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Abstract 12 

Previously, we showed that coagulation factors directly cleave SARS-CoV-2 spike and promote 13 

viral entry (Kastenhuber et al., 2022). Here, we show that substitutions in the S1/S2 cleavage site 14 

observed in SARS-CoV-2 variants of concern (VOCs) exhibit divergent interactions with host 15 

proteases, including factor Xa and furin. Nafamostat remains effective to block coagulation factor-16 

mediated cleavage of variant spike sequences. Furthermore, host protease usage has likely been a 17 

selection pressure throughout coronavirus evolution, and we observe convergence of distantly 18 

related coronaviruses to attain common host protease interactions, including coagulation factors. 19 

Interpretation of genomic surveillance of emerging SARS-CoV-2 variants and future zoonotic 20 

spillover is supported by functional characterization of recurrent emerging features. 21 
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Introduction 26 

 The size and persistence of the viral reservoir in humans has driven considerable sequence 27 

variation among isolates of SARS-CoV-2 (Meredith et al., 2020), and distinct variant lineages 28 

have emerged (Konings et al., 2021; Kumar et al., 2021). The rapid rise and clonal expansion of 29 

the B.1.1.7 lineage (alpha variant), the B.1.617.2 lineage (delta variant), and subsequently, the 30 

B.1.1.529 lineage (omicron variant) suggest that some mutations have instilled variants with 31 

increased fitness (Harvey et al., 2021). Analysis of mutation accumulation and divergence 32 

indicates that changes in the spike S1 subunit are likely driver events in the outgrowth of emerging 33 

SARS-CoV-2 clades (Kistler et al., 2021). 34 

 The speed at which SARS-CoV-2 variants of concern have emerged has outpaced the rate 35 

at which researchers have been able to functionally characterize the effects of the mutations they 36 

harbor. The alpha, delta, and omicron variants exhibit enhanced fitness and/or escape from 37 

neutralizing antibodies, with respect to the ancestral wild type strain (Mlcochova et al., 2021; 38 

Planas et al., 2022; Shuai et al., 2022; Ulrich et al., 2022; Wang et al., 2021a). The SARS-CoV-2-39 

S D614G substitution, which is common among VOCs, results in increased transmissibility via 40 

enhanced ACE2 binding and in hamster and ferret models (Hou et al., 2020; Korber et al., 2020; 41 

Plante et al., 2021; Zhou et al., 2021). Functional experiments have characterized the consequence 42 

of additional spike mutations on ACE2 binding (Starr et al., 2020) and escape from antibody 43 

neutralization (Chen et al., 2021; Greaney et al., 2021a; Greaney et al., 2021b; Starr et al., 2021; 44 

Wang et al., 2021b; Weisblum et al., 2020).  45 

Coronaviruses, including SARS-CoV-2, typically require spike cleavage by host proteases 46 

at the S1/S2 boundary and S2’ site to expose the fusion peptide and enable membrane fusion and 47 

viral entry (Belouzard et al., 2009; Glowacka et al., 2011; Hoffmann et al., 2020a; Jaimes et al., 48 

2020a; Jaimes et al., 2020c; Millet and Whittaker, 2014; Walls et al., 2020). The mechanism of 49 

cleavage activation of spike by host proteases is conserved across coronaviruses, but the cleavage 50 

recognition site is not conserved (Jaimes et al., 2020b). Viral interaction with host proteases poses 51 

a significant barrier for zoonotic spillover (Letko et al., 2020; Menachery et al., 2020) and a 52 

potential target for antiviral drugs (Hoffmann et al., 2020a; Hoffmann et al., 2020b). One of the 53 

most dynamic loci in the emerging lineages of SARS-CoV-2 is the S1/S2 spike cleavage site. 54 

Specifically, the P5 position, five amino acids to the N-terminal of the cleaved peptide bond, has 55 

been highly variable in the population of SARS-CoV-2. This position is subject to P681H 56 
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substitution in the B.1.1.7 lineage (alpha variant) and the B.1.1.529 lineage (omicron variant); 57 

P681R substitution is present in the B.1.617.2 lineage (delta variant).  58 

 We recently discovered that coagulation factors can cleave and activate SARS-CoV-2 59 

spike, enhancing viral entry into cells (Kastenhuber et al., 2022). Herein, we use FRET-based 60 

enzymatic assays to investigate the effects of mutations in SARS-CoV-2 variants of concern on 61 

interaction with factor Xa and other host proteases. Furthermore, we explored how spike cleavage 62 

sites in distantly related coronaviruses interact with various host proteases.  63 
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Results 64 

Sequence divergence of SARS-CoV-2 spike codon 681 among variants of concern 65 

Up to this point, spike codon 681, which resides in the S1/S2 cleavage site (Fig. 1A),  is 66 

one of the highest entropy sites in the SARS-CoV-2 genome among sequenced samples (Elbe and 67 

Buckland-Merrett, 2017; Hadfield et al., 2018; Sagulenko et al., 2018). Beginning in December 68 

2019, viral genomes have been collected globally and made available by GISAID and Nextstrain 69 

(https://nextstrain.org/), of which we visualized a subsample (Elbe and Buckland-Merrett, 2017; 70 

Hadfield et al., 2018). For nearly a year, SARS-CoV-2 spike encoded for proline at position 681 71 

in almost all isolates. Samples with P681H substitution emerged in October 2020 and surpassed 72 

the frequency of P681 by March 2021 (Fig. 1A). Meanwhile, a P681R substitution emerged within 73 

the B.1.617.2 lineage (delta variant), and rapidly became predominant by June 2021 (Fig. 1A). 74 

Subsequently, the P681H substitution once again became prevalent during the clonal sweep of the 75 

Omicron variant. (Fig. 1A).  76 

The P681H substitution is one of many defining mutations of the B.1.1.7 lineage (alpha 77 

variant) and the P681R substitution is one of many defining mutations of the B.1.617.2 lineage 78 

(delta variant). Numerous factors may have contributed the rise in frequency of these mutations, 79 

including positive selection of other driver mutations co-occurring in the same lineage, and 80 

representation of different regions in deposited viral genomes. However, outside of the primary 81 

clades, both P681H and P681R appear to have arisen independently multiple times and shown 82 

evidence of expansion through transmission, consistent with the possibility of a functional 83 

advantage (Fig. 1B). 84 

 85 

Substitutions at SARS-CoV-2 Spike S1/S2 site cause divergent changes to interactions with host 86 

proteases 87 

We specifically tested how substitutions observed in emerging lineages of SARS-CoV-2 88 

variants affect cleavage of the spike S1/S2 site by various host proteases. Comparing enzyme 89 

kinetics on peptide substrates with P681 (WT, corresponding to Wuhan-Hu1) and B.1.1.7 90 

(P681H), we found that the P681H led to an increase in factor Xa activity (Fig. 2A), but we found 91 

no evidence for changes in cleavability by furin, TMPRSS2, or thrombin (Fig. 2B-D). On the other 92 

hand, P681R substitution increased Vmax of factor Xa by 65% as well as increasing Vmax of furin 93 
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cleavage by 99% with respect to the ancestral WT sequence (Fig. 2A-B). TMPRSS2 and thrombin 94 

showed decreased activity against the P681R substrate (Fig. 2C-D). 95 

 96 

SARS-CoV-2 spike variants remain sensitive to nafamostat 97 

Nafamostat was found to be a multi-targeted inhibitor of TMPRSS2 as well as coagulation 98 

factors and other transmembrane serine proteases involved in viral entry (Kastenhuber et al., 99 

2022). We investigated whether mutations in the S1/S2 site could affect the efficacy of nafamostat 100 

to block factor Xa-mediated spike cleavage. Although factor Xa exhibits increased Vmax with 101 

P681H and P681R variant substrates (Fig. 2A), factor Xa cleavage of both variant substrates 102 

remains equivalently sensitive to nafamostat (Fig. 3A-C). 103 

 104 

Effect of phosphorylation at the S1/S2 site on spike cleavage 105 

We hypothesized that interaction with host kinases could modify interactions with host 106 

proteases. To evaluate how phosphorylation at serine residues near the S1/S2 site influence the 107 

cleavability of the site by proteases, we used singly phosphorylated peptide substrates 108 

corresponding to the S680, S686, and S689 residues (Fig. 4A).  Phosphorylation of Ser 680, in the 109 

P6 position upstream of the cleavage site, completely abolished furin cleavage and had a moderate 110 

impact (30-50% inhibition) on factor Xa, TMPRSS2, and thrombin cleavage (Fig. 4B-E). 111 

Phosphorylation of Ser 686, in the P-1 position immediately adjacent to the cleaved amide bond, 112 

had a strong inhibitory effect on all four proteases (Fig. 4B-E).  Phosphorylation of Ser 689, in the 113 

P-4 position C-terminal to the cleavage site, had enzyme-specific effects on cleavage. Factor Xa 114 

and TMPRSS2 were moderately inhibited and thrombin was strongly inhibited by p-S689 (Fig. 115 

4B,D,E); however, furin cleavage was enhanced by p-S689 (Fig. 4C). Post-translational 116 

modification by phosphorylation has substantial effects on the cleavability of the S1/S2 site.  117 

 118 

Convergent evolution of cleavability by host proteases in diverse coronavirus species 119 

It is not clear to what extent the cleavability by coagulation factors is specific to SARS-120 

CoV-2 and its variants or if this is a common feature among coronaviruses. The coronaviridae 121 

family is categorized into four genera (alphacoronavirus, betacoronavirus, gammacoronavirus, and 122 

deltacoronavirus) with differences in sequence, function, and host range (Cui et al., 2019). 123 

Betacoronaviruses have evolved into four divergent lineages A-D, where lineage A contains 124 
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common cold coronavirus HCoV-OC43, lineage B contains SARS and SARS-CoV-2, and lineage 125 

C contains MERS (Jaimes et al., 2020b) (Fig. 4A).  We examined the interactions between host 126 

proteases and peptide substrates corresponding to a variety of betacoronaviruses from different 127 

lineages, and an outgroup avian gammacoronavirus infectious bronchitis virus (IBV-Beaudette). 128 

These substrates included diverse coronaviruses, severe and mild, zoonic and host-restricted. 129 

Interestingly, we found that no two species of coronavirus had identical susceptibility to host 130 

proteases. Only the SARS-CoV-2 S1/S2 site is cleavable by all four enzymes studied (Fig. 4B-C, 131 

E). In addition to SARS-CoV-2 S1/S2, factor Xa showed remarkable activity against HCoV-OC43 132 

S1/S2 (Fig. 4B). A sequence from a clinical isolate of HCoV-OC43 (S1/S2-OC43/Seattle), but not 133 

the mouse-passaged laboratory strain of HCoV-OC43 (S1/S2-OC43/ATCC) was furin-sensitive 134 

(Fig. 4B). Furin efficiently cleaved both the S1/S2 and the S2’ sites of IBV-Beaudette,  although  135 

these substates were not preferred by the other enzymes tested (Fig. 4B). Cleavability by thrombin 136 

was observed for the S1/S2 sites of SARS, MERS, and SARS-CoV-2, but not RatG13, a bat 137 

coronavirus with the highest known genome-wide sequence identity to SARS-CoV-2 (Fig. 4C). 138 

TMPRSS2 showed, on average, relatively low activity, but was active against a wider variety of 139 

both S1/S2 and S2’ substrates in the coronavirus substrate panel (Fig. 4D).  While each coronavirus 140 

examined has a distinct set of interactions with host proteases, common solutions have been 141 

reached by distantly related viruses, suggesting convergent evolution.  142 
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Discussion 143 

SARS-CoV-2 variants of concern exhibit divergent interactions with host proteases 144 

 Substitutions within the spike protease cleavage sites of SARS-CoV-2 VOCs modify viral 145 

interaction with host proteases. Spike substitution P681R increases furin cleavability, while P681H 146 

does not, in agreement with previous reports (Liu et al., 2021; Lubinski et al., 2021a; Lubinski et 147 

al., 2021b). A simplified model of SARS-CoV-2 spike activation is that furin cleaves the S1/S2 148 

site, which potentiates either TMPRSS2 cleavage at the S2’ site or cleavage by endosomal 149 

cathepsin L at an undetermined alternative site (Bestle et al., 2020; Hoffmann et al., 2020a; Jaimes 150 

et al., 2020a; Ou et al., 2020). However, additional host proteases including other TTSPs and 151 

coagulation factors can substitute or augment these steps (Kastenhuber et al., 2022; Tang et al., 152 

2021). Given that recurrent substitutions at P681 (adjacent to the S1/S2 site) have divergent effects 153 

on furin cleavage, it is likely that modified interaction with other host proteins likely contribute to 154 

selection pressure on the sequence of the S1/S2 site. For example, both P681H and P681R 155 

substitutions increase susceptibility to factor Xa-mediated cleavage. The effect of factor Xa can 156 

easily be overlooked as it is not apparent in the setting of cell culture or organoid experiments, 157 

unless added exogenously. Also, animal models of coronavirus have not been described to 158 

recapitulate coagulopathy associated with severe disease in humans (Kim et al., 2020; Leist et al., 159 

2020; Sia et al., 2020; Zheng et al., 2021). The role of coagulation factors and other 160 

microenvironmentally-derived proteases merit further study among emerging viral variants. 161 

 162 

Functional characterization to support interpretation of emerging VOCs and zoonotic spillover 163 

events. 164 

 The COVID-19 pandemic is an extremely challenging global health crisis, exacerbated by 165 

the continued emergence of viral variants, the impact of which can often only be seen posteriorly. 166 

Furthermore, the zoonotic spillover of SARS, MERS, and SARS-CoV-2 within the last 20 years 167 

has caused concern for additional novel coronavirus epidemics in the future. Conditions associated 168 

with heightened risk of zoonotic transmission of novel viruses include changes in the extent of 169 

human contact with wildlife and livestock, increasing urbanization and travel, and an accelerating 170 

rate of interspecies “first contacts” due to climate-induced migration (Carlson et al., 2022). 171 

Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 and threats 172 

of novel species of coronavirus from other mammalian hosts (Walensky et al., 2021). However, it 173 
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can be difficult to extrapolate phenotypic consequences from genomic sequence alone and 174 

fluctuations in variant prevalence can be driven by local changes in human behavior and public 175 

health policy as well as characteristics of the viral variant. The B.1.1.7 lineage (alpha variant), the 176 

B.1.617.2 lineage (delta variant), and the B.1.1.529 lineage (omicron variant) have undergone near 177 

clonal sweeps of the population of SARS-CoV-2 in humans. For unclear reasons, the P.1 (gamma 178 

variant) and B.1.526 (iota variant) lineages have faded and been displaced after their initial 179 

emergence and expansion (Annavajhala et al., 2021). Fitness advantage can be mediated by a 180 

variety of specific functional phenotypes including transmission efficiency, viral particle stability, 181 

infection cycle time, immune escape, and disease severity (Mlcochova et al., 2021; Wang et al., 182 

2021a). The goal of functional characterization of recurrently mutated sites is to anticipate the 183 

impact of novel variants of concern and the utility of available interventions.  184 

 185 

Towards broad coronavirus antiviral drugs 186 

In the first two years of the COVID-19 pandemic, vaccines and nonpharmaceutical 187 

interventions have saved many lives (McNamara et al., 2022; Mesle et al., 2021; Victora et al., 188 

2021). Anticipating the continued evolution of SARS-CoV-2 variants and future zoonotic spillover 189 

transmission of novel coronaviruses, the development of broad-acting antivirals is an area of great 190 

interest. Coronavirus antiviral development has thus far targeted viral RdRp (Remdesevir) and 191 

viral protease Mpro (Paxlovid) (Beigel et al., 2020; Hammond et al., 2022). Host-targeted 192 

antivirals, including repurposed (Hoffmann et al., 2020a; Hoffmann et al., 2020b) and novel 193 

TMPRSS2 inhibitors (Shapira et al., 2022), have been shown to reduce viral entry. We previously 194 

demonstrated that nafamostat also inhibits both TMPRSS2 and coagulation factors, which may be 195 

a collateral benefit in anti-coronavirus activity (Kastenhuber et al., 2022). Although variations in 196 

the S1/S2 site sequence have resulted in enhanced factor Xa cleavability, we show here that 197 

nafamostat remains effective to block FXa-mediated cleavage of variant S1/S2 sites. Nafamostat 198 

also exhibits antiviral activity against human coronaviruses 229E and NL6, associated with milder 199 

seasonal illness (Niemeyer et al., 2021). Early, outpatient intervention with orally available drugs 200 

would be advantageous (Griffin et al., 2021), but nafamostat is an intravenous drug with a 201 

suboptimal PK profile (Quinn et al., 2022).  On the other hand, intranasal delivery of nafamostat 202 

was effective in mouse models of COVID-19 and may be a promising approach (Li et al., 2021). 203 
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Development of novel drugs with activity against relevant host proteases could be a valuable 204 

advancement for broad coronavirus antivirals. 205 

 206 

Phospho-regulation of SARS-CoV-2 spike cleavage 207 

We found that phosphorylation of the S1/S2 site generally reduces cleavability by factor 208 

Xa, furin, TMPRSS2, and thrombin. It is understandable that a region that favors multiple basic 209 

residues for function would be inhibited by negative charge associated with phosphorylation. 210 

Phosphorylation of S680 and S686 have previously been described to inhibit furin cleavage (Ord 211 

et al., 2020). While phosphoproteomics analysis of SARS-CoV-2 viral proteins revealed numerous 212 

phosphorylation events throughout the viral proteome, no phosphorylated serine residues near the 213 

S1/S2 site have been detected (Bouhaddou et al., 2020; Davidson et al., 2020; Hekman et al., 2020; 214 

Klann et al., 2020; Stukalov et al., 2021; Yaron et al., 2020). The lack of observed phosphorylation 215 

and the robustness of SARS-CoV-2 replication would suggest that inhibitory phospho-regulation 216 

is not effective in infected cells. One might predict that selection pressure on the S1/S2 site 217 

disfavors host kinase substrate motifs so as to avoid inhibitory phosphorylation, but this does not 218 

necessarily appear to be the case (Ord et al., 2020)(data not shown). Alternatively, negative 219 

selection pressure through host kinase interaction could be avoided by subcellular 220 

compartmentalization of viral biogenesis, interference by other PTMs adjacent residues (including 221 

glycosylation), or exposure to host phosphatases. It is also plausible that lineage-specific 222 

expression of kinases capable of suppressing proteolytic processing of the spike could contribute 223 

to cellular tropism of SARS-CoV-2.  224 

 225 

Convergent evolution of host protease interactions among diverse coronavirus species 226 

 Proteolysis of coronavirus spike proteins by host proteases is clearly a selection pressure 227 

and a barrier to zoonotic spillover (Menachery et al., 2020). Coronavirus S1/S2 and S2’ cleavage 228 

sites exhibit distinct proteolytic fingerprints, which highlights the nuanced substrate recognition 229 

of human trypsin-like serine proteases, beyond the preference for arginine at the P1 position of the 230 

substrate (Goettig et al., 2019). The human genome encodes for more than 500 proteases and many 231 

proteases have not been sufficiently profiled to predict in silico which proteases are capable of 232 

cleaving a given viral sequence with any degree of certainty (Puente et al., 2005; Rawlings et al., 233 

2018), obviating the need for direct biochemical evidence of viral interactions with host proteases.  234 
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Distantly related species of coronavirus have acquired the capacity to interact with 235 

overlapping collections of host proteases. This would suggest that selection pressure for host-236 

mediated cleavage activation has led to convergent solutions of this critical function in multiple, 237 

independent evolutionary events. Sequence analysis has shown that furin cleavage motifs 238 

containing RXXR can be found in multiple genera of coronavirus, including a variety of 239 

betacoronaviruses (Wu and Zhao, 2020). Our data functionally confirm that furin cleavage sites, 240 

and cleavage sites of other host proteases, are widely distributed throughout coronavirus 241 

phylogeny, supporting the notion that novel protease sites emerge regularly in the evolution of 242 

coronaviruses. There has been speculation that the insertion of a polybasic sequence at the S1/S2 243 

site of SARS-CoV-2 is suggestive of laboratory manipulation (Maxmen and Mallapaty, 2021), but 244 

this relies on the implicit assumptions that the inserted PRRA sequence has been optimized for 245 

propagation in humans and that a protease cleavage site is unlikely to emerge during natural 246 

selection. Instead, the S1/S2 site has been one of the sites in the SARS-CoV-2 genome harboring 247 

the most variation after the virus has propagated in the human population and selection for novel 248 

protease sites is a core feature of coronavirus evolution. Expanding the mechanistic depth of 249 

coronavirus host protease usage is critical to understanding coronavirus pathogenesis, to fully take 250 

advantage of genomic surveillance, and to develop pan-coronavirus antivirals.   251 
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Figure Legends 272 

Figure 1. Sequence divergence of SARS-CoV-2 spike-681 among variants of concern. (A) 273 

Schematic of SARS-CoV-2 spike protein, highlighting position 681 adjacent to the S1/S2 site. 274 

Modified from (Kastenhuber et al., 2022). A subsampled collection of 3043 samples from 275 

between Dec 2109 and May 2022 from GISAID was obtained and visualized using Nextstrain 276 

(https://nextstrain.org/ncov) (Elbe and Buckland-Merrett, 2017; Hadfield et al., 2018). (B) 277 

Frequency of viral genomes sequenced with proline (black), histidine (red), or arginine (blue) at 278 

spike codon 681 by date of sample collection. (C) Phylogenic tree rendered by Nextstrain. 279 

Genotype at S681 of each sample is indicated by proline (gray), histidine (red), or arginine 280 

(blue). Branches corresponding to dominant variants of concern are highlighted in the outer ring. 281 

 282 

Figure 2. Substitutions at SARS-CoV-2 Spike S1/S2 site cause divergent changes to 283 

interactions with host proteases. Reaction rates (expressed as initial reaction velocity V0 284 

normalized to the concentration of enzyme Et) for the cleavage of SARS-CoV-2 spike S1/S2 285 

ancestral (P681) and variant (P681H and P681R) peptide substrates by (A) factor Xa, (B) furin, 286 

and (C) TMPRSS2, and (D) Thrombin were measured over a range of 0-80 µM substrate.  287 

 288 

Figure 3. SARS-CoV-2 spike variants remain sensitive to nafamostat. Relative activity of 289 

factor Xa (125nM) with or without 10µM nafamostat in reaction with S1/S2 FRET peptide 290 

substrate (50 µM) corresponding to (A) WT ancestral sequence P681, (B) P681H substitution, 291 

and (C) P681R substitution. * P<0.05, two-tailed t-test. Error bars represent +/- SEM. 292 

 293 

Figure 4. Effect of phosphorylation at the S1/S2 site on spike cleavage. (A) Phosphorylated 294 

peptides were generated for serine residues (S680, S686, S689). Reaction rates (expressed as 295 

initial reaction velocity V0 normalized to the concentration of enzyme Et) for the cleavage of 296 

unmodified or phosphorylated substrates by (B) factor Xa, (C) furin, and (D) TMPRSS2, and (E) 297 

Thrombin were measured over a range of 0-80 µM substrate. 298 

 299 
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Figure 5. Proteolytic fingerprint of diverse coronavirus lineages. (A) Phylogenic relationship 300 

of a panel of coronaviruses with the corresponding aligned S1/S2 and S2’ cleavage sites.  301 

Heatmaps depicting the initial velocity V0 of cleavage of the indicated peptide substrates (rows) 302 

and concentrations (columns) by (B) factor Xa, (C) furin, (D) TMPRSS2, and (E) thrombin.  303 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.16.496428doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.16.496428
http://creativecommons.org/licenses/by/4.0/


Methods 304 

Key Resources Table 

Reagent type 
(species) or resource 

Designation Source or 
reference 

Identifiers Additional 
information 

chemical compound, 
drug 

Nafamostat Selleck Cat# 
S1386 

 

peptide, recombinant 
protein 

Thrombin Millipore Sigma Cat# 
605195 

 

peptide, recombinant 
protein 

Factor Xa Millipore 
Sigma 

Cat# 
69036 

 

peptide, recombinant 
protein 

TMPRSS2 LSBio Cat# LS-
G57269 

 

peptide, recombinant 
protein 

Furin Thermo 
Fisher 
Scientific 

Cat# 
1503SE0
10 

 

peptide, recombinant 
protein 

SARS-CoV-
2-S1/S2-
P681 

Anaspec SARSCoV-2-
Wuhan-Hu1 
(MN908947.
3) 
 

QXL520-
SPRRARSVA
SQ-K(5-
FAM)-NH2 

peptide, recombinant 
protein 

SARS-CoV-
2-S1/S2-
P681H 

Anaspec  QXL520-
SHRRARSV
ASQ-K(5-
FAM)-NH2 

peptide, recombinant 
protein 

SARS-CoV-
2-S1/S2-
P681R 

Anaspec  QXL520-
SRRRARSV
ASQ-K(5-
FAM)-NH2 

peptide, recombinant 
protein 

SARS-CoV-
2-S2p 

Anaspec SARSCoV-2-
Wuhan-Hu1 
(MN908947.
3) 
 

QXL520-
KPSKRSFIE
D-K(5-FAM)-
NH2 
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peptide, recombinant 
protein 

 
S1/S2-
OC43/ATCC 

Anaspec  QXL520-
KNRRSRGAI
TT-K(5-
FAM)-NH2 

peptide, recombinant 
protein 

S1/S2-
OC43/Seattle 

Anaspec HCoV-OC43 
(KF963244.1
) 
 

QXL520-
KNRRSRRAI
TT-K(5-
FAM)-NH2 

peptide, recombinant 
protein 

S1/S2-SARS Anaspec hSARS-CoV-
Tor2 
(NC_004718
.3) 
 

QXL520-
TVSLLRSTS
QK-K(5-
FAM)-NH2 

peptide, recombinant 
protein 

S1/S2-
RaTG13 

Anaspec BatSL-
RaTG13 
(EPI_ISL_40
2131) 
 

QXL520-
TQTNSRSVA
SQ-K(5-
FAM)-NH2 

peptide, recombinant 
protein 

S1/S2-Bat-
SL-CoV-
ZC45 

Anaspec Bat-SL-
CoVZC45 
(MG772933.
1) 
 

QXL520-
TASILRSTS
QK-K(5-
FAM)-NH2 

peptide, recombinant 
protein 

S1/S2-MERS Anaspec MERS-CoV-
Jordan-N3 
(KC776174.1 
 

QXL520- 
TPRSVRSVP
GE -K(5-
FAM)-NH2 

peptide, recombinant 
protein 

S1/S2-IBV-
Beaudette 

Anaspec  QXL520-
TRRFRRSIT
EN-K(5-
FAM)-NH2 

peptide, recombinant 
protein 

S2p-OC43 Anaspec HCoV-OC43 
(KF963244.1
) 
 

QXL520-
SKASSRSAI
ED-K(5-
FAM)-NH2 

peptide, recombinant 
protein 

S2p-SARS Anaspec hSARS-CoV-
Tor2 

QXL520-
LKPTKRSFIE
D-K(5-FAM)-
NH2 
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(NC_004718
.3) 
 

peptide, recombinant 
protein 

S2p-MERS Anaspec MERS-CoV-
Jordan-N3 
(KC776174.1 
 

QXL520-
GSRSARSAI
ED-K(5-
FAM)-NH2 

peptide, recombinant 
protein 

S2p-IBV-
Beaudette 

Anaspec  QXL520-
SSRRKRSLI
ED-K(5-
FAM)-NH2 

software, algorithm Prism 9 GraphPad 
Software 

  

 305 

Sequence Analysis 306 

A subsampled collection of 3043 samples from between Dec 2109 and May 2022 from GISAID 307 

was obtained and visualized using Nextstrain on June 3, 2022 308 

(https://nextstrain.org/ncov/gisaid/global/all-time?c=gt-S_681&l=radial) (Elbe and Buckland-309 

Merrett, 2017; Hadfield et al., 2018). Dataset parameters were set to ncov, gisaid, global, all-310 

time. Sample clades and phylogeny were defined using default settings of Nextstrain and 311 

displayed in radial mode. 312 

 313 

Enzymatic Assay 314 

Thrombin (605195) and Factor Xa, activated by Russell’s Viper Venom, were obtained from 315 

Millipore Sigma (69036). TMPRSS2, purified from yeast, was obtained from LSBio (LS-316 

G57269). Furin was obtained from Thermo Fisher Scientific (1503SE010). FRET peptides were 317 

obtained from Anaspec and all peptide sequences are listed in the Key resources table. Protease 318 

assay buffer was composed of 50mM Tris-HCl, 150mM NaCl, pH 8. Enzyme dilution/storage 319 

buffer was 20mM Tris-HCl, 500mM NaCl, 2mM CaCl2, 50% glycerol, pH 8. Peptides were 320 

reconstituted and diluted in DMSO. Furin was used at a final concentration of 30 nM and all other 321 

enzymes were used at a final concentration of 125nM. Enzyme kinetics were assayed in black 96W 322 

plates with clear bottom and measured using a BMG Labtech FLUOstar Omega plate reader, 323 
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reading fluorescence (excitation 485nm, emission 520nm) every minute for 20 cycles, followed 324 

by every 5 minutes for an additional 8 cycles. A standard curve of 5-FAM from 0-10 µM (1:2 325 

serial dilutions) was used to convert RFU to µM of cleaved FRET peptide product. Calculation of 326 

enzyme constants was performed with Graphpad Prism software (version 9.0). Nafamostat was 327 

obtained from Selleck Chemicals.  328 
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Fig. 3. Factor Xa cleavage of SARS-CoV-2 variants remains sensitive to nafamostat
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Fig. 5. Proteolytic fingerprint of diverse coronavirus lineages 
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