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1. Introduction
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Gastric cancer (GC) is a common malignant tumor worldwide and poses a serious threat to human health. As a traditional
Chinese medicine, Huaier (Trametes robiniophila Murr.) has been used in the clinical treatment of GC. However, the mechanism
underlying the anticancer effect of Huaier remains poorly understood. In this study, we used in vivo imaging technology to
determine the anticancer effect of the Huaier n-butanol extract (HBE) on orthotopic and hepatic metastasis of GC mouse models.
We found that HBE suppressed tumor growth and metastasis without causing apparent host toxicity. Proteomic analysis of GC
cells before and after HBE intervention revealed syntenin to be one of the most significantly downregulated proteins after HBE
intervention. We further demonstrated that HBE suppressed the growth and metastasis of GC by reducing the expression of
syntenin and the phosphorylation of STAT3 at Y705 and reversing the epithelial-mesenchymal transition (EMT). In addition, we
confirmed that syntenin was highly expressed in GC tissue and correlated with metastasis and poor prognosis. In conclusion, our
results suggest that Huaier, a clinically used anticancer drug, may inhibit the growth and liver metastasis of GC by inhibiting the
syntenin/STAT3 signaling pathway and reversing EMT.

patients with localized GC is good, with a 5-year survival rate
of more than 60%, while that of patients with advanced GC is

Gastric cancer (GC) has the fifth highest incidence and is the
fourth leading cause of death worldwide [1]. According to
the latest report from the International Agency for Research
on Cancer (IARC), approximately 1.09 million people were
diagnosed with GC and about 0.77 million deaths were
attributed to GC in 2020 [1]. East Asia has a high incidence
of this disease, and China accounts for approximately half of
the new cases and deaths in the world [2]. The prognosis of
GC is closely related to its clinical stage. The prognosis of

less than 30% [3]. The liver is one of the most common
organs for gastric cancer metastasis [4]. In recent years, with
the application of targeted therapy and immunotherapy, the
mortality rates of patients with malignant tumors such as
breast cancer and non-small-cell lung cancer (NSCLC) have
decreased, and there is a renewed hope for conquering
cancer. However, these new treatments have not signiﬁ-
cantly improved the survival rate of patients with GC [5].
Therefore, safe and effective drugs are urgently needed for
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the treatment of GC. At present, researchers are increasingly
interested in screening traditional Chinese medicine (TCM)
for anticancer activity.

Huaier (Trametes robiniophila Murr.) has been used in
China for more than one thousand years. At present, Huaier
granules are widely used in the clinical treatment of cancers
including GC, and the effect was confirmed by clinical trials.
Chen et al. revealed that Huaier granules as an adjuvant after
radical hepatectomy prolonged recurrence-free survival and
reduced the extrahepatic recurrence rate in patients [6]. Qi
et al. confirmed that Huaier granules combined with tegafur-
gimeracil-oteracil potassium could improve the prognosis of
patients with GC, as the disease-free survival rate and the
overall survival rate were improved [7]. However, the an-
ticancer components and molecular mechanism of Huaier
remains poorly understood.

In this study, we sought to determine the anticancer
effect of the Huaier n-butanol extract (HBE) on orthotopic
and hepatic metastasis GC mouse models. We found that
HBE works by downregulating the syntenin/STAT3 sig-
naling pathway and confirm that high syntenin expression is
correlated with metastasis and poor prognosis of GC. These
findings will provide a potential therapeutic strategy for the
treatment of GC.

2. Materials and Methods

2.1. Cell Lines, Reagents, and Antibodies. The human gastric
epithelial cell line GES-1 and gastric cancer MGC803,
MKN?74, AZ-521, and MKN28 cell lines were obtained from
the Institute of Cancer, Zhejiang Chinese Medical University
(Hangzhou, China). Cells were cultured at 37°C with 5%
CO; in the recommended medium supplemented with 10%
FBS (Gibco, Grand Island, USA), 100 U/ml penicillin (Kino
Co., Ltd, Hangzhou, China), and 100 ug/ml streptomycin
(Kino Co., Ltd, Hangzhou, China). The antibodies targeting
syntenin (cat. no.: ab133267; lot: GR3375272-3), E-cadherin
(cat. no.: ab76055; lot: 3360021-1), N-cadherin (cat. no.:
ab76011; lot: GR3245174-11), and vimentin (cat. no.:
ab92547; lot: GR3258719-22) were purchased from Abcam
(Cambridge, UK), while antibodies against Stat3 (cat. no.:
308358, lot: 1) and P-Stat3 (Y705) (cat. no.: 9145S; lot: 43)
were purchased from Cell Signaling Technology (Boston,
USA). Anti-GAPDH (cat. no.: 60004-1-Ig; lot: 10017731) was
purchased from Proteintech (Chicago, IL, USA).

2.2. Preparation of the Huaier n-Butanol Extract. The HBE
was prepared as described previously [8]. Potential com-
pounds of HBE identified by LC-MS analysis
(Figures S1-S8) are described in Table S1, which were used
as quality control standards.

2.3. Orthotopic GC Mouse Models. Orthotopic GC mouse
models were generated as previously reported [9]. A total of
5x10° MGC803-Luc or MKN74-Luc cells were suspended
in 100 ul of PBS and subcutaneously injected into the bi-
lateral flanks of nude mice. When subcutaneous tumors
grew to 0.5-1 cm, mice were killed and tumors were resected
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under sterile conditions. Tumor tissues were minced into 1-
2mm® fragments with scissors. Under general anesthesia, a
10-15mm midline incision was made in the upper abdo-
men, and the stomach was carefully exposed. The serosal
membrane in the middle of the greater curvature of the
stomach was mechanically injured with a scalpel. A piece of
tumor tissue was then fixed onto the injured site of the
serosal surface with medical glue. The stomach was then sent
back to the abdominal cavity, and the abdominal wall and
skin were sutured.

One week later, the fluorescence intensity of the stomach
was determined by in vivo imaging. Positive fluorescence in
the stomach indicates the successful establishment of the
orthotopic GC model. These mice were divided into two or
three groups according to the fluorescence intensity. The
MGC803 orthotopic model mice were treated with HBE at
doses of 0 and 100 mg/kg/day daily for 4 weeks. For the
MKN74 orthotopic model, mice were treated similarly with
doses of 0, 50, and 100 mg/kg/day for 30 days.

2.4. Mouse Model of GC Hepatic Metastasis. A mouse model
of GC hepatic metastasis was established as previously re-
ported [10]. Under general anesthesia, incisions of 8-10 mm
were made in the left upper abdomen, and the spleen was
carefully exposed. A total of 5 x 10° MGC803-Luc cells were
suspended in 200yl of PBS and slowly injected into the
spleen. The puncture site on the spleen was suppressed using
cotton swabs for 3min. To prevent tumor growth in the
spleen, which would affect the fluorescence intensity of liver
metastasis, the spleen was removed 10 min later [11]. Finally,
the abdominal wall and skin were stitched with 5-0 sutures.
In vivo imaging was performed on the day after the
operation. The mice were then divided into three groups
according to the fluorescence intensity and gavaged with
HBE at doses of 0, 50, and 100 mg/kg/day for 10 days.

2.5.In Vivo Imaging. 'The volumes of orthotopic tumors and
hepatic metastasis were measured noninvasively using the in
vivo imaging system (IVIS) Lumina LT (Caliper Life Sci-
ences, USA). D-Luciferin sodium salt (150 mg/kg) was in-
jected intraperitoneally, and then mice were anesthetized.
Luciferase activity was measured using the IVIS at
10-15 min after the injection of D-Luciferin sodium salt. We
used Living Image Ver. 4.3 (Caliper Life Sciences, USA)
software to acquire the data.

2.6. Hematoxylin and Eosin Staining and Immunohistochemistry.
Tumors and important organs were removed from the mice,
fixed in 4% paraformaldehyde, and embedded in paraffin.
The tumor and organ sections (4-5um thick) were then
deparaffinized, rehydrated, and washed. Sections were
stained with H&E. Immunohistochemistry (IHC) staining of
target proteins was performed using biotinylated antibodies
and HRP/DAB detection.

2.7. Cell Viability Assay. The cell viability was performed
using the cck-8 assay as previously reported [12]. In brief,
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MGC803, MKN74, AZ-521, MNK28, and GES-1 cells were
cultured overnight in 96-well plates (2000-6000 cells/well),
and HBE (0, 20, 40, 60, 80, 100, 120, 160, or 200 yg/mL) was
then added to the coculture for 24, 48, and 72h. Finally,
CCK-8 solution was added, absorbance was measured, and
the cell viability and ICs, values were calculated.

2.8. Protein Extraction and Mass Spectrometry. Lysis buffer
was added to the protein samples and sonicated three times
on ice using a high-intensity ultrasound processor. The
lysate was centrifuged at 12,000 g at 4°C for 10 min, and the
supernatant was collected. Finally, the protein concentration
was determined using the BCA kit.

Proteins were digested by the filter-aided sample
preparation (FASP) method [13], and peptides were ana-
lyzed by Q-Exactive mass spectrometry (MS) as previously
reported [14]. Raw MS files were analyzed using MaxQuant
software [15].

2.9. Western Blotting Assay. The quantified protein samples
were added to the gel wells, separated by SDS-PAGE, and
transferred onto PVDF membranes (Millipore, MA, USA).
The membranes were incubated with specific primary an-
tibodies and corresponding secondary antibodies. Finally,
the bands were visualized by enhanced chemiluminescence
(ECL). Intensity was measured by Image Lab 5.2 software.

2.10. Lentiviral Construction and Infection. Lentiviral ex-
pression vectors encoding syntenin and shSyntenin as well
as packaging vectors were transfected into 293T cells. Two
days after transfection, the virus particles were collected and
filtered using a 0.45 ym filter. GC cells were transfected with
lentivirus, and the transfected cells were collected after 72 h.
Overexpression and knockdown cell lines were selected with
puromycin. Transfection efficiency was determined by
western blotting.

2.11. Human GC Samples and Tissue Microarray
Construction. In total, 135 pairs of tumor tissues and cor-
responding adjacent noncancerous tissues from GC patients
were selected between January 2013 and December 2017 in
Zhejiang Cancer Hospital. These patients had no history of
chemotherapy or radiotherapy treatment prior to specimen
collection. Tissue microarrays (TMAs) were constructed as
described previously [8].

2.12. Tissue Microarrays, Immunohistochemistry Staining,
and  Stratification of Syntenin Expression in GC.
Immunohistochemistry staining of serial tissue microarrays
(TMAs) was carried out as described previously, and brown
cells (HRP/DAB stained) were considered positive. We
assessed the staining intensity using the following scoring
system: 0 (negative), 1 (weak), 2 (moderate), and 3 (strong).
The staining area was scored as 0 (none), 1 (1-25%), 2
(26-50%), 3 (51-75%), or 4 (76-100%). The staining in-
tensity score and staining area score were then multiplied to

produce a final score. Scores of 0 to 6 were regarded as low
expression, and scores of 7 to 12 were considered high
expression.

2.13. Statistical Analysis. All statistical analyses were per-
formed using SPSS 23.0 software (SPSS Inc., Chicago, IL,
USA). Normally distributed measurement data are pre-
sented as the mean + SEM, and nonnormally distributed
measurement data are presented as the median (interquartile
range, IQR). Parametric tests (Student’s ¢ test or one-way
ANOVA) or nonparametric tests were used, depending on
the type of data distribution and homogeneity of variance.
Count data are presented by the rate or composition ratio,
using the chi-square test and Fisher’s exact test. Survival
curves were estimated using the Kaplan-Meier method, and
univariate and multivariate analyses were performed using a
Cox proportional hazard model. p<0.05 was considered
statistically significant.

3. Results

3.1. HBE Suppresses GC Growth and Metastasis In Vivo.
We examined the anticancer effect of HBE in two orthotopic
mouse models of GC: MGC803 and MKN74 orthotopic
models. The results show that HBE at a dose of 100 mg/kg/
day significantly inhibited the growth of MGC803 ortho-
topic tumors (Figures 1(a) and 1(b)). We also observed that
HBE inhibited metastasis to the liver, peritoneum, and
spleen (Figures 1(d)-1(h)). Similarly, HBE at doses of 50 and
100 mg/kg/day had anticancer effects in the MKN74
orthotopic tumor model (Figures 2(a) and 2(b)). However,
there was no significant difference between the 50 and
100 mg/kg/day dose groups. At the same time, HBE
inhibited metastasis to the liver and peritoneum
(Figures 2(d)-2(g)) in the MKN74 orthotopic tumor model,
but we did not observe splenic metastasis in this model.
Importantly, HBE treatment had no effect on the body
weight of the mice (Figures 1(c) and 2(c)), and no significant
tissue damage was observed in the H&E staining of the heart,
liver, spleen, lung, kidney, and cerebrum (Figures 1(h) and
2(g)). Moreover, both routine blood tests and liver and
kidney function tests showed no abnormalities (Figure S9).
These results suggested that HBE did not cause significant
host toxicity.

3.2. HBE Inhibits the Formation of Hepatic Metastases In Vivo.
We further assessed the antimetastatic effect of HBE in a
mouse model of GC hepatic metastasis. As shown in
Figures 3(a), 3(b), and 3(d), HBE at doses of 50 and 100 mg/
kg/day reduced liver metastasis in the MGC803 hepatic
metastasis model. Moreover, H&E staining of the liver in-
dicated that metastasis in the vehicle group was more ob-
vious than that in the two treatment groups (Figure 3(e)).
Similarly, HBE treatment had no effect on the body weight of
the mice (Figure 3(c)), and H&E staining of the heart, liver,
lung, kidney, and cerebrum showed no obvious abnor-
malities, indicating that HBE had no apparent host toxicity
(Figure 3(e)).



4 Journal of Oncology

[
(=}

MGC803 orthotopic tumors
Vehicle Huaier (100 mg/kg)

it

Ju—
wu

Tumor Mass
(x108 photons/sec)
=

w

0 7 14 21 28
Days

—e— Vehicle
—s— Huaier (100 mg/kg)

@ (b)

25 12 - Tumor Metastasis
§° 3 10 ~
2 20 s
5 Y
g S 6
= 15 2
el g 44
= Z 2
n+———— 1
0 5 10 15 20 25 30 0
> T2 o2 3 2
ays 3 s
§ S
—— Vehicle = < 5
—=— Huaier (100 mg/kg) ~
I Vehicle
Bl Huaier (100 mg/kg)
(0 (d)
Huaier Huaier
Veicle (100 mg/kg) Vehicle (100 mg/kg)
& E
g 2
8 =
£ £
. O
= =
& =
T &
(e)
Vehicle Huaier (100 mg/kg) _h i kidney  cerebrum
2 2 s
g g
k7] <
: -
E 5 2
[=} a oo S
2 E
5 = =8 .
¥ = &
(& (h)

FiGure 1: HBE suppresses the growth and metastasis of MGC803 orthotopic tumors without causing notable host toxicity. (a) Repre-
sentative images of in vivo imaging. (b) The growth curves of tumor (* p <0.05). (c) Average body weight of mice bearing tumors. (d)
Numbers of mice with liver, spleen, and peritoneal metastasis. (e) Representative images of hepatic metastasis. (f) Representative images of
splenic metastasis. (g) Representative images of peritoneal metastasis. (h) Representative H&E staining images of important organs. Data are
presented as the mean + SEM.
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3.3. HBE May Target Syntenin to Exert Its Anticancer Effect.
To explore the anticancer mechanism of HBE, we first
carried out a CCK-8 experiment. HBE inhibited the growth
of four human GC (MGC803, MKN74, AZ-521, and
MKN28) cell lines, with ICsy values ranging from 107.5 to

141.1 ug/mL for 24 h, 53.4 to 87.7 ug/mL for 48 h, and 33.8 to
60.3 ug/mL for 72h (Figures 4(a)-4(f)). However, the ICs,
value in the noncancerous GES-1 cells was higher than that
in GC cell lines, indicating that HBE had selective cyto-
toxicity in GC cells.
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(c) Average body weights of mice bearing tumors. (d) Representative images of liver metastasis. (e) Representative H&E staining images of
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We performed proteomic analysis of GC cells before and
after HBE intervention to identify differentially expressed
proteins. Principal component analysis (Figure 5(a)) and
Pearson’s correlation coefficient analysis (Figure 5(b))
revealed significant differences in protein expression be-
tween the control group and the HBE intervention group,
and the samples in each group had good consistency. Using
1.5-fold as the threshold for differential expression and p

value <0.05 as the threshold for significance, we found 188
proteins that were upregulated and 182 proteins that were
downregulated after HBE treatment (Figures 5(c) and 5(d)).
The top 10 differentially expressed proteins are shown in
Table 1. Among these proteins, syntenin has been reported
previously to be closely associated with invasion and me-
tastasis in a variety of tumors [16-18] and may be the key
target via which HBE exerts its anticancer effects.
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F1GuRre 5: The differentially expressed proteins before and after HBE intervention were identified by proteomic analysis. (a) Representative
images of principal component analysis. (b) Representative images of Pearson’s correlation coefficient analysis. (c) Number of differentially
expressed proteins. (d) Volcano map of the differentially expressed proteins.

TaBLE 1: The top 10 differentially expressed proteins in HBE-treated MGC803 cells as identified by LFQ.

Regulation type Accession no Description Gene name Ratio
Down 075306 NADH dehydrogenase iron-sulfur protein 2 NDUES2 0.087
Down P28331 NADH-ubiquinone oxidoreductase 75kDa subunit NDUFS1 0.129
Down 000560 Syntenin SDCBP 0.229
Down P19404 NADH dehydrogenase flavoprotein 2 NDUFV2 0.229
Down Q9C005 Protein dpy-30 homolog DPY30 0.231
Up P08243 Asparagine synthetase ASNS 11.059
Up Q13501 Sequestosome-1 SQSTM1 10.206
Up P09601 Heme oxygenase 1 HMOX1 4.581
Up Q12929 Epidermal growth factor receptor kinase substrate 8 EPS8 3.492

Up Q06210 Glutamine-fructose-6-phosphate aminotransferase 1 GFPT1 3.182
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3.4. HBE Inhibits the Syntenin/STAT3 Pathway and Reverses
EMT Both In Vivo and In Vitro. The signal transducer and
activator of transcription 3 (STAT3) is a transcription
factor that plays a pivotal role in cancer progression
[19, 20]. Moreover, syntenin and STAT3 interactions have
been observed in various cancers, and the syntenin/
STAT3 pathway can promote tumor invasion and

metastasis [21, 22]. As shown in Figures 6(a)-6(c), HBE
suppressed the expression of syntenin both in vivo and in
vitro. Moreover, HBE inhibited the activation of STAT3
by reducing the phosphorylation of STAT3 at Y705,
suggesting that the syntenin/STAT3 pathway is targeted
by HBE and may be involved in the anticancer mechanism
of HBE.
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F1GURE 7: The syntenin/STAT3 pathway and EMT process are important for the anticancer effect of HBE. (a) Viability curve of MGC803
cells transfected syntenin and empty vector. (b) Viability curve of MGC803 cells transfected with shSyntenin and shCtrl. (¢) Viability curve
of MNK?74 cells transfected with syntenin and empty vector. (d) Viability curve of MNK74 cells transfected with shSyntenin and shCtrl. (e)
Representative images of western blotting. E-cad: E-cadherin; N-cad: N-cadherin. Data are presented as the mean + SEM.

Since EMT plays an important role in tumor metastasis,
we further examined the expression levels of EMT-related
markers to explore the mechanism of HBE against metas-
tasis in GC. After treatment with HBE, the expression levels
of N-cadherin and vimentin in four GC cell lines were
reduced in a dose-dependent manner, while that of

E-cadherin was increased (Figure 6(c)). The IHC analysis
showed similar results in vivo (Figures 6(a) and 6(b)).

To determine whether HBE exerts its anticancer effect by
targeting syntenin, MGC803 and MKN74 cells with stable
overexpression or knockdown of syntenin were established
and treated with HBE. The CCK-8 results showed that the
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F1GURE 8: Syntenin is highly expressed in GC tissues and is associated with tumor metastasis and poor prognosis in GC. (a) Representative
images of IHC staining of syntenin with different IHC scores in TMAs. (b) Differential expression of syntenin in GC and paracancerous
tissues. (c) The survival curves of GC patients with different syntenin expression levels. (d) IHC staining intensities of syntenin in GC
patients with different M stages. (e) IHC staining intensities of syntenin in GC patients with different TNM stages.

ICs, value of syntenin-overexpressing cells was higher than
that of control cells (Figures 7(a) and 7(c)), while the ICs,
value of syntenin-knockdown cells was lower than that of
control cells (Figures 7(b) and 7(d)). These results indicate
that syntenin overexpression weakened the inhibitory effect
of HBE, while syntenin knockdown strengthened the in-
hibitory effect of HBE.

As shown in Figure 7(e), HBE inhibited the activation of
the syntenin/STAT3 pathway by reducing the expression of
syntenin and phosphorylation of STAT3 at Y705 and
modulated the expression of EMT-related proteins to inhibit
the metastasis of GC. As expected, syntenin overexpression

reversed the effect of HBE, while syntenin knockdown
enhanced HBE regulation of the syntenin/STAT3 signaling
pathway and EMT markers. Based on these results, syntenin
is a key target for the metastasis of GC and is responsible for
the anti-GC effect of HBE.

3.5. Syntenin Expression Is Markedly Upregulated in GC
Tissues and Associated with Tumor Metastasis and Poor
Prognosis. To further evaluate the role of syntenin in GC, the
expression of syntenin was analyzed in tumor and para-
cancerous tissues of GC by IHC staining (Figure 8(a)). We
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found that 57.04% GC samples had strong syntenin staining
in tumor tissues and the other 42.96% showed low syntenin
expression in tumor tissues. In clear contrast, 29.63% GC
samples exhibited strong syntenin intensity and 70.37%
exhibited weak syntenin staining intensity in adjacent
normal tissues (Figure 8(b)). These results indicated that
syntenin was highly expressed in tumor tissues (p <0.001).

We further compared the relationship between clini-
copathological features and syntenin expression levels in
gastric cancer patients and found that syntenin over-
expression was associated with age, M stage, and TNM stage
(Table 2, Figures 8(d) and 8(e)). Syntenin was found to be
negatively correlated with the survival rate, shown by
Kaplan-Meier plots (Figure 8(c)). The 5-year survival rate of
GC patients with low syntenin expression was 57.27%,
compared with high expression, which was only 32.30%. In
addition, univariate and multivariate Cox regression ana-
lyses indicate that the syntenin expression is an independent
prognostic factor (Table S2).

4. Discussion

TCM has been used for more than three thousand years in
Asia. Because of their potential anticancer effect, low tox-
icity, low cost, and multiple targets, TCMs are increasingly
being explored as anticancer drugs [23]. The TCM Huaier
(Trametes robiniophila Murr.) has been used in the clinical
treatment of various tumors, including gastric cancer
[24-26]. At present, Huaier is clinically applied mainly as a
water extract. However, we previously showed that the al-
cohol extract of Huaier, especially the n-butanol portion,
had a better anticancer effect than the water extract [27]. In
our present study, we found that HBE significantly inhibited
the tumor growth and metastasis of orthotopic tumors
without causing notable host toxicity. Moreover, we verified
that HBE could inhibit the liver metastasis of GC in a hepatic
metastasis model.

Syntenin was originally identified from metastatic hu-
man melanoma [28], also known as melanoma differenti-
ation-associated gene-9 (MDA-9) and syndecan-binding
protein (SDCBP). Syntenin plays an important regulatory
role in multiple signaling pathways and is closely related to
tumor metastasis [29-31]. Furthermore, many studies have
reported that the expression of syntenin is elevated in tumor
tissues. Kim et al. reported that syntenin expression was
upregulated in SCLC cells and was more pronounced in
patients with advanced stages of disease [32]. Bacolod et al.
reported that syntenin expression is positively correlated
with multiple cancers, including melanoma, prostate, and
liver cancer, based on publicly available genomic datasets
[33]. However, few studies have investigated the relationship
between syntenin and GC, and only a small number were
conducted at the cellular level. Koo et al. found that syntenin
was highly expressed in metastatic human GC cell lines [18].
In our study, we found that syntenin was highly expressed in
tumor tissues and was closely associated with age, M stage,
and TNM stage. Multivariate Cox regression analysis in-
dicated that the expression of syntenin was an independent
prognostic factor in gastric cancer.

Journal of Oncology

TaBLE 2: Correlations between the syntenin expression level and
the clinicopathological features of GC patients.

Syntenin

Variables expression Total X p value

High  Low
Age (years)
<65 44 43 87 4170 N
>65 33 15 48 0.041
Sex
Female 21 15 36 0.034
Male 56 43 99 0854
Borrmann type
I+1I 41 37 78 1.508
I +1v 36 21 57 0.219
Lauren type
Intestinal GC 41 30 71 2.319
Diffuse GC 27 16 43 0.314
Mixed GC 9 12 21
Grade of differentiation
Well + moderate 42 31 73 0.016 0.899
Poor + not 35 27 62 '
T stage
T1 0 2 2 3.419
T2+ T3+ T4 77 56 133 0.064
N stage
No 8 3 11 0.607
NI1+N2+N3 69 55 124 0436
M stage
MO 66 56 122 4.465 N
M1 11 2 13 0.035
TNM stage
I+1I 5 12 17 6.057 N
III+1v 72 46 118 0.014
CEA (ng/ml)
<5 56 43 99 0.034
>5 21 15 36 0.854
HER2
Negative 65 51 116 0.338
Positive 12 7 19 0561
PD-L1
Negative 42 40 82 2.885
Positive 35 18 53 0.089

*Statistically significant (p <0.05).

STATS3 pathway is closely related to tumor metastasis
[34, 35]. Targeting the STAT3 protein in tumors has ther-
apeutic promise, and several drugs targeting this protein
have successfully entered the stage of clinical trials [36, 37].
Kegelman et al. showed that syntenin could phosphorylate
STATS3, and the resulting activation enhanced the expression
of the EMT-related markers MMP2 and MMP9 and pro-
moted the migration of prostate cancer cells [31]. In our
study, we found that HBE downregulated the expression of
syntenin and the phosphorylation level of STAT3 at Y705,
downregulated the levels of the EMT-related proteins
N-cadherin and vimentin, and upregulated the level of
E-cadherin. In addition, syntenin overexpression reversed
the effect of HBE, while syntenin knockdown enhanced the
HBE regulation of the syntenin/STAT3 signaling pathway
and EMT process, indicating that syntenin is a key target for
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the metastasis of GC and responsible for the anti-GC me-
tastasis effect of HBE.

In summary, our study shows that HBE can inhibit the
growth and metastasis of GC, especially liver metastasis, by
inhibiting the syntenin/STAT3 signaling pathway and re-
versing the EMT. This study provides a rational view of using
HBE for the treatment of GC.
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