Table 3.
Performance metrics of the trained machine learning models.
Source: Author’s own work
Decision tree | Random forest | AdaBoost | SVM | Logistic regression | Neural network (one hidden layer) | Neural network (five hidden layers) | ||
---|---|---|---|---|---|---|---|---|
Train set | Accuracy | 1.0000 | 0.9999 | 1.0000 | 0.8012 | 0.7929 | 0.9997 | 0.9955 |
Precision | 1.0000 | 0.9972 | 1.0000 | 0.1250 | 0.1194 | 0.9902 | 0.8879 | |
Recall | 1.0000 | 1.0000 | 1.0000 | 0.7720 | 0.7635 | 1.0000 | 0.9986 | |
F1 score | 1.0000 | 0.9986 | 1.0000 | 0.2151 | 0.2066 | 0.9958 | 0.9698 | |
AUC | 1.0000 | 0.9999 | 1.0000 | 0.7871 | 0.8643 | 1.0000 | 0.9998 | |
Validation set | Accuracy | 0.9416 | 0.9622 | 0.9410 | 0.7982 | 0.7869 | 0.9481 | 0.9490 |
Precision | 0.1650 | 0.4375 | 0.1553 | 0.1288 | 0.1205 | 0.2391 | 0.2078 | |
Recall | 0.1405 | 0.0579 | 0.1322 | 0.7686 | 0.7521 | 0.1818 | 0.1322 | |
F1 score | 0.1518 | 0.1022 | 0.1429 | 0.2206 | 0.2078 | 0.2066 | 0.1616 | |
AUC | 0.5565 | 0.5275 | 0.5522 | 0.7840 | 0.8620 | 0.7502 | 0.6464 | |
Test set | Accuracy | 0.9358 | 0.9638 | 0.9380 | 0.8001 | 0.7940 | 0.9484 | 0.9515 |
Precision | 0.1293 | 0.6923 | 0.1441 | 0.1323 | 0.1267 | 0.2527 | 0.2464 | |
Recall | 0.1220 | 0.0732 | 0.1301 | 0.7724 | 0.7561 | 0.1870 | 0.1382 | |
F1 score | 0.1255 | 0.1324 | 0.1368 | 0.2259 | 0.2170 | 0.2150 | 0.1771 | |
AUC | 0.5449 | 0.5359 | 0.5499 | 0.7868 | 0.8577 | 0.7252 | 0.6430 |
(i) Precision denotes the share of true positives in total predicted positives; recall is the share of true positives in total actual positives; F1 score is the harmonic mean of the precision and recall; area under the curve (AUC) measures the ability of a classifier to distinguish between classes (on a scale from 0 to 1, with larger values signalising better performance)