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A transcriptomic signature 
for prostate cancer relapse 
prediction identified 
from the differentially expressed 
genes between TP53 mutant 
and wild‑type tumors
Wensheng Zhang1* & Kun Zhang1,2*

For prostate cancer (PCa) patients, biochemical recurrence (BCR) is the first sign of disease relapse and 
the subsequent metastasis. TP53 mutations are relatively prevalent in advanced PCa forms. We aimed 
to utilize this knowledge to identify robust transcriptomic signatures for BCR prediction in patients 
with Gleason score ≥ 7 cancers, which cause most PCa deaths. Using the TCGA-PRAD dataset and the 
novel data-driven stochastic approach proposed in this study, we identified a 25-gene signature from 
the genes whose expression in tumors was associated with TP53 mutation statuses. The predictive 
strength of the signature was assessed by AUC and Fisher’s exact test p-value according to the output 
of support vector machine-based cross validation. For the TCGA-PRAD dataset, the AUC and p-value 
were 0.837 and 5 × 10–13, respectively. For five external datasets, the AUCs and p-values ranged from 
0.632 to 0.794 and 6 × 10–2 to 5 × 10–5, respectively. The signature also performed well in predicting 
relapse-free survival (RFS). The signature-based transcriptomic risk scores (TRS) explained 28.2% 
of variation in RFS on average. The combination of TRS and clinicopathologic prognostic factors 
explained 23–72% of variation in RFS, with a median of 54.5%. Our method and findings are useful for 
developing new prognostic tools in PCa and other cancers.

The state of an increasing prostate-specific antigen level after radical prostatectomy (RP) or radiation therapy 
(RT) for localized prostate cancer (PCa) is known as biochemical recurrence (BCR) or biochemical relapse. The 
rate of BCR following RP was estimated to be 20‑40%. BCR is the first sign for disease relapse and subsequent 
lethal metastases1, occurring within a wide time span from a few months to over 15 years following the initial 
therapy2. Cases of PCa progression with undetectable or low PSA levels have rarely been observed3,4. In the 
absence of secondary treatment, patients with BCR have an approximate median period of 5–8 years prior to 
clinical progression2,3. BCR events usually occur among patients with at least one of the primary and secondary 
prevalent Gleason patterns (GPs) being graded as 4 or 5. BCR risk and disease-specific mortality increase with 
the climbing proportions of the GP-4 and GP-5 components, from 3 + 3 with tertiary 4 to 3 + 4, 4 + 3 and 4 + 4, 
in prostatectomy specimens5–7. Prostate cancer without GP-4 or GP-5 components is unable to metastasize or 
cause cancer-associated mortality, in addition to having a low risk rate for BCR8,9. BCR and BCR-free survival 
are significantly associated with overall survival (OS), but they are poorer as surrogate endpoints for OS than 
metastasis-free survival10.

The Gleason score (GS) is the sum of the grades of the first and second Gleason patterns of a primary cancer 
sample. Within the same GS group, individual cancers have heterogeneous molecular mechanisms, implicat-
ing varied progression potential. In particular, even patients with GS ≥ 8 can experience favorable oncological 
outcomes11. In this regard, stratifying GS ≥ 7 into relapse risk groups is pivotal to the management of prostate 
cancer. For example, it can be helpful for scheduling follow-up surveillance after the initial treatment.
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In past years, several studies have focused on mining predictive marker sets (signatures) for BCR or relapse-
free survival (RFS) from high-throughput molecular data resources. The numbers of the involved genes in the 
identified signatures range from four to a few dozen12–16. While those signatures were valid for the datasets or 
experimental settings in the reported studies, their robustness and prognostic utility could be uncertain due to 
drawbacks in the design/analysis, such as the inclusion of low-risk GS-6 cancer samples in the datasets used13,14,16 
and/or the lack of sufficient validation using external datasets14,16. Moreover, the strategy of identifying a signa-
ture for the prediction of cancer relapse from the top differentially expressed genes between tumors and normal 
samples or between benign tumors and malignant tumors was usually adopted in those studies12,14. As such, 
overfitting likely arose due to the lack of a mechanism to reduce the risk of its occurrence. An additional chal-
lenge is that a molecular signature with a practical application perspective should complement clinicopathologic 
prognostic factors such as GS in outcome prediction. In a recent report, Wu et al12 addressed this issue, but our 
preliminary analysis demonstrated that their result obtained from analyzing the Cancer Genome Atlas Prostate 
Adenocarcinoma (TCGA-PRAD) dataset could not be confirmed using other datasets (see Results section).

In this study, we aimed to identify a robust predictive gene expression signature for BCR in patients with 
Gleason score (GS) ≥ 7 cancers. To achieve our goal, a data-driven and biologically informed stochastic approach 
was developed, which begins with the use of the TCGA-PRAD dataset to identify differentially expressed genes 
regarding TP53 mutation status in cancer samples. In the cohort, TP53 mutations are less frequent than PTEN 
mutations but are more enriched than aberrations in other key oncogenes and/or tumor suppressors such as 
KRAS, BRAF, EGFR and MYC17. Our methodology conceived with the hypotheses that a TP53 mutation status-
associated prognostic gene signature could be robust, namely, the prediction strength for BCR could keep when 
the gene expression levels in the datasets of different patient cohorts are measured with varied platforms and 
experimental settings. Underlying this perception is the fact or finding that the prevalence of somatic TP53 
mutations in advanced forms of PCa is approximately 4 times the quantity in primary cancer17,18, which sug-
gests that the genes with TP53 mutation status-associated transcription could be enriched with prognostic and 
etiological factors for cancer relapse.

Material and methods
Signature discovery.  Scheme.  The stochastic approach we have developed for identifying a gene expres-
sion signature for BCR is data-driven and biologically informed. It includes three modules (A, B and C parts of 
Fig. 1). First, using the TCGA-PRAD dataset, the genes differentially expressed between the tumors with somatic 
TP53 mutation(s) and those without mutations on the gene are detected. Second, 1000 small (size = 25. See the 
“Remark” paragraph) subsets of genes are randomly sampled from the output of first modules, and their predic-
tive strengths for BCR are assessed with the area under the receiver operating characteristic curve (AUC) and 
Fisher’s exact test p-value. For each of the gene subsets (random signatures), the two performance metrics are 
calculated according to the predicted BCR risk category and decision values of individual subjects from support 
vector machine-based leave-one-out cross validation (SVM-LOOCV). Third, the results from the second mod-
ules are integrated using a “filter” and a “wrapper” to obtain an optimized gene signature.

Filter.  The filter works via two operations. OP-1: The gene subsets whose AUCs and p-values meet the cutoffs 
of ≥ 0.65 and ≤ 0.0001 (see the “Remark” paragraph) are selected. OP-2: The genes with at least three hits in the 
selected subsets are collected as the “initial” signature.

Wrapper.  Suppose the initial signature contains m genes and denote it by a character vector 
G =

{

g1, g2 . . . . . . , gm
}

 . The wrapper is designed to refine G and is realized via the following algorithm.

(1)	 A numeric vector A =
{

A(−1),A(−2) . . . . . .A(−m)

}

 is calculated, where A(−i) represents the SVM-LOOCV 
AUC obtained when all the genes in G except for gi are used as the features for predicting BCR.

(2)	 The elements of vector A are sorted in ascending order to generate A∗ =
{

A∗
1,A

∗
2 . . . . . .A

∗
m

}

 . Correspond-
ingly, the gene vector G is rearranged to generate G∗ =

{

g∗1 , g
∗
2 . . . . . . , g

∗
m

}

.
(3)	 Specify the lower limit of the size of a desired signature, such as 10, and denote it with k. A numeric vector 

B =
{

B(−1:1),B(−1:2) . . . . . .B(−1:(m−k))

}

 is calculated, where B(−1:i) represents the SVM-LOOCV AUC 
obtained when the genes 

{

g∗i+1, g
∗
i+2 . . . . . . , g

∗
m

}

 are used as the prediction features. The genes correspond-
ing to individual elements of B are counted, and the numbers are collected into an integer vector C.

(4)	 Create scatter plot with C as x-axis and B as y-axis, and model the relationship between C and B with a 
single-mode smooth-splining curve. The data point adjacent to the mode of the curve from the left side is 
visually pinpointed, and the corresponding gene set (a subset of G∗ ) is determined as the finally selected 
signature.

Remark.  The parameters used in the discovery procedure were set by referring to the results of a preliminary 
study. These results include (1) a random signature consisting of 10–200 genes rarely demonstrated a prediction 
strength of AUC ≥ 0.70 and p ≤ 0.00001; and (2) among numbers 10, 25, 50, 100 and 200, the second was the 
best as the size of the gene subset for efficiently selecting candidate prognostic signatures that could meet the 
modestly specified performance criteria.

After the signature for BCR prediction was identified, its robustness and prognostic utility were future evalu-
ated by the analyses outlined in the parts D1 and D2 of the Fig. 1.
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Statistics and machine learning methods.  SVM‑LOOCV.  First, based on the clinical outcomes re-
garding binary BCR occurrence, the N cancer cases in a cohort are divided into two classes: BCR- (“−1” group) 
and BCR+ (“1” group). The labels of these cancer cases are then saved in a vector Y = (y1, y2, . . . yi , . . . yN ), 
where yi ∈ (−1, 1) . After that, the (assumedly unknown) class of a leave-out tumor i is predicted from its gene 
expression profiling ( 

⇀
x
i
) of the signature genes by the SVM model, which is trained on the data ({

⇀
x
j
; yj} ) of the 

other N−1 samples. That is,

In the equations, ẑi denotes the predicted category (1 or −1) for the ith sample; ti is the decision value, 

k

(

⇀
x
j
,
⇀
x
i

)

 is the kernel function, and {aj } and b are the model parameters decided in the previous training process. 

Third, by summarizing the true label vector Y and the output label (i.e., predicted label) vector 
Ẑ =

(

ẑ1, ẑ2, ẑ3, . . . . . . ẑN
)

 , a 2× 2 contingency table is generated, on which Fisher’s test of independence is 
performed. Finally, by combining the true label vector Y and an assemblage of tumor sample classifications based 
on the vector of decision values T = (t1, t2, t3, . . . . . . tN ), i.e. the transcriptomic risk scores estimated from SVM-
LOOCV, and serially changed cutoffs, a receiver operating characteristic curve is generated and the AUC is 
calculated.

ẑi = sign(ti), ti =

j �=i
∑

j∈S

ajyjk

(

⇀
x
j
,
⇀
x
i

)

+ b, S = {1, 2, 3, . . . . . . ,N}
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Figure 1.   Flow chart of the identification approach (A,B,C) and performance/utility evaluation (D-1, D-2) 
of a TP53 mutation status-associated predictive transcriptomic signature for BCR. In A, the top differentially 
expressed genes (DEGs) regarding TP53 statuses were identified. In (B), 1000 small subsets of the DEGs were 
randomly sampled and their predictive strengths for BCR were assessed by SVM-based cross validation. In 
(C), the results from (B) step were integrated by a “filter” and a novel “wrapper” to obtain an optimized gene 
signature. In (D1) and (D2), the performance of the finally selected signature for BCR prediction and the 
clinical utility were evaluated in the TCGA dataset and five external datasets using statistical and machine 
learning methods. See the main text for a more detailed explanation.
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Survival analysis.  The association between the predicted BCR groups and relapse-free survival (RFS) was 
evaluated with the p-value from the log-rank test. The performance comparison between transcriptomic risk 
scores and clinicopathologic prognostic factors was conducted using Cox-PH regression models. The explained 
variation (R2), i.e., the proportion of variability in the outcome variable RFS explained by the explanatory 
variable(s), was calculated using Royston’s method19. The goodness-of-fit of a survival model was also evaluated 
with Schwarz’s Bayesian information criterion (BIC). When picking from several models, the model with a lower 
BIC value is generally preferred.

Software and application notes.  Statistical/computational analysis was completed using the relevant functions 
in the R packages “stats”, “01,071”, “AUC”, “survival” and “survMisc”, as well as our labor-owned R codes. In the 
implementation of the SVM() function, except for the specially noted cases, a linear kernel was used, the class 
weights were specified as the reciprocals of the ratios between the “1” samples to the “−1” samples in the train-
ing set, and defaults for the hyperparameter cost and gamma were held on. The p-value from two-tailed Fisher’s 
exact test was calculated in evaluating the randomly sampled signatures (gene subsets), and the p-value from 
one-tailed Fisher’s exact test was calculated in evaluating the finally identified signature. In the analyses where 
BCR was treated as a binary endpoint, the time from the initial PCa diagnosis to relapse for a BCR+ sample and 
to the end of follow-up for a BCR- sample were not considered.

Data.  The clinical data of the six cohorts used as the discovery set (the TCGA-PRAD cohort) or testing/
validation cohorts (the GSE54460 and others) in this study are summarized in Table 1. While these cohorts were 
filtered by the criterion of GS ≥ 7 preceding our advanced analysis, we still denoted them with the IDs given in 
the source database. The following is a brief description of the gene expression datasets of those cohorts.

Discovery dataset.  The level-3 gene expression dataset (version 2) of TCGA-PRAD samples was downloaded 
from the Genomic Data Commons Data Portal. The TCGA group performed RNA-Seq experiments on an Illu-
mina HiSeq platform and estimated the gene expression levels by transcripts per million (TPM) values using an 
expectation maximization method and RSEM software20. Log2 transformation on this dataset was performed 
preceding the analysis.

Testing (validation) datasets.  All the gene expression datasets (the series matrices) of the testing cohorts were 
downloaded from the Gene Expression Omnibus (GEO) database. The authors of GSE5446021 performed RNA-
Seq experiments with the Illumina HiSeq 2000 platform, mapped shorts reads on the human genome hg19 
assembly using TopHat and Bowtie software, and estimated gene expression levels with fragments per kilobase 
million (FPKM) values using Cufflinks software. The authors of GSE8404222 performed microarray experiments 
with Affymetrix Human Gene 2.0 ST array and preprocessed expression intensities using the robust multichip 
average (RMA) algorithm23 and log2 transformation. The authors of GSE2103224 performed microarray experi-
ments using Affymetrix Human Exon 1.0 ST Array and preprocessed expression intensities using RMA and 
quantile normalization. We performed log2 transformation on the downloaded dataset, which contained tran-
script (Refseq RNA) expression levels. For a gene with two or multiple transcript IDs, we chose the one whose 
expression levels across samples had the largest interquartile range (IRQ) as the representative. The raw data of 
GSE70768 and GSE70769 were generated by the same authors using Illumina HumanHT-12 V4.0 Expression 
BeadChip16. We first downloaded the two matrices of the non-normalized expression levels of the two cohorts 
and removed the columns for the samples that would not be used in our analysis. Then, quantile normalization 
and log2 transformation were applied. For a gene with two or multiple probes, we chose the one whose expres-
sion levels across samples had the largest IRQ in the GSE70768 cohort as the representative. Finally, we homog-
enized the two normalized expression matrices to make them have the same global 75% quantile.

Result
TP53 mutation status‑associated (TP53‑mut‑ass) genes.  We selected 720 TP53-mut-ass genes via 
the following procedure. First, based on the entire expression matrix of the TCGA-PRAD cohort, the genes 
unexpressed in at least half the samples were filtered out. The expression levels of those excluded genes were 
typically very low, even in the samples where the quantities were not zero. As such, we assume they may be not 
activated in prostate tissue actually and could hardly save as reliable prognostic features. Second, a t-test for the 

Table 1.   Summary of the used datasets regarding clinicopathologic characteristics of patients.

Data ID Sample sizes

Sample partition on Gleason 
pattern (primary + second)

Sample partition on 
clinical T-stage

BCR %

Interquartile 
of ages at diag

3 + 4 4 + 3 3 + 5, 4 + 4|5, 5 + 4|5 T1 T2 T3 NA Q2 Q3

TCGA-PRAD 366 114 83 169 124 133 48 61 13.6 57.0 66.5

GSE54460 95 56 24 15 10 67 18 0 53.7 56.7 66.3

GSE84042 57 40 17 0 0 28 29 0 24.6 56.2 63.9

GSE21032 89 53 21 15 43 42 4 0 28.1 54.3 61.8

GSE70768 95 65 21 9 47 32 14 2 20.0 56.0 65.0

GSE70769 70 36 19 15 26 32 9 3 62.9 NA NA
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difference in the average expression levels between TP53-mutant and wild-type GS ≥ 7 samples was performed 
to scan the ~ 17,700 genes that remained after the first step. Third, the p-values estimated in the second step were 
adjusted by the BH method and adj. p < 0.05 was used as the cutoff for gene selection.

Transcriptomic signature for BCR.  We identified a 25-gene transcriptomic signature from the TP53-
mut-ass genes for predicting BCR. Coincidentally, the number of member genes was equal to the size of a 
random signature tested in the second module of our approach. It was also within the range of sizes of PCa 
prognostic gene signatures identified by other research groups12–16. The signature was not enriched with the 
genes in any gene ontology (GO) term or KEGG pathway, as demonstrated by a functional enrichment analysis 
using the DAVID tool/database50. However, it was enriched (p = 0.02, from Fisher’s exact test) with the can-
cer gene census (downloaded on April 16, 2020) established by the Catalog of Somatic Mutations in Cancer 
(https://​cancer.​sanger.​ac.​uk/​cosmic). The cancer genes contained in the census included CDKN1A, LARP4B and 
SLC45A3. Previous studies showed that LARP4B inhibited the migration and invasion of prostate cancer cells32, 
SLC45A3 downregulation was significantly associated with shorter PSA-free survival times, and the expres-
sion of SLC45A3 protein was downregulated through SLC45A3-ERG fusion51. Moreover, a recent study demon-
strated that another 16 genes in the signature were relevant to the formation and progression of prostate cancer 
and/or other cancers (Table 2). For example, Zhao et al. found that SMC4 knockdown reduced migration and/
or invasion of cancer cells and that outlier expression of the gene was significantly associated with poor PCa 
prognosis45, and Jiang et al. showed that overexpression of SMC4 activated TGFβ/Smad signaling and promoted 
an aggressive phenotype in glioma cells44.

Predicting BCR.  The performance of the identified signature for BCR prediction was finally evaluated using 
the TCGA-PRAD dataset and validated using five external datasets (Fig. 2).

Table 2.   Signature genes and their relevance to PCa and/or other cancers.

Symbol Name
Relevance with cancer/tumor/patient and 
references

CDKN1A cyclin dependent kinase inhibitor 1A Variants; advanced PCa25

DDB1 damage specific DNA binding protein 1 Apoptosis, chemo-resistance regulation and progres-
sion; multiple cancer types26–28

EIF5A2 eukaryotic translation initiation factor 5A2 Cell growth, metastasis, chemotherapy resistance; 
multiple cancer types29,30

GCDH glutaryl-CoA dehydrogenase

GK3P glycerol kinase 3 pseudogene

KIAA0196 Strumpellin Amplified and overexpressed; PCa31

LARP4B La ribonucleoprotein 4B Cell migration and invasion; PCa32

NAA50 (NAT13) N-alpha-acetyltransferase 50, NatE catalytic subunit

NDUFA9 NADH: ubiquinone oxidoreductase subunit A9 Cell Proliferation, Metastasis; breast cancer33

NFATC3 nuclear factor of activated T cells 3 Tumor growth, cell proliferation and migration; 
astroglioma34

NUMB NUMB endocytic adaptor protein Invasion, metastasis, migration; melanoma 35, colon 
cancer36

OIP5 Opa interacting protein 5 Growth, metastasis and drug-resistance; bladder 
cancer37

PFKFB2 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 
2 Glycolysis, cell proliferation; pancreatic cancer38

PLEKHF2 pleckstrin homology and FYVE domain containing 2 Amplified, Survival; PCa39

RASIP1 Ras interacting protein 1 Cell migration; non-small-cell lung cancer cells lines40

RNF167 ring finger protein 167 Activates mTORC1 and promotes tumorigenesis; 
breast and liver cancer cell lines. 41

SELENBP1 selenium binding protein 1 Tumor growth, progression, survival; lung cancer42, 
PCa43

SLC45A3 solute carrier family 45 member 3 SLC45A3-ERG fusion, survival; PCa43

SMC4 structural maintenance of chromosomes 4 TGFβ/Smad signaling, cell invasion; glioma cells44, 
PCa45

TMEM87A transmembrane protein 87A Cell proliferation and metastasis; gastric cancer46

UBXN2B UBX domain protein 2B

SRSF10 (SFRS13A) serine and arginine rich splicing factor 10 Maintenance of oncogenic features; colon cancer cells47

C3orf67 Chromosome 3 open reading frame 67

C14orf169 (NO66) Chromosome 14 open reading frame 169 Osteolytic lesions, invasion and metastasis; PCa48

LOC678655 (CD27-AS1) CD27 antisense RNA 1 Progression; acute myeloid leukemia49

https://cancer.sanger.ac.uk/cosmic
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While SVM-LOOCV, a strategy appropriate for accurately estimating the performance of a classification 
model, was adopted, testing on the TCGA-PRAD cohort was subject to overfitting. Namely, the obtained pre-
diction strength (AUC = 0.837; p-value = 5× 10−13 ) could be overestimated for the patient population(s) rep-
resented by this cohort. The reason was that the gene signature was discovered in the same dataset. In this 
regard, we performed a complementary analysis to verify the prediction robustness, i.e., to demonstrate that the 
observed performance was not due to the specific data body exactly consisting of the expression profiling and 
BCR statuses of all 366 focused samples. Briefly, 500 working sets with size n = 330 (366 × 0.9) were generated 
from the TCGA-PRAD dataset by non-replacement sampling, and on each of them, the SVM-LOOCV AUC 
was estimated after its expression matrix was altered by artificial noise. The noises were introduced by a two-step 
procedure: (i) the expression levels of the signature genes were rescaled by z-transformation, and (ii) random 
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Figure 2.   The performance of the TP53 mutation status-associated transcriptomic signature for BCR prediction 
in the discovery dataset TCGA (-PRAD) and five external datasets, i.e., the GSE54460 and others. The “-linear”, 
“-polynomial” and “-radial” indicate the kernel functions used in the SVM models. The output BCR label and 
decision value, i.e. the transcriptomic risk score (TRS) of a patient in GSE70769 was predicted by the model 
trained using the GSE70768 dataset. For the patients in other cohorts, the labels and scores were predicted 
via LOOCV. Together with the actual BCR labels, the output BCR labels and TRSs are used to calculate a 2 × 2 
contingency table for estimating the p-value and to generate the ROC curve, respectively. Sn and Sp denote 
sensitivity and specificity, respectively.
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noises x ∼ norm(0, 0.1) were added to the standardized expression metrics (in this setting, the variance of the 
introduced noise was equal to 10% data variance). The results from this analysis showed that the 0.05 and 0.95 
quantiles of the 500 AUC values were 0.688 and 0.803, respectively, and only 0.6% of them were less than 0.65.

The results from GSE54460 and GSE84042 clearly validated the signature. First, both of the two SVM-LOOCV 
AUC values were over 0.70. Second, in establishing the SVM model, a simple linear kernel was used, and no 
hyperparameters were tuned. For the GSE21032 dataset, the output from the polynomial-kernel (with defaults 
for other hyperparameters) SVM model was somewhat better than that from the linear-kernel model (0.681 vs 
0.652). For the GSE70768 and GSE70769 datasets, tuned hyperparameters (i.e., cost and gamma) were required 
to obtain prediction strength. In such a scenario, the final performance had to be assessed on an independent 
dataset. Due to the limited cohort sizes and the imbalance in BCR statuses, we could not partition either of the 
GSE70768 and GSE70769 datasets into a substantial training subset and a substantial testing subset. As such, 
we addressed these two datasets by considering the former as the training set and the latter as the testing set, the 
same setting used in the original study16. With the optimized cost and gamma (0.105 and two-thirds the inverse 
of the feature dimension), the training set had an SVM-LOOCV AUC of 0.794 and a p-value of 2.1× 10−5 . When 
the model trained with all the samples in the training set was used to predict the samples in the testing set, the 
external validation AUC and p-value were 0.632 and 1.3× 10−2 , respectively.

Predicting RFS.  We further evaluated the prognostic performance of the identified signature by testing the 
association between the stratification of disease relapse-free survival and the predicted BCR partition via SVM-
LOOCV. Suppose pre-BCR+ and pre-BCR- represent the predicted “positive” and “negative” groups, respectively. 
The results of survival analysis showed that for each cohort, the Kaplan–Meier curve of the pre-BCR- group was 
better than the curve of pre-BCR+ (Fig. 3). The p-values from the log-rank test of the differences ranged from 
2.8× 10−2 (for the GSE84042 cohort) to 3.3× 10−13 (for the TCGA-PRAD cohort).

Practical utility: compared with clinicopathologic factors.  We deciphered the practical utility of 
the identified gene signature by comparing its capability to stratify patient RFS with that of clinicopathologic 
prognostic factors (CPFs). The considered CPFs consisted of Gleason patterns (GPs), T stages (T1, T2, T3) and 
patient ages at initial PCa diagnosis. In particular, regarding GPs, we partitioned patients into three categories, 
i.e., 3 + 4, 4 + 3 and the other. On each dataset (cohort), the analysis was conducted by running three Cox-PH 
regression models. The first (M-1) included the transcriptomic risk score (TRS), which was estimated by the 
decision value outputted from SVM-LOOCV for individual subjects, as the only explanatory variable. The sec-
ond (M-2) and third (M-3) included the three CPFs or both the TRS and CPFs as the explanatory variables, 
respectively. The performance and validity of a model were assessed by the explained variation (R2), BIC and 
global log rank p-value.

Except for M2 in GSE84042, all three models were significant (p < 0.02) in the six cohorts. M-1 performed 
better than M-2 in GSE54460, GSE84042 and GSE70768 in terms of the higher R2 values and/or lower BIC values 
but was poorer in the other three cohorts. All the R2 values from M-3 were higher than those from both M-1 and 
M-2, while its BIC value in GSE21032 was slightly higher than the score of M-2. From the statistics itemized in 
Table 3, we derived two conclusions about the prognostic utility of our gene signature. First, TRS could explain 
9–60% of the variation in RFS, with an average of 28.2%. Second, TRS could replace and/or complement CPFs 
to predict RFS, and the combination of TRS and CPFs could explain 23–72% of the variation in RFS, with a 
median of 54.5%.

Reevaluating the documented signatures.  To demonstrate the relative advantage of our signature, we 
reevaluated the prognostic performance of five transcriptomic signatures identified by other researchers. Here, 
we provide a brief description of those signatures before discussing the results. The methods used in the identi-
fication are outlined in Supplementary Text 1.

Wu’s signature.  The 10-gene signature was identified for predicting BCR in the GS ≥ 7 patient set12. The dataset 
of 414 TCGA-PRAD prostate adenocarcinoma samples (including 37 GS = 6 samples) was used as the discovery 
(training) set.

Li’s signature.  The signature consisted of 74 gene pairs from a combination of 60 genes13. It was identified to 
predict BCR, regardless of Gleason scores or patterns. The entire GSE21032 (N = 131) cohort was used as the 
discovery set. The 60 genes were considered individual features in our analysis. Li et al.’s work also included the 
analysis of two datasets (i.e., GSE46602 and GSE40272) that were not addressed in our study. The reasons were 
that there were only 20 GS ≥ 7 samples in the former, and Gleason score information is unavailable in the latter.

Komisarof ’s signature.  The signature included four cooperation response (to oncogenic mutations) genes14,52. 
It was identified to predict BCR, regardless of Gleason scores or patterns. The discovery cohort consisted of 32 
samples.

Erho’s signature.  The signature consisted of 22 features (genome fragments) located on the coding or noncod-
ing regions of 19 genes15. It was identified to predict early prostate cancer metastasis and is being used in the 
commercial Decipher Prostate Genomic Test (https://​decip​herbio.​com/). The discovery cohorts contained 359 
samples.

https://decipherbio.com/
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Knezevic‑Klein’s signature.  The 17-gene signature was identified to predicts clinical recurrence, prostate cancer 
death, and adverse pathology53,54, and is being used in the commercial Oncotype DX Genomic Prostate Score 
Test (https://​www.​oncot​ypeiq.​com/​en-​US). The discovery cohort consisted of 441 patients.

Performance summary.  Among these five signatures, only Knezevic-Klein’s signature demonstrated prediction 
strength for BCR on all the six datasets in the SVM-LOOCV reevaluation (Supplementary Fig. S1, S2, S3, S4, 
S5). In particular, the BCR statuses of the samples in GSE84042 could not be predicted by any one of the other 
four signatures. However, Komisarof ’s signature in GSE54460 and Li’s signature in GSE21032 had higher AUCs 
(0.766 vs 0.724 and 0.859 vs 0.681) and lower p-values (1.2 × 10–4 vs 7.4 × 10–4 and 1.2 × 10–6 vs 3.3 × 10–2) than 
our signature, respectively. Here, we specifically noted the following three points. First, due to the preceding 
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Figure 3.   The association between RFS stratification and the BCR partition predicted using the TP53 mutation 
status-associated prognostic transcriptomic signature in the discovery dataset TCGA (-PRAD) and five external 
datasets, i.e., the GSE54460 and others. The “-linear”, “-polynomial” and “-radial” indicate the kernel functions 
in used the SVM models. The output BCR label (pre-BCR+ and pre-BCR-) of a patient in GSE70769 is predicted 
by the model trained using the GSE70768 dataset. For the patients in other cohorts, the labels are predicted via 
LOOCV. The survival profiles of pre-BCR+ and pre-BCR- samples are depicted by red and black Kaplan–Meier 
curves, respectively.

https://www.oncotypeiq.com/en-US
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information leak in the identification process, the good performance of Li’s signature in GSE21032 might be 
overestimated. Second, when Li’s signature was applied to the GSE21032 dataset, the polynomial-kernel SVM 
worked better than the linear-kernel SVM, similar to the situation in evaluating our signature. Third, the mod-
est significant performance (AUC = 0.627 or 0.644, and p < 0.1) of Wu’s and Erho’s signatures on the GSE70768 
dataset was obtained after the post hoc optimization of the hyperparameter cost and gamma of the SVM model, 
again similar to the situation in evaluating our signature. The last two points indirectly verified the reliability of 
the observed performance of our signature on these two datasets.

Extended analysis.  In this subsection, we demonstrated that the approach proposed in this study was also 
efficient for identifying prognostic signatures from the gene set defined by a specific cancer progression-related 
biological theme. The activity of genes involved in immunology pathways is such a theme55–57.

We identified an immune signature of 16 genes (SPARC, IFNAR2, FOXQ1, G3BP1, IKBIP, BAT1, AZIN1, 
ZDHHC17, RRAS, DOK7, DMRTA1, ACTG1, AGFG1, M6PR, MED7, and PSAPL1) from ~ 1200 immune func-
tion- or regulation-related genes58. A couple of minor modifications were made in the method implementation: 
(i) the number of random signatures to be tested was increased from 1000 to 2000 and (ii) a gene to be selected 
to the initial signature had to be included in 2 (rather than 3) random signatures that met the criteria of AUC 
(> 0.65) and p-value (< 0.0001) in predicting the BCR statuses of the TCGA-PRAD samples.

This immune signature was evaluated on the six datasets by the same methods and model settings as used 
in the aforementioned tests. The results showed that the expression profiles of the signature genes could predict 
both BCR and RFS (Supplementary Fig. S6, S7). Except for GSE84042, in which it lacked prediction strength, 
its performance was comparable with the signature extracted from the TP53-mut-ass genes.

Discussion
In this study, using the data generated by the TCGA-PRAD group, we identified a transcriptomic signature to 
predict BCR in patients with Gleason score ≥ 7 prostate cancer according to gene expression levels measured 
from prostatectomy specimens. The 25-gene signature was a small portion of 720 genes that were differentially 
expressed (FDR < 0.05) between the samples with somatic TP53 mutation(s) and those without TP53 mutation. 
However, the prognostic signature is not tied to the mutation statuses and/or expression levels of TP53 itself and 
TP53 mutation analysis is not a pre-requisite for the expected utilization. The signature was evaluated on the 
discovery dataset and five external datasets, demonstrating robust prognostic performance not only for predicting 
BCR but also for stratifying RFS. The risk scores derived from the signature by SVM-LOOCV explained 9–63% 
of variation in RFS and could complement clinicopathologic prognostic factors.

The advantage of our TP53 mutation status-associated signature was clearly shown in the comparison with 
those (i.e., Li’s, Wu’s, Komisarof ’s, Erho’s and Knezevic-Klein’s) presented in recent literature and/or used in 
commercial prognostic tools regarding their performance on the same datasets. While Knezevic-Klein’s signa-
ture could predict BCR in all the six datasets, its performance was somewhat poorer than our signature in terms 
of AUCs and p-values, in general. Nevertheless, the reevaluation results of the five external signatures should 
be carefully scrutinized. For example, because Erho’s signature was identified to predict metastasis, which is 
preceded by BCR but is not equivalent to BCR, its deficient performance in predicting BCR should not allevi-
ate the potential prognostic utility. Moreover, in the original study, Li’s signature was identified and assessed by 
their paired-gene expression-based tree model, which might partially explain the poor robustness when it was 
tested using SVM-LOOCV.

The member genes of our signature were complementary to each other in predicting BCR, although no 
enrichment relationship was found between them (as a while) and any cancer pathway. Previous studies reported 
that the activity (expression) of 80% of these genes was related to cancer cell invasion, cancer progression and/
or patient outcomes (Table 2). However, according to our additional analysis with univariate regression models, 
none of them alone could consistently predict BCR and/or RFS in all the six datasets. Even the combination of 
the five genes, including LARP4B, PLEKHF2, SMC4, SLC45A3 and NO6632,39,44,45,48,51, whose clinical relevance 
and prognostic implications were observed in prostate cancer, had very limited prediction strength for BCR 
and RFS (not reported in the Results section). In this regard, we perceived that due to the complicated clinical, 
genetic, pathological and demographical heterogeneity of prostate cancer, a patient cohort may have specific 

Table 3.   Results from Cox regression model analysis.╫ ╫ The three models (M-1, M-2 and M-3) are specified 
by the included predictor variable(s) for cancer relapse-free survival. TRS: transcriptomic risk score. CPFs: 
clinicopathologic prognostic factors. See the main text for a more detailed description. ¶ BIC: Bayesian 
Information Criterion.

Data ID

M-1, TRS M-2, CPFs M-3, TRS + CPFs

R2 BIC¶ p-value R2 BIC p-value R2 BIC p-value

TCGA-PRAD 0.43 475.18 1.1 × 10–10 0.44 421.18 5.8 × 10–7 0.63 403.45 2.2 × 10–11

GSE54460 0.12 417.59 5.8 × 10–4 0.16 429.32 7.5 × 10–3 0.23 426.79 7.6 × 10–4

GSE84042 0.36 99.29 2.2 × 10–3 0.17 109.63 2.6 × 10–1 0.51 104.67 1.3 × 10–2

GSE21032 0.09 205.6 7.4 × 10–3 0.58 192.68 8.5 × 10–9 0.58 195.52 2.1 × 10–8

GSE70768 0.60 126.27 9.2 × 10–8 0.41 143.26 1.9 × 10–3 0.72 130.37 9.8 × 10–8

GSE70769 0.09 327.67 9.0 × 10–3 0.17 308.64 9.9 × 10–3 0.25 306.2 1.2 × 10–3
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gene expression prognostic factors, and a robust transcriptomic signature should include the genes that could 
cover such heterogeneity.

Our signature was identified using the data-driven and biologically informed stochastic approach developed 
in this study. It was characterized with a couple of points. First, a biological information source (i.e., somatic TP53 
mutation profile) critical to cancer progression was used to select a set of candidate signature genes. Naturally, 
this was a step of introducing external information (knowledge), which has been adopted in our and others’ pub-
lished studies59,60. Second, the ranks of candidate genes regarding their differences in expression levels between 
BCR-positive and BCR-negative samples were not considered in any steps. Alternatively, the chance of a gene 
being selected into the initial (and final) signature was determined by the post hoc performance of the random 
signatures that contained it. As such, the member genes of the final signature did not exclusively consist of the 
discovery set-specific top BCR-distinguishing genes. Our expectation that such a design could reduce the risk 
of overfitting was verified by the aforementioned results.

Another novel component of our approach is the algorithm denoted by “wrapper”, which was designed to filter 
out the genes that erode the prediction strength that can be expected from a reduced signature without them. The 
wrapper somewhat resembles the backward variable selection (BVS) procedure usually adopted by a multivari-
able regression analysis, in which the initially selected features (explanatory variables) are ranked based on their 
statistical significance level for explaining the outcome variable and the feature-dropping process begins from 
the least significant one. Meanwhile, it conceptually differentiates from BVS in that the benefit from dropping 
a potentially redundant feature is assessed by the AUC gain outputted from SVM-LOOCV rather than the R2 
(or its variants) and –log10(p-value) gain from fitting a reduced (linear) model. Therefore, the wrapper actually 
combines the model optimization of a regression analysis and the model validation step that is highly desired 
for avoiding overfitting. In this aspect, the wrapper is more similar to the recursive feature elimination (RFE) 
algorithm proposed in Ref61. However, in RFE, redundant features are iteratively dropped due to their relatively 
minor contribution to the SVM classifier rather than their negative impact on the expected prediction strength.

In the “Extended analysis” subsection of the Results section, we identified an alternative prognostic signa-
ture via a modified implementation of our approach, which consisted of 16 immune-related genes. By this, we 
demonstrated that the approach was also efficient for extracting prognostic signatures from a gene set under a 
specific cancer progression-related biological theme. Here, we further note that it can be adapted as a general fea-
ture selection method, contributing to more general applications of high-throughput data such as the molecular 
prediction of the subtypes and progression stages of a disease. The adaptation can be worked out by replacing 
the TP53-mut-ass gene set, or immune gene set, with any one that is enriched with the molecular diagnostic/
prognostic factors regarding the focused clinical trait in a specific study.

Data availability
The used TCGA and GEO datasets reside at https://​portal.​gdc.​cancer.​gov/ and https://​www.​ncbi.​nlm.​nih.​gov/​
geo/, respectively.
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