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SUMMARY

Determining the effect of vaccine-induced immune response on disease risk is an important goal of
vaccinology. Typically, immune correlates analyses are conducted prospectively with immune response
measured shortly after vaccination and subsequent disease status regressed on immune response. In out-
breaks and rare disease settings, collecting samples from all vaccinees is not feasible. The test negative
design is a retrospective design used to measure vaccine efficacy where symptomatic individuals who
present at a clinic are assessed for relevant disease (cases) or some other disease (controls) and vaccina-
tion status ascertained. This article proposes that test negative vaccinees have immune response to vaccine
assessed both for relevant (e.g., Ebola) and irrelevant (e.g., vector) proteins. If the latter immune response
is unaffected by active (Ebola) infection, and is correlated with the relevant immune response, it can serve
as a proxy for the immune response of interest proximal to infection. We show that logistic regression
using imputed immune response as the covariate and case disease as outcome can estimate the prospective
immune response slope and detail the assumptions needed for unbiased inference. The method is evaluated
by simulation under various scenarios including constant and decaying immune response. A simulated
dataset motivated by ring vaccination for an ongoing Ebola outbreak is analyzed.

Keywords: Imputation; Likelihood, Logisitic regression; Regression calibration.

1. INTRODUCTION

The test negative design is a kind of case–control study used to estimate vaccine efficacy (Fukushima and
Hirota, 2017). Originally proposed for pneumococcal vaccination Broome and others (1980), it has been
used extensively for influenza vaccine see Jackson and Nelson (2013) as well as rotavirus vaccine (Boom
and others, 2010). The basic design uses symptomatic subjects who come to a clinic with symptoms
that could be either the vaccine preventable case disease (say Ebola) or a different control disease (non-
Ebola). Vaccination status is ascertained and vaccine efficacy (VE) calculated as one minus the odds of
vaccine among cases divided by the odds of vaccine among controls. This equals the prospective vaccine
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efficacy due to the invariance of the odds ratio for prospective or case–control sampling. The test negative
study requires that all symptomatic vaccinees have the same probability of a clinic visit, an analogous
condition for the symptomatic unvaccinated subjects, and that exposure be the same for all vaccinated
and unvaccinated subjects. Numerous authors have investigated the sensitivity of the test negative design
to these assumptions Sullivan and others (2016), Westreich and Hudgens (2016), Fukushima and Hirota
(2017), and Lewnard and others (2018).

An important goal in vaccine development is to evaluate how vaccine-induced immune response corre-
lates with risk of disease, known as a “correlate of risk” (Qin and others, 2007). Identification of a specific
immune response that is associated with low disease risk provides a target for vaccine development. A
common approach to evaluate immune correlates is to measure immune response to the vaccine shortly
after vaccination determine who gets infected during prospective follow-up and then use logistic regression
to predict the probability of disease as a function of measured immune response. Ideally, such an approach
would be used in outbreak settings, see Halloran and others (2020), but at times it may not be feasible to
prospectively collect samples. In addition, for rare diseases in non-outbreak settings, an enormous number
of samples may need to be collected for traditional correlates analysis. In other settings, the durability of
a vaccine is of interest and thus the immune response at the time of exposure is of interest though this
may be many years after vaccination.

This article details an approach to immune correlates analysis under a test negative design using samples
collected from vaccinees proximal to exposure. To fix ideas, consider the rVSV vaccine for Ebola which
induces an immune response to Ebola antigens say X as well as to the Vesicular Stomatitis Vaccine (VSV)
vector, say W . Naively, one might measure X among the symptomatic vaccinees who visit a clinic and
fit a logistic regression with outcome being Ebola and covariate X . The problem is that Ebola immune
response is likely massive in those with Ebola infection. What we really want is the pure vaccine-induced
X just prior to exposure in both Ebola cases and controls. As a proxy, we can use W at the clinic visit
which should be similar to W at exposure. Provided X and W are correlated, we can use W to impute
the vaccine-induced X at exposure. We can then fit a logistic regression with Ebola as the outcome using
the expectation of X conditional on W , say X̂ (W ), as the covariate; also known as regression calibration.
If the time interval from vaccination to exposure is relatively long, the substantial decay of the immune
response over time may need to be addressed. This can be accomplished either by stratification, or flexible
parametric modeling of risk over study time, provided the disease is rare. We evaluate the performance of
the method via simulation and illustrate its use by a simulated dataset meant to reflect the recent Ebola
outbreak in the Democratic Republic of the Congo where the rVSV Ebola vaccine was deployed using ring
vaccination.

2. FORMULATION AND MODELS

2.1. Constant immune response

An important goal in vaccine development is to assess how immune response to the vaccine, X , is associated
with the risk of infection/disease Y . In a randomized trial, vaccinees (Z = 1) have an immune response X
measured shortly after vaccination. For now, assume that X does not change. Volunteers are followed for
a period of time [0, τ ], and disease status is recorded. With a test negative design, we need both the case
disease and a different (control) disease for reference while the undiseased are not used. We thus define
the disease of interest (case), a different disease (control), or undiseased which we denote by Y = 1, 0, 2,
respectively. We need three possibilities for later use in a test negative design. If both diseases are acquired,
we use the case disease. We assume that among vaccinees

P(Y = 1|X , Z = 1) = exp(β0 + β1X )

1 + exp(β0 + β1X )
, (2.1)
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and that

P(Y = 0|X , Z = 1) = {1 − P(Y = 1|X , Z = 1)}π = 1

1 + exp(β0 + β1X )
π , (2.2)

where π is the conditional probability that a vaccinee who avoids the case disease develops the control
disease. Note that π is assumed free of X as it should not have an effect on acquiring the control disease.
An immune correlates analysis relating risk of disease to immune response can be conducted by fitting
(2.1) in vaccinees using as outcome the indicator that Y = 1 (versus Y �= 1). For developmental simplicity,
we do not incorporate baseline covariates in (2.1) though one can.

For certain settings, X may not be measured shortly after vaccination. For rare diseases it may be
prohibitively costly, or in outbreak settings it may not be logistically feasible. In other settings, the
durability of a vaccine is unknown and thus X at exposure is of interest even though it may be many
years since vaccination. Or in outbreak settings, it may not be logistically feasible to draw samples. In all
these situations, a correlates analysis using the immune response proximal to exposure would be of great
interest.

A design that collects information proximal to exposure is the test negative which takes symptomatic
patients (Y = 0 or Y = 1) who present at a clinic and tests them for the disease of interest and records
vaccination status. Those testing positive are classified as cases (D = 1) while those testing negative are
classified as controls (D = 0). Formally, D = 1 if Y = 1 and A = 1, while D = 0 if Y = 0, and A = 1,
where A is the indicator a person with either disease (i.e., Y = 0 or 1) arrives at the clinic. Overall vaccine
efficacy is estimated as

1 − P̂(Z = 1|D = 1)/{1 − P̂(Z = 1|D = 1)}
P̂(Z = 1|D = 0)/{1 − P̂(Z = 1|D = 0)} = 1 − P̂(D = 1|Z = 1)/{1 − P̂(D = 1|Z = 1)}

P̂(D = 1|Z = 0)/{1 − P̂(D = 1|Z = 0)} , (2.3)

where Z is the vaccine indicator see Guolo (2008). The second equality follows from the invariance of
the odds to prospective and retrospective sampling. The test negative design can be much more efficient
than a prospective study, but does require more assumptions.

Suppose, we somehow knew X in all vaccinees who arrived at the clinic. Let P(A = 1|Y = y) = θy be
the arrival probability for an symptomatic vaccinee with disease status y = 0, 1. Based on (2.1) and (2.2),
we can derive the probability that a symptomatic vaccinee who arrives at the clinic has the case disease:

P(D = 1|X , D = 1 ∪ D = 0, Z = 1) (2.4)

= P(D = 1|X , Z = 1)

P(D = 1|X , Z = 1) + P(D = 0|X , Z = 1)

= θ1
exp(β0 + β1X )

1 + exp(β0 + β1X )

(
θ1

exp(β0 + β1X )

1 + exp(β0 + β1X )
+ θ0π

1

1 + exp(β0 + β1X )

)−1

(2.5)

= θ1 exp(β0 + β1X )

θ1 exp(β0 + β1X ) + θ0π

= exp(ω + β1X )

1 + exp(ω + β1X )
, (2.6)

where ω = β0 + log{θ1/(πθ0)}. Thus, if we fit a simple logistic regression model with X as covariate
among vaccinees in the clinic, we can recover the slope β1 from (2.1). Note that this obtains even if
we allow cases and controls to have different arrival probabilities. The usual test negative design requires
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θ0 = θ1 for all vaccinees. We next consider the actual setting where X must be derived from measurements
at arrival. Figuring out how to get X from test negative data is the major contribution of this article.

In practice, we can measure X when subjects arrive at the clinic, say X (tA) where tA is the arrival time.
Naively fitting (2.6) using the clinic X (tA) is problematic. For vaccinees who present with the control
disease (D = 0), X (tA) should be close to X (tI ), where tI is just prior to infection as control disease
should have little effect on the vaccine-induced immune response to the relevant vaccine antigen. But the
vaccinated who present with the disease of interest (D = 1) are likely to have quite high X (tA) due to
active infection. So X (tA) at arrival is different from X (tI ) for vaccinees with D = 1.

However, certain vaccines (e.g., vector based vaccines) also induce an immune response to irrelevant
antigens (e.g., the vector), say W , which should be relatively unaffected by active infection. To fix ideas,
suppose that X , W achieve stable values shortly after vaccination and remain constant in D = 0 diseased
controls. If X , W are correlated prior to exposure, then one could predict the unadulterated X at exposure
using the W at presentation. One could then use X̂ (W ), the imputed immune response to relevant vaccine
antigens at exposure, in lieu of X . This works if W is unaffected by case or control disease and X , W are
unaffected by control disease. But these requirements can be weakened. Suppose that for both groups, we
observe W ′ = W + EW and for those with control disease we observe X ′ = X + EX where EW , EX are
errors (which can be correlated and have non-zero means). Thus W , X are the pre-infection values while
W ′, X ′ are the values observed at the clinic when subjects are diseased. If EW differs for case and control
disease, however, the control model fitted on W ′, X ′ does not apply to cases and a more complex approach
would be required.

This strategy is displayed in Figure 1. The diamonds are actual X (t) while the two solid bent lines are
linear interpolations of the IgG antibody response to the outside of the Ebola virus i.e., Ebola glycoprotein
(GP) following rVSV vaccination from two randomly selected subjects in Prevail 1, an immunogenicity
trial of the rVSV vaccine Kennedy and others (2016). Immune response was measured at baseline, 1
week, 1 month, 6 months, and 1 year (diamonds). While IgG response to vector W was not measured, we
illustrate interpolated hypothetical values by the dashed bent lines. We pretend that these two subjects were
infected, with, respectively, malaria and Ebola. They became symptomatic and arrived at a clinic a few
days after productive exposure. The W , X values for the malaria patient at arrival are similar to the values
at exposure, but for the Ebola patient, only W is similar at exposure and arrival while X (dashed line) is
massive from active Ebola infection., The bottom panel illustrates hypothetical data with a correlation of
0.70 between W , X that might have been obtained from a sample of vaccinated controls who arrived at
the clinic. From this relationship, we can impute X at infection for the Ebola patient.

More formally, from the controls we can fit the model

X = γ0 + γ1W + e, (2.7)

where e is an error term. Using the estimated parameters, we impute X ,

X̂ (W ) = γ̂0 + γ̂1W

and fit the logistic regression model in the symptomatic vaccinees

P(D = 1|W , Z = 1) = exp{ω0 + β1X̂ (W )}
1 + exp{ω0 + β1X̂ (W )} . (2.8)

This imputation is known as regression calibration and is a simple way to correct for measurement error
in a covariate. Note that we impute X even in the vaccinated controls where X is known and thus treat
both cases and controls in the same way. Using imputation in all those with D = 1 and X directly in all
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Fig. 1. Top panel: IgG immune responses over time for two vaccinated volunteers from Prevail 1. The solid bent line
is the linear interpolation of X = IgG to Ebola GP measured at weeks 0, 1, 4, 26, and 52 (red diamonds). The dotted
red line is hypothetical X to reflect Ebola infection. The dashed bent line is hypothetical W=IgG to rVSV vector.
The subject infected with malaria arrives with W (tA), X (tA) similar to those at infection. Only W (tA) is similar to the
value prior to infection for the Ebola infected volunteer. Bottom panel: a scatter plot of W (tA), X (tA) for the controls
(circles) with imputation of X (tI ) for the Ebola case (solid square).

those with D = 0 leads to substantial bias. Because we use X̂ (W ), which is estimated instead of X , which
is fixed, standard errors from standard software fitting (2.8) are likely too small. A simple remedy is to
use the bootstrap or use derived standard errors, see Rosner and others (1990).

Instead of using an imputed X for regression calibration, one can perform a correlates analysis using
W directly. While W is not part of the mechanism of protection, “correlates” analyses are often done with
immune responses that may not be causal but are presumably related to the causal mechanism. As an
example, smallpox vaccination involves scraping the arm with antigen. A vaccine “take” is recorded if a
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pox forms. While the scar itself does not protect, it is a proxy for a robust relevant immune response to
the vaccine and risk of disease by scar or “take” is of interest even though it is clearly a non-mechanistic
correlate of risk using the nomenclature of Plotkin and Gilbert (2012). Use of W directly is simple, avoids
the measurement error issue, requires no imputation, and has slightly better power than use of imputed
X̂ (W ), as we will see. Use of W by itself, however, is not easily interpretable unless as a proxy for vaccine
“take,” i.e., X = W is binary and W = X = 0 is like being unvaccinated.

2.2. Waning immune response

The above development is appropriate if the immune responses X , W are stable during the followup period
for the cohort study. In general, antibody decay over time and the above approach can lead to bias. To see
this, suppose that nearly everyone was vaccinated prior to an outbreak which exploded and then waned so
the risk of the case disease decreased over time, coinciding with the antibody decay. Further suppose that
the control disease rate was constant over time. Then even if X was unrelated to Y we would associate low
X with low risk and we would tend to estimate a positive β1. And the problem is even more complicated
as, in general, people will be vaccinated at various times and the case disease rate might vary with time.

Let t ∈ [0, T ] be the time since the start of the test negative study. To develop the time varying X (t)
setting more formally, we will assume that the hazard for a case disease arriving at time t with covariate
X (t) is given by

λ1(t) = λ10(t) exp{X (t)β1}θ1(t), (2.9)

where λ10(t) exp{X (t)β1} is the hazard for case disease a little before t and θ1(t) is the probability of
arriving at the clinic at time t, given a case infection just prior to t.

We analogously assume that the hazard for the control disease is independent of X (t) and arbitrary, as
is the instantaneous probability of arriving. Thus, the hazard for a person with control disease arriving at
the clinic is

λ0(t) = λ00(t)θ0(t).

Recall that the probability of an event in a small interval [t,t+	), given no event prior to t, is approx-
imately λ(t)	 for an arbitrary hazard function λ(). Under a “rare” disease assumption, we can calculate
the probability that a given vaccinee who showed up at time t was a case as

P{D(t) = 1|X (t), D(t) = 1 ∪ D(t) = 0, Z = 1} ≈ λ10(t) exp{X (t)β1}θ1(t)	

λ00(t)θ0(t)	 + λ10(t) exp{X (t)β1}θ1(t)	

= exp{ω0t + X (t)β1}
1 + exp{ω0t + X (t)β1} , (2.10)

where D(t) is the indicator of case disease for an arrival at time t and

ω0t = log
(

λ10(t)θ1(t)

λ00(t)θ0(t)

)
.

Now ω0t could be constant. One way this can happen is if λ10(t) = cλ0(t) and θ1(t) = aθ0(t) so
ω0t = log(ca). If so, we can simply fit logistic regression to the n data points {Di(ti), Xi(ti)}, i = 1, . . . , n.
In general, ω0t will not be constant so that

logit{P(D(t) = 1)} = ω0t + β1X (t). (2.11)
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We might specify ω0t = ω0 + ω1I (t < TM ), where TM is say the median followup time. Or we could fit
a quadratic function of log(t). In practice, different approaches to specify ω0t could be tried and the best
one selected. Note that we only need know (or impute) X (t) at the time of arrival to the clinic for each
vaccinee.

3. ASSUMPTIONS

The above approaches recover the prospective slope for X or W if the model assumptions are met. In this
section, we delineate the assumptions when X is known for all, constant after time τ , the logistic-type model
P(Y = y|X , Z = 1) is correctly specified, and there is independence between exposure and X . The major
issue is thus whether vaccinated cases (controls) arrive with fixed probability θ1 = P(A = 1|Y = 1, Z = 1)

(θ0 = P(A = 1|Y = 0, Z = 1)). Or equivalently, whether those who arrive are a representative sample of
cases and controls respectively. We allow θ0 �= θ1.
1. The vaccinees who arrive with the control disease provide a representative sample of the distribution
of immune response among those vaccinated without the case disease.

This follows if X has no impact on the probability of acquiring the control disease and no impact
on the probability of arriving at the clinic so P(A = 1|Y = 0, Z = 1) = θ0. Note we can allow
P(A = 1|Y = 0, Z = 1) to depend on latent or measured disease stratus or baseline covariates as long as
they independent of X .
2. The vaccinees who arrive with the case disease provide a representative sample of the distribution of
immune response among those vaccinated with the case disease.

P(A = 1|X , Y = 1, Z = 1) = P(A = 1|S = 0, X , Y = 1, Z = 1)P(S = 0|X , Y = 1, Z = 1) +
P(A = 1|S = 1, X , Y = 1, Z = 1)P(S = 1|X , Y = 1, Z = 1)

= P(A = 1|S = 0, Y = 1, Z = 1)P(S = 0|X , Y = 1, Z = 1) +
P(A = 1|S = 1, Y = 1, Z = 1)P(S = 1|X , Y = 1, Z = 1). (3.12)

The last equality follows if X has no additional impact on A given severity which seems a reasonable
assumption. Using the last equality, we can see that P(A = 1|X , Y = 1, Z = 1) does not depend on X if
either P(A = 1|S, Y = 1, Z = 1) is free of S or P(S|X , Y = 1, Z = 1) is free of X . We discuss each in
turn.

Now P(A = 1|S, Y = 1, Z = 1) = P(A = 1|Y = 1, Z = 1) if severity does not impact health seeking
behavior. This might occur if all cases are equally encouraged to arrive at a clinic and all cases are equally
compliant, or if the severity gradient is modest enough that it does not change behavior.

Next consider when P(S|X , Y = 1, Z = 1) = P(S|Y = 1, Z = 1), i.e., X has no impact on severity
given a vaccinee is infected. While this obtains if the vaccine’s mechanism of action is all-or-none, it
is a weaker condition. An all-or-none vaccine implies that the distribution of severity is unchanged by
vaccination so that F(S|Y = 1, Z = 1) = F(S|Y = 1, Z = 0), where Z is the vaccine indicator. But we
only require F(S|Y = 1, X , Z = 1) = F(S|Y = 1, Z = 1) which allows F(S|Y = 1, Z = 1) �= F(S|Y =
1, Z = 0).

If neither assumption is plausible but case disease severity is observed, there is a remedy provided
disease follows the prospective logistic regression model:

P(Y = 1, S = s|X , Z = 1) = exp(β0s + β1X )

1 + exp(β0s + β1X )
, (3.13)

for s = 0, 1. Then even if X affects the arrival probability through the observable disease severity, recovery
of β1 using data D, S, X follows from arguments analogous to those used to derive (2.6). One can show that
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(3.13) implies the distribution of disease severity among the vaccinated infecteds, P(S = s|Y = 1, X ),
varies with X reflecting a kind of disease modifying vaccine.

These conditions can be relaxed using baseline covariates V . If the prospective model (2.1) controls for
confounding by specifying logit{P(Y = 1|X , V , Z = 1)} = β0 + β1X + β2V , then the above arguments
go through, even if the arrival probabilities satisfy θz(V ) = νz exp(γZ V ). One can show that logit{P(D =
1|X , V , D = 1 ∪ D = 0, Z = 1)} = ω(V ) + β1X with ω(V ) = β0 + (β2 + γ1 − γ0)V + log{ν1/(πν0)},
and thus β1 remains the coeffience for X .

To summarize, assuming the verity of (3.12) and a correctly specified model for P(Y = 1|X , Z = 1), we
can recover β1 even if θ0, θ1 depend on V unless disease severity is unobservable, P(S|Y = 1, X , Z = 1)

depends on X , and P(A = 1|S, Y = 1, Z = 1) depends on S.

4. SIMULATIONS

4.1. Constant immune response

We illustrate performance for the simple case where antibody does not decay. We prospectively generate
data for vaccinees which are then sampled retrospectively as in a test negative design. We assume a
population of size N vaccinees and generate the case disease according to

P(Y = 1|X , Z = 1) = exp(β0 + β1X )

1 + exp(β0 + β1X )
,

and sequentially generate control disease among the case uninfecteds as

P(Y = 0|X , Z = 1) =
(

1 − exp(β0 + β1X )

1 + exp(β0 + β1X )

)
π .

We specify X as Gaussian with mean= 3.00 and standard deviation =0.50 as in the Prevail 1 vaccine
trial Kennedy and others (2016). We generate

W = 3 + ρ(X − 3) + σ(1 − ρ2)U ,

where U is standard normal. Thus, X , W are bivariate normal with common mean 3.00, common standard
deviation 0.50, and correlation ρ. We set ρ = 0.40, 0.70, and 1.00. For reference, a study estimated
a correlation of 0.70 between ELISA OD immune response readouts for VSV proteins (W) and Ebola
proteins (X) at 56 days post vaccination Poetsch and others (2018).

We specify (β0, β1) as (−5.51, 0.00), (−4.05, −0.60), and (−1.12, −1.81). These correspond to no,
modest, and strong effects of X . To help interpret β1, the ratios of risk of case disease for the 1st versus
8th octile of X are 1, 2, and 10, respectively, for β1 = 0.00, −0.60, −1.81. We set the conditional risk of
control disease as π = 0.01, N = 150 000, and θ0 = θ1 = 0.50 so that vaccinated cases and controls
arrive with equal probability.

We evaluate estimation of the model

P(D = 1|IR, Z = 1) = exp(ω0 + β1IR)

1 + exp(ω0 + β1IR)
, (4.14)

where IR, the immune response, is X , Ê(X |W ), or W
Table 1 presents the results using 10 000 simulated studies per scenario. Columns 4 and 5 provide the

sample mean and variance of β̂1. Column 6 reports the rejection rate for the two-sided α = 0.05 Wald test
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Table 1. Simulated performance of logistic regression using different covariates for IR immune response;
X , X̂ (W ), or W . Sample statistics for different parameters estimates are presented. n is the average
number of symptomatic vaccinees who arrive and n1 the average number of vaccinees who arrive with the
case disease. 1000 test negative designs are simulated for each row.The last row has θ0 = 0.25, θ1 = 0.50
all other rows have θ0 = θ1 = 0.50. Each row is based on 10 000 simulated studies.

β1 ρ IR β̂1 S2(β̂1) % Reject n n1

0.000 1.000 X −0.002 0.019 0.053 1049 302
−0.600 1.000 X −0.602 0.024 0.973 972 225
−1.810 1.000 X −1.821 0.040 1.000 908 160

0.000 0.700 X̂ (W ) −0.001 0.040 0.048 1048 302
−0.600 0.700 X̂ (W ) −0.605 0.049 0.786 973 225
−1.810 0.700 X̂ (W ) −1.826 0.076 1.000 909 160

0.000 0.400 X̂ (W ) 0.003 0.122 0.049 1049 302
−0.600 0.400 X̂ (W ) −0.603 0.152 0.332 973 225
−1.810 0.400 X̂ (W ) −1.827 0.232 0.974 909 160

0.000 0.700 W −0.001 0.020 0.048 1048 302
−0.600 0.700 W −0.423 0.024 0.790 973 225
−1.810 0.700 W −1.274 0.035 1.000 909 160

0.000 0.400 W 0.001 0.019 0.048 1049 302
−0.600 0.400 W −0.239 0.023 0.344 973 225
−1.810 0.400 W −0.725 0.032 0.984 909 160

−0.600 1.000 X −0.604 0.031 0.938 599 225

using the Monte Carlo standard error over the 10 000 simulated studies. We see that we have power of
around 100% to test the effect of IR when β1 = −1.81 for all scenarios, while for β1 = −0.60 we need a
correlation of 0.70 to approach 80% power. The type I error rate seems consistent with the α = 0.05 used
for testing.

Regression calibration recovers the true β1 even with ρ = 0.40. In the Appendix, we derive the correct
(marginalized) probability of D = 1 given W under our assumptions. We show that this curve as a function
of W (with slope β1) is virtually identical to the regression calibration curve (with the same slope β1),
irrespective of ρ. This fidelity explains the excellent recovery of β1 with regression calibration. Regression
calibration does become more biased as |β1|×σx increases, but for these simulations, |β1|×σx is relatively
small, Follmann and others (1999).

Intuitively, as ρ decreases estimation becomes more difficult. For β1 = −0.60, the variance for β̂1

under regression calibration is 0.024, 0.049, and 0.152 for ρ = 1.00, 0.70, and 0.40, respectively. So the
variance roughly doubles as ρ goes from 1.00 to 0.70 and triples as ρ goes from 0.70 to 0.40. In contrast,
with direct use of W the variance of β̂1 stays constant at about 0.023 or 0.024 for all ρ with β1 = −0.60.
The use of W in lieu of X , of course, leads to a smaller estimate of β1 but this is counterbalanced by
the smaller variance. The upshot is that the power for testing β1 = 0 is nearly identical for regression
calibration and direct use of W for all scenarios.

In the Appendix, we provide additional simulations with sample sizes 1/10th and 10 times that of
Table 1. The three approaches have less power and more variability with the smaller sample size and the
opposite with larger sample size. Regression calibration continues to be nearly unbiased for the larger
sample size, though it has some bias for the smaller sample size.
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The above simulations were conducted under the standard assumptions of the test negative design. In
the final row, we set θ0 = 0.25 while θ1 = 0.50 so that vaccinees with the control disease have half the
arrival probability of the vaccinated cases, which violates the standard test negative assumption. We set
β1 = −0.60 and evaluate IR = X so that the second line of Table 1, which has θ0 = θ1 = 0.50 provides
a reference. As expected, we see the estimate of β1 is still unbiased, though the variance for β̂1 is slightly
increased due to fewer control vaccinees.

4.2. Waning immune response

In this subsection, we provide a brief evaluation of the model (2.11). To focus on the issue of antibody
decay, we assume that X (t) = W (t) is measured without error, and that everyone with either disease arrives
at a clinic. We specify the instantaneous conditional risk for control disease using a Weibull hazard,

λ0(t) = tα0−1 exp(β00),

where t ∈ [0, T ] is the time since start of the test negative study. When α0 > 1 (< 1) the hazard is
increasing (decreasing). The instantaneous conditional risk of case disease is specified as

λ1(t) = tα1−1 exp{β01 + β1X (t)}.

For X (t), we specify linear antibody decay according to a random effects model. For person i, the decay
is

Xi(t) = b0i + b1it + B0 + B1t,

where b0i, b1i are independent normals with mean 0 and standard deviations σ0, σ1, respectively. The
parameter σ0 reflects both natural variation in immune response to vaccination as well as variation in
vaccination times as those vaccinated long ago would tend to have smaller b0i.

We generate times to case and control disease by the inverse cumulative distribution function method
where we generate U , a uniform [0,1] random variable and then determine the disease arrival time t that
solves Fd(t) = U for d = 0,1. For the case disease, this is solved by numerically minimizing {F1(t)−U }2.
For subjects who experience both case and control events, we use the first and discard the second. We set
N = 10 000 vaccinees and follow subjects until we observe 1000 first events.

For all scenarios, we set β00 = −2.25, (β01, β1) = (2.18, −1.47), and B0 = 3.50. Our reference case
is (α0, α1) = (1.00, 1.00), or constant risk of each disease and σ0 = 0.50, σ1 = 0.10. We then vary these
parameters to see their impact on performance. The hazards and distribution of arrival times are graphed
in the Supplementary material available at Biostatistics online.

We evaluate two different modeling strategies for (2.11). The first is to treat ω0t = ω0 as fixed with
no dependence on time. The second is to evaluate five models and pick the one with the best Akaike
Information Criterion (AIC). The five models are to treat ω0t as constant (1), linear in t (2), quadratic
in t (3), linear in log(t) (4), and quadratic in log(t). This second strategy is meant to mimic how a data
analyst might address a non-constant ω0t . To summarize performance, we calculate the sample mean and
variance for the estimate of β1 under modeling strategies 1 and 2. We also report the modal model choice
of strategy 2 and the number of times that modal choice was chosen. Additionally, we report the number
of cases and controls for the last data set.

Table 2 presents the summary results. We see that both modeling strategies 1 and 2 recover β1 very
well for scenario 1, our reference, and scenario 2, where X (t) has more variability and a steeper mean
decline. Both scenarios 1 and 2 have constant hazards for both case and control disease. For non-constant

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa037#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa037#supplementary-data
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Table 2. Performance of logistic regression based strategies for dealing with the nuisance function ω0t .
Strategy 1: Fix ω0t at β0. Strategy 2: Choose ω0t based onAIC.The sample average and variance over the
simulations are given for β̂1 under the two strategies. AIC choice reports the modal choice for strategy
2 while n1, n0 are the number of cases and controls for the last simulated dataset. The true value of
β1 = −1.47. Each row is based on 1000 simulated studies.

Strategy 1 Strategy 2 AIC # times

Scenario α1 α0 σ0 σ1 B1 β̂1 S2(β̂1) β̂1 S2(β̂1) Choice Chosen n1 n0

1 1.00 1.00 0.5 0.1 −0.5 −1.47 0.0204 −1.47 0.0209 1 735 426 574
2 1.00 1.00 1.0 0.5 −1.0 −1.48 0.0100 −1.48 0.0102 1 693 629 371
3 1.25 0.75 0.5 0.1 −0.5 −1.59 0.0268 −1.48 0.0271 4 738 235 765
4 0.75 1.25 0.5 0.1 −0.5 −1.35 0.0213 −1.48 0.0239 4 780 618 382
5 1.50 0.50 0.5 0.1 −0.5 −1.61 0.0858 −1.49 0.0927 4 770 66 934
6 0.50 1.50 0.5 0.1 −0.5 −1.29 0.0324 −1.48 0.0392 4 828 829 171

hazards, modeling strategy 1 is biased with bias of around ±10%. Modeling strategy 2 has minimal bias
for non-constant hazards and picks ω0t as a linear function of log(t) in about 70–80% of the simulations
using the AIC criterion.

Strictly speaking, (2.10) obtains under a “rare” disease assumption. In the above simulations, 10% of
the vaccinees acquired disease with no noticeable bias. We did further simulations and did observe about
7% bias for scenario 2 with 30% disease acquisition.

5. EXAMPLE

In the 2018–2020, outbreak of Ebola in the Democratic Republic of the Congo a ring vaccination campaign
was conducted. Local surveillance teams kept track of new Ebola cases which were then relayed to a WHO
vaccination team that vaccinated the contacts and contacts of contacts of the index case. Several hundred
thousand at risk people were thus vaccinated. Following vaccination, the vaccinees were monitored and
encouraged to visit an Ebola transit/treatment center once any symptoms developed. The ring campaign
used the rVSV vaccine which is estimated to have quite high efficacy though breakthrough infections
occur, WHO (2019) and Henao-Restrepo and others (2015). The durability of the vaccine and the impact
of immune response on risk of disease are unknown. Prospectively collecting samples in all vaccinees for
correlates analysis has not been done.

To illustrate our approach, we simulate a dataset meant to loosely approximate a large Ebola ring
vaccination campaign with a vaccine whose substantial efficacy is modulated by immune response. We
assume that each person’s immune response is relatively stable over time. We assume 150 000 at risk
subjects are vaccinated and generate case and control infections as in the previous section with (β0, β1) =
(−1.12, −1.81). We set π , the conditional risk of control disease (e.g., malaria) equal to 0.005 and assume
that vaccinated subjects arrive at the transit center with fixed probability θ0 = θ1 = 0.50, as one might
expect from regular monitoring and encouragement. Note that with regular monitoring of all subjects in a
ring, the assumption that P(A|Y = 1, S, Z = 1) = P(A|Y = 1, Z = 1) for vaccinees may hold, thus even
if rVSV does modify disease, the estimated risk of disease as a function of immune response should be
unbiased.

To provide additional context, we assume 300 000 unvaccinated subjects are at risk (e.g., have first or
second degree contact with an Ebola case) and generate case infections with probability 0.01. We generate
control infections from this set with conditional probability 0.005 just as for the vaccinated. We assume
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that the unvaccinated contacts arrive with probability 0.25 for both case and control disease, irrespective
of severity. Finally, we assume that 20% of the arrivals occur within 35 days of contact with an Ebola
case. For vaccinees, this should ensure a relatively stable vaccine-induced immune response at arrival.

For this single simulated dataset, a total of 114 unvaccinated contacts of Ebola cases arrived at least 35
days post contact. The proportion with Ebola Virus Disease (EVD) was 0.69. In contrast, 127 vaccinated
contacts of an Ebola case arrived at least 35 days post contact with an EVD proportion of 0.28. Thus the
overall test negative VE for these late arrivals is estimated as

1 − 0.28/0.72

0.69/0.31
= 0.82

The above VE estimate is unbiased under the standard test negative assumptions that vaccinees (unvac-
cinated) have fixed probability P(A = 1|Z = 1) (P(A = 1|Z = 0)) of arriving at a transit center,
irrespective of true disease status, disease severity, and equal exposure of vaccinees and unvaccinated.
This latter assumption may be questioned in a ring study where the vaccinees are all known contacts of a
case.

Figure 2 displays the data, jittered for the unvaccinated for whom we set X to 0, along with the fitted
logistic regression model logit{P̂(D = 1|IR, Z)} = ω̂0 + β̂1IR where IR is the immune response covariate,
X , X̂ (W ), or W . For the unvaccinated, we draw a dashed line at the observed Ebola disease rate of 0.69
for reference. Table 3 provides the estimated parameters. We see that, as expected, using W results in a
smaller β̂1 than use of X̂ (W ) and that the Wald statistic for testing β1 = 0 for W is identical to the Wald
statistic based on X̂ (W ), when we use the naive standard error. We also provide the bootstrap standard
error and Wald statistic for regression calibration based on 1000 resamples. The resultant standard errors
are slightly larger than the naive standard errors. The two-sided p-values for testing an effect of X̂ (W ) and
W on disease are, respectively, 0.02 and 0.01. Recall that the estimates of β1 are unbiased even if the arrival
probability for vaccinees depends on latent severity, provided the vaccine has an all-or-none mechanism.
Estimates of β1 are also unbiased even if the vaccine modifies latent disease severity, provided the arrival
probability is the same for all vaccinees with the case disease.

To help interpret the magnitude of the effect of the imputed immune response on risk of disease, we can
compare the ratio of the risk of disease at the 10th versus 90th percentile of the observed distribution of
X̂ (W ). These percentiles are 2.51 and 3.39, respectively, with associated probabilities of disease of 0.42
and 0.16 for these late vaccinated arrivals. Thus the risk is roughly 2.5 times greater at the 10th versus
90th percentile of X̂ (W ) indicating a substantial effect of antibody on EVD risk.

6. DISCUSSION

This research arose from the design of an immune correlates study using test negative data for the 2018–
2020 Democratic Republic of the Congo (DRC) Ebola outbreak. The main contribution of this article
is the idea that an estimate of the effect of the relevant immune response X on the risk of disease can
be estimated by using an irrelevant immune response W . We use the proxy W to impute X based on a
prediction model that is estimated in vaccinated controls using samples collected upon arrival at a clinic.
The method extends to settings where antibody substantially decays over time. Simulations demonstrated
the feasibility of the proposed methods.

This approach applies beyond Ebola. The key requirement is that the vaccine of interest produce
irrelevant immune responses that will be unaffected by the disease of interest, and that these immune
responses are correlated with the immune response of interest. One such application is for extremely rare
diseases such as the prevention of Zika-induced congenital birth defects. Suppose Puerto Rico begins
Zika vaccination in 2025 and an outbreak sweeps the island in 2040. Since Zika-induced birth defects are
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Fig. 2. Simulated data to illustrate an immune correlates analysis based on a test negative design for the 2018–2020
Ebola outbreak in the DRC. Unvaccinated subjects’ data are given by jittered open circles near x-axis near 0 and
whose Ebola disease rate of 0.69 is given by the dashed line. Vaccinated subjects’ data are given by diamonds. The
estimated probability of disease for vaccinees is given by the solid curve. The three panels correspond to using X ,
X̂ (W ), and W as the immune response, respectively.

rare, a prospective immune correlates design would require long-term storage of samples from hundreds
of thousands of women just after vaccination. Furthermore, the values collected in 2025 onward would
not address the question of the immune response at Zika exposure in 2040. But using the methods of
this article we could sample cases (mothers of children with birth defects who are antibody positive for
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Table 3. Parameter estimates for a simulated data set with 114 unvaccinated and 127 vaccinated subjects.
We evaluate X , X̂ (W ), and W as the immune response covariate.

IR = X IR=X̂ (W ) IR= W

parm est se Wald est se∗ Wald∗ se∗∗ Wald∗∗ est se wald

ω0 3.68 1.28 2.86 3.28 1.68 1.95 1.70 1.93 2.07 1.20 1.72
β1 −1.64 0.46 −3.54 −1.45 0.58 −2.49 0.60 −2.40 −1.04 0.42 −2.49

∗Naive standard errors, ∗∗Bootstrap standard errors

non-vaccine Zika antigens) and controls (mothers of children with birth defects who are antibody negative
for non-vaccine Zika antigens). We could then apply a test negative design to assess overall VE and
also perform an immune correlates analysis with W and X̂ (W ), providing that a W that predicts X were
available.

We focused on X (tI ) or the immune response proximal to infection. However, traditional immune
correlates analyses focus on X shortly after vaccination. Our methods for time constant immune response
directly apply as here X = X (tI ). If antibody decay occurs, one could in principle apply (2.10) with X (t)
replaced by X̂ (tv), the predicted value of X shortly after vaccination. This would require the development
of models to predict X (tv).

The biggest challenge in this approach is whether the biology is amenable. Some vaccines won’t induce
a W at all. Other times, even if W is induced the correlation may be too weak for this method to work. This
may be more of a problem with pre-existing immunity to either the antigens of the vaccine or the vector.
On the other hand, it is not really required that W be an immune response to the vector. What is required
is the existence of covariates W that predict X among vaccinees and that logit{P(Y = 1|X , W, Z = 1)} =
β0 + β1X . Development of such methods is left to future work.

7. SOFTWARE

The code to reproduce the example is given at https://github.com/follmand/Test-Negative-Immune-
Correlates.

SUPPLEMENTARY MATERIALS

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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