.org/packages/
release/bioc/html/sva.html).

For shNT and shPkm2 samples, RNA isolation and quality 
control procedures were the same as above, and RNA-seq was per-
formed by Vazyme Biotech (Nanjing, China). A total of 1 g of 
RNA per sample was used as input material. Sequencing libraries 
were generated using the VAHTS Stranded mRNA-seq Library 
Prep Kit for Illumina (Vazyme, NR602) following the instructions. 
Total RNA was purified using poly-T oligo-attached magnetic 
beads. The products were fragmented using divalent cations under 
elevated temperature in Vazyme Frag/Prime Buffer. The fragments 
were produced into first-strand cDNA by reverse transcriptase and 
random primers. Strand specificity is achieved by replacing dTTP 
with dUTP, and second-strand cDNA synthesis was subsequently 
performed using DNA polymerase I and RNase H. Then, cDNA 
fragments were end repaired with the addition of a single “A” base at 
the 3′ end of each strand, ligated with the special sequencing adapters 
(Vazyme, N803). The products were purified with VAHTSTM 
DNA Clean Beads (Vazyme, N411) to get the appropriate size for 
sequencing. PCR was performed, and aimed products were purified 
finally. Library concentration was measured and preliminarily 
quantified by the Qubit RNA Assay Kit in Qubit 3.0. Insert size was 
assessed using the Agilent Bioanalyzer 2100 system and qualified by 
Step One Plus Real-Time PCR system (ABI, USA). The clustering of the 
index-coded samples was performed on the cBot Cluster Generation 
System (Illumina, USA), and then library preparations were se-
quenced on an Illumina HiSeq X Ten platform and 150-bp paired-
end module. Raw reads were filtered by removing reads containing 
adapter, poly-N, and low-quality reads for subsequent analysis. The 
reference genome index was built using Bowtie2 (v2.2.9), and 
paired-end clean reads were aligned to the reference genome 
(mm10) using TopHat (v2.1.1). The mapped reads of each sample 
were assembled using Cufflinks (v2.2.1) with a reference-based 
approach. FPKMs for coding genes were calculated by Cuffdiff (v1.3.0) 
for each sample.

Alternative splicing analysis and percentage  
of inclusion calculation
For alternative splicing analysis, RNA-seq bam files were imported 
into Integrative Genome Browser (IGV). Reads were mapped to 
mouse reference genome (mm10) and form a Sashimi plot to reflect 
the read coverage of target exon.

The percentage of inclusion (PSI) statistics was used to quantify 
the inclusion evidence of exon skipping and for the alternative use 
of 5′ or 3′ splicing sites. For exon-skipping events, PSI considering 

http://www.bioconductor.org/packages/release/bioc/html/sva.html
http://www.bioconductor.org/packages/release/bioc/html/sva.html
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splice-junction reads (S1 and S2) of all isoforms in the region 
between two constitutive exons (C1 and C2) reflected values of in-
dividual alternative exons. PSI = (S1 + S2)/sum (C1 ~ C2).

Quantitative proteomic analysis
Minced liver tissues were subjected to protein extraction in lysis buffer 
[1% sodium deoxycholate, 10 mM Tris(2-carboxyethyl)phosphine 
hydrochloride (TCEP), 40 mM 2-chloroacetamide, and 100 mM 
tris-HCl (pH 8.5)] supplemented with protease inhibitors (Thermo 
Fisher Scientific). Lysates were centrifuged at 16,000g for 10 min at 
4°C. Supernatants were digested with sequencing-grade trypsin. 
Tryptic peptides were dried in a vacuum concentrator (Thermo 
Fisher Scientific) and then analyzed by liquid chromatography–
MS/MS (LC-MS/MS).

Peptide samples were loaded onto a trap column (100 m × 2 cm, 
homemade; particle size, 3 m; pore size, 120 Å; SunChrom, USA), 
separated by a heated homemade silica microcolumn (150 m × 30 cm; 
particle size, 1.9 m; pore size, 120 Å; SunChrom, USA) with a 
gradient of 6 to 40% mobile phase B (acetonitrile and 0.1% formic 
acid) at a flow rate of 600 nl/min for 150 min. LC-MS/MS was per-
formed on an Orbitrap Fusion mass spectrometer using an Orbitrap 
mass analyzer at a mass resolution of 120,000 (Thermo Fisher 
Scientific, Rockford, IL, USA) coupled with an Easy-nLC 1000 
nanoflow LC system using an ion trap analyzer with the AGC target 
at 5 × 103 and maximum injection time at 35 ms (Thermo Fisher 
Scientific). The MS/MS analysis was performed under a data-
dependent mode. One full scan was followed by up to 20 data-
dependent MS/MS scans with higher-energy collision dissociation 
(normalized collision energy of 35%). Dynamic exclusion time was 
set with 25 s.

All raw data from MS were submitted to Firmiana (75), which 
were then searched against the 2013 version of the National Center 
for Biotechnology Information (NCBI) human Refseq protein 
database with Mascot 2.3 search engine (Maxtrix Science Inc.). The 
mass tolerances for precursor and product ions were 20 parts per 
million and 0.5 Da, respectively. Allowed missed cleavages were up 
to two. Fixed modification of the search was set to cysteine carbami-
domethylation. Variable modifications included N-acetylation and 
oxidation of methionine. Charges of precursor ions were limited to 
+2, +3, and +4. The protein-level FDR was limited to 1%. Protein 
quantification was done by calculating iBAQ values, which were 
then converted into iFOT values by dividing the iBAQ value of each 
protein by the sum of all iBAQ values in the same sample (76).

Single-cell RNA sequencing and analysis
Fresh liver tumors from three mice were mechanically dissociated 
and digested in 5  ml of RPMI 1640 medium with collagenase/
dispase (2 mg/ml) and 0.001% deoxyribonuclease I, conducted by 
TDK1 standard procedure in a GentleMACS Octo instrument 
(Miltenyi Biotec). Digestion was stopped by adding 5 ml of RPMI 
1640 with 2% fetal bovine serum (FBS), and tissue pieces were 
removed by using a 70-m strainer. Cell suspension was centri-
fuged at 450g for 5 min, and cell pellet was resuspended in ACK 
lysis buffer and incubated for 5 min to lyse red blood cells. Dead 
cells were cleaned by adding 3 ml of 30% Percoll and centrifuged 
at 450g for 5 min, and cell pellet was resuspended in 2% FBS/
phosphate-buffered saline. To reduce the fraction of immune cells 
in the sample, single-cell suspensions were stained with anti-CD45 
for fluorescence-activated cell sorting, and CD45-low cells were 

harvested up to 106 cells. Cell viability of ≥80% was confirmed by 
trypan blue staining.

For scRNA-seq, chromium microfluidic chips were loaded with 
cell suspension with 3′ chemistry and barcoded with a 10× Chromium 
Controller (10X Genomics). RNA was reverse-transcribed from the 
barcoded cells, and sequencing libraries were constructed with 
reagents from a Chromium Single Cell 3′ v3 reagent kit (10X 
Genomics) according to the manufacturer’s instructions. Sequencing 
was performed with NovaSeq according to the manufacturer’s 
instructions (Illumina). CellRanger 4.0.0 pipeline (10X Genomics) 
was used to demultiplex and map raw reads to mouse reference 
genome mm10 using default parameters. Filtering, barcode counting, 
and UMI counting were conducted by CellRanger 3.1.0. It used the 
Chromium cellular barcodes to generate feature barcode matrices, 
determine clusters, and perform gene expression analysis and 
achieved 3993 median UMI counts and 1628 median genes per cell. 
Genes were filtered when expressing a cell number of <3. Cells with 
a detected gene number of <200 or >6500, mitochondrion gene 
percentage of <30, hemoglobin gene percentage of <5, and doublet 
nucleus were removed by package Seurat (v3.1.0) and DoubletFinder. 
Data were subsequently log-normalized (divided by the total ex-
pression and amplified scaling factor 10,000) before further analy-
ses. For clustering, highly variable genes were (top 2000) selected 
and the principal components based on those genes were used to 
build a graph, which was segmented with a resolution of 0.6. UMAP 
was demonstrated by Loupe browser software (10X Genomics). 
Annotation of cell types was performed using SingleR 1.0.0 with 
default parameters using a collection of mouse bulk RNA-seq 
datasets as the reference compendium (51, 52).

mRNA-protein correlation
Spearman correlation coefficient was applied to measure the correlation 
between mRNA expression and protein abundance for each mRNA-
protein pair across 22 samples. In addition, P value corresponding to the 
correlation coefficient was computed and adjusted by the FDR cor-
rection. Significance of the correlation pair was determined, based on an 
FDR cutoff of 0.05. Interaction networks were generated by Cytoscape 
v.3.7.21 (77) from differentially expressed mRNA or proteins.

Transcriptomic and proteomic subtype identification 
in mouse tumors
Hierarchical consensus clustering was performed on transcriptomic 
or proteomic expression matrix of tumors to generate subgroups. 
Before the consensus clustering analysis, we first performed a cen-
tered log ratio transformation to facilitate the interpretation of the 
expression data. The top 5000 variable (by median absolute devia-
tion) genes or proteins were filtered to run consensus clustering. 
Consensus clustering was implemented on the ConsensusClusterPlus 
R package (78) with the following settings: number of repetitions = 1000 
bootstraps; pItem = 0.8 (resampling 80% of any sample); pFeature = 1 
(resampling 100% of any gene/protein); and hierarchical clustering 
with up to six clusters. The number of clustering was determined 
by the average pairwise consensus matrix within consensus clusters 
and the delta plot of the relative change in the area under the cumu-
lative distribution function (CDF) curve. We selected three clusters 
as the best solution for the consensus matrix with k = 3 or k = 4 
deemed to be a cleanest separation among clusters in both tran-
scriptome and proteome, but the consensus CDF and delta plot ex-
hibited that there was little increase in area for k = 3 compared to 
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k = 4. On the basis of the evidence above, transcriptomic and pro-
teomic data were both clustered into three groups.

Identification of subtype signature genes or proteins
To identify molecular signatures of M1-M3 subtypes, we compared 
genes and proteins expressed in each subtype against those in other 
subtypes and normal tissue. The statistical significance was calcu-
lated by R/Bioconductor package DEseq2 v.1.26.0. For each com-
parative analysis, the genes/proteins were required to be expressed 
in at least 25% of the samples in one of the subtypes. To define 
subtype signature genes/proteins, the following cutoff criteria were 
used: (i) All Benjamini-Hochberg–adjusted P values should be less 
than 0.001 for mRNA and 0.05 for protein compared to the other 
subtypes and normal tissue; (ii) fold change [expressed as log2(ratio of 
average mRNA expression/protein abundance between subtypes)] ≥ 1. 
Signature proteins were subjected to pathway analyses using R/
Bioconductor package clusterProfiler46 v.3.14.1 (79).

Expression of human HCC signatures and pathway activities 
in mouse tumors
The NTP algorithm was applied to stratify mouse tumors by using 
previously defined signature genes/proteins and its derived mRNA/
protein expression matrix. All statistical analyses were performed in 
R (v.3.6.2), and a significance level of FDR < 0.05 was used. GSVA 
(R package) (80) and MCP-counter (R package) (34) were used to 
calculate GSVA scores and immune infiltration scores for different 
molecular functions and immune signatures.

Analysis of drug targets
Targets of drugs approved or under development were downloaded 
from DrugBank. Deregulation was defined as meeting the following 
cutoff criteria in at least one of the genotypes. For drug targets: (i) 
mRNA fold change [expressed as log2 (ratio of average mRNA 
expression in one genotype to that in normal tissue)] > 2, and 
Benjamini-Hochberg–adjusted P values less than 0.01, or (ii) protein fold 
change [expressed as log2 (ratio of average protein abundance in one 
genotype to that in normal tissue)] > 5, and Benjamini-Hochberg–
adjusted P values less than 0.01.

Human-mouse transcriptome similarity
We used TROM algorithm (TROM R package) (20) to assess the 
similarity between HCC mouse models and TCGA-LIHC patients. 
We use the following settings to select associated orthologs of molecu-
lar characteristic genes: Z scores > 1.5 and subsequently comparing 
the biological samples by testing the overlap of their associated genes. 
TROM scores were calculated by the following formula

	​ TROM score  =  − ​Log​ 10​​(Bonferroni − corrected P value)​	

A larger TROM score represents greater similarity. A significant 
similarity was defined as TROM score > 1.3 (Bonferroni-corrected 
P value of <0.05).

Analysis of metabolites by MS
Untargeted metabolomic profiling was performed on the XploreMET 
platform using gas chromatography time-of-flight MS (GC-TOF/
MS) system by Metabo-Profile Biotechnology Co. Ltd. (Shanghai, 
China) as previously described (81). Briefly, 50 mg of each sample 
was homogenized in 50 l of 50% prechilled methanol and 10 l of 

internal standard with 25 mg of prechilled zirconium oxide beads 
and centrifuged at 14,000g for 20  min at 4°C. Supernatant was 
transferred to an autosampler vial. Chloroform/methanol (175 l; 
3:1) was added and centrifuged at 14,000g for 20 min. Supernatant 
was evaporated briefly by a CertrilVap vacuum concentrator and 
lyophilized by a FreeZone freeze-dryer. The derivatization and 
injection of samples were carried on a robotic multipurpose sample 
MPS2 (Gerstel, Muehlheim, Germany) with dual heads. Samples 
were derivatized with 50 l of methoxyamine (20 mg/ml in pyridine) 
at 30°C for 2 hours, and 50 l of N-methyl-N-(trimethylsilyl)triflu-
oroacetamide (1% Trimethylchlorosilane) was added for another 
hour by sample preparation head. Meanwhile, samples were in-
jected with head. The flow rate of gas was 1.0 ml/min by the carrier 
helium. The transfer interface and injection temperature were 
270°C, while the source was 220°C. Electron impact ionization (70 
eV) in the full-scan model (mass/charge ratio, 50 to 500) was used 
for measurement. A metabolite database ADAP was used to com-
pare the retention indices and MS data with known structure refer-
ence standards, which were commercially purchased. ADAP was 
also used for raw MS data processing.

For targeted metabolome, samples were homogenized and 
centrifuged, and the supernatants were combined and subjected to 
automated sample derivatization and separation using a robotic 
multipurpose sample MPS2 (Gerstel, Muehlheim, Germany) with a 
double head. Metabolites were quantified using GC-TOF/MS system 
operating in electron ionization mode (Pegasus HT, Leco Corp., St. 
Joseph, MO, USA). The 73 individual bile acid standards were 
prepared in methanol, ultrapure water, or sodium hydroxide solu-
tion at a concentration of 5 mM. The concentrations of individual 
bile acids were 2500, 500, 250, 50, 10, 2.5, or 1 nM. Each 180-l 
acetonitrile/methanol standard was added to 5 l of samples in a 
tube and shaken at 1500g for 20 min. The mixture was centrifuged, 
and 20 l of supernatant was taken and mixed well with 50 l of 
mobile phase. After brief shaking for 5 min and centrifugation at 
13,500g for 20 min, supernatant was transferred to a 96-well plate 
for LC-MS analysis. Data were processed with proprietary software 
XploreMET (v2.0, Metabo-Profile, Shanghai, China).

Tissue culture and transfection
H2.35 cells [American Type Culture Collection (ATCC), CRL-1995] 
were cultured in Dulbecco’s minimum essential medium (DMEM; 
Gibco) containing 10% FBS (YEASEN), penicillin/streptomycin 
(50 g/ml; Gibco), and 200 nM dexamethasone. Human embryonic 
kidney 293T (ATCC, CRL-11268) and Neuro-2a cells (ATCC, 
CCL-131) were grown in DMEM containing 10% FBS and penicillin/
streptomycin (50 g/ml) at 37°C and 5% CO2 atmosphere. The 
above cells were routinely examined with Myco-Blue Mycoplasma 
Detector (Vazyme), and no mycoplasma pollution was found. 
Transfection was performed using YEASEN transfection reagent 
according to the manufacturer’s protocols.

Detection of indels by T7E1 assay
For in  vitro efficiency test, cells transfected with pX330 plasmids 
were treated with puromycin (3 g/ml; InvivoGen) for 48 hours, 
and genomic DNA was extracted using a TIANamp Genomic DNA 
kit following the manufacturer’s instructions. For detection of in-
dels in tumors, fresh tumor samples were used to extract genomic 
DNA. The specific targeted regions were PCR-amplified using the 
PrimeSTAR HS DNA Polymerase (Takara). Purified PCR products 
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were heat-denatured and reannealed using a thermocycler to pro-
duce DNA heteroduplexes. DNA heteroduplexes were incubated 
with T7 endonuclease I (NEB) for 30 min at 37°C. Electrophoresis 
in 2% agarose gel was carried out, and bands were quantified by 
ImageJ. For each lane, the fraction of the PCR product cleaved (fcut) 
was calculated as (fcut) = (b + c)/(a + b + c), where a is the integrated 
intensity of the undigested PCR product, and b and c are the 
integrated intensities of each cleavage product. Then, indel occur-
rence can be estimated with the following formula, based on the 
binomial probability distribution of duplex formation: indel 
(%) = 100 × (1 − ​​√ 

_
 (1 − ​f​ cut​​) ​​).

Quantitative PCR
RNA of liver samples was extracted using an RNAiso Plus kit 
(Takara), and cDNA was synthesized using PrimeScript RT Master 
Mix (Takara). qPCR was performed with the Hifair III One Step 
RT-qPCR SYBR Green Kit (YEASEN) on a Bio-Rad CFX96 system. 
Succinate dehydrogenase complex flavoprotein subunit A (Sdha) 
transcript levels were used as an internal control. For the absolute 
quantification of Pkm1 and Pkm2 mRNA levels, standard curves of 
the gradient dilution of Pkm1 and Pkm2 DNA templates and 
threshold values (Ct) were determined by RT-PCR. The primers for 
qPCR are listed in table S8.

Immunoblotting
Immunoblotting was performed using standard protocol. Briefly, 
cells were lysed with 1% SDS lysis buffer, and protein concentration 
was determined using the BCA Assay Kit (Thermo Fisher Scientific). 
Samples were resolved by SDS–polyacrylamide gel electrophoresis, 
transferred to polyvinylidene difluoride membranes (Millipore), 
and blotted with the desired antibodies. Protein expression was 
detected by ECL Detection Reagent.

Construction of plasmids for in situ genome editing
The CAG-PB transposase and PB (CAG-RFP) DS plasmids were 
previously described (82). PB-CAG-HA-CTNNB1-S33/37A, PB-CAG-
Myri-AKT-HA, PB-CAG-EGFR-L858R-HA, PB-CAG-HA-MYC, 
PB-CAG-HA-NRAS-G12V, and PB-CAG-Myri-HA-PIK3CA-H1047R 
were constructed by cloning the coding regions into the Spe I and 
Bam HI sites of the PB (CAG-RFP) DS vector. PB-CAG-JAK1-
S703I-Ollas and PB-CAG-Ollas-NFE2L2-T80K plasmids were con-
structed by amplifying respective cDNAs from pLVX vectors and 
ligated into the Spe I–digested PB (CAG-) DS empty vector. The 
PB-EF1-MET-HA, PB-EF1-HA-NICD, PB-CMV-Ollas-CCND1-
FGF19-HA, PB-CMV-Ollas-Pkm2, and PB-CMV-Ollas-Pkm2-K367M 
plasmids were constructed by excising the corresponding fragments 
from pLVX vectors and ligated into PB (CAG-RFP) DS plasmid cut 
by Eco RI. gRNAs targeting Rb1, Arid1a, Axin1, Rps6ka3, Ncor1, 
Arid2, and Cdkn2a were designed by the Zhang laboratory CRISPR 
Design Tool, and the gRNAs targeting Tp53 and Pten were reported 
(14). Annealed oligonucleotides were ligated into the pEP-KO vector 
(a gift from X. Zongping) digested with Sap I or pX330-U6-Chimeric_
BB-CBh-hSpCas9 vector (Addgene, #42230) digested with Bbs I. To 
make the PB-CAG-HA-CTNNB1-S33/37A-U6-shNT-U6-shNT, PB-
CAG-HA-CTNNB1-S33/37A-U6-shPkm2#1-U6-shPkm2#1, PB-CAG-
H A - C T N N B 1 - S 3 3 / 3 7 A - U 6 - s h P k m 2 # 2 - U 6 - s h P k m 2 # 2 , 
PB-CAG-HA-CTNNB1-S33/37A-U6-shPkm2#1-U6-shPkm2#2, 
PB-CAG-HA-NRAS-G12V-U6-shNT-U6-shNT, and PB-CAG-HA-
NRAS-G12V-U6-shPkm2#1-U6-shPkm2#2 plasmids, shRNAs targeting 

mouse Pkm2 were first designed by the Broad Institute Genetic 
Perturbation Platform Web portal. Annealed oligonucleotides were 
ligated into the pLKO.1 vector (Addgene, #10807) digested with 
Age I and Eco RI. Two individual U6-shRNA fragments, including 
two targeting Pkm2 or two tandem repeats of U6-shNT, were then 
PCR-amplified from the pLKO.1 vector and were then ligated with 
Swa I–digested PB-CAG-HA-CTNNB1-S33/37A or PB-CAG-HA-NRAS-
G12V plasmids using Gibson assembly. The sequences of sgRNA 
and shRNA are available in table S8.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn5683
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