Skip to main content
. 2022 Jun 23:1–20. Online ahead of print. doi: 10.1007/s00146-022-01490-3

Table 3.

Performance metrics of the trained machine learning models.

Source: Author’s own work

Decision tree Random forest AdaBoost SVM Logistic regression Neural network (one hidden layer) Neural network (five hidden layers)
Train set Accuracy 1.0000 0.9999 1.0000 0.8012 0.7929 0.9997 0.9955
Precision 1.0000 0.9972 1.0000 0.1250 0.1194 0.9902 0.8879
Recall 1.0000 1.0000 1.0000 0.7720 0.7635 1.0000 0.9986
F1 score 1.0000 0.9986 1.0000 0.2151 0.2066 0.9958 0.9698
AUC 1.0000 0.9999 1.0000 0.7871 0.8643 1.0000 0.9998
Validation set Accuracy 0.9416 0.9622 0.9410 0.7982 0.7869 0.9481 0.9490
Precision 0.1650 0.4375 0.1553 0.1288 0.1205 0.2391 0.2078
Recall 0.1405 0.0579 0.1322 0.7686 0.7521 0.1818 0.1322
F1 score 0.1518 0.1022 0.1429 0.2206 0.2078 0.2066 0.1616
AUC 0.5565 0.5275 0.5522 0.7840 0.8620 0.7502 0.6464
Test set Accuracy 0.9358 0.9638 0.9380 0.8001 0.7940 0.9484 0.9515
Precision 0.1293 0.6923 0.1441 0.1323 0.1267 0.2527 0.2464
Recall 0.1220 0.0732 0.1301 0.7724 0.7561 0.1870 0.1382
F1 score 0.1255 0.1324 0.1368 0.2259 0.2170 0.2150 0.1771
AUC 0.5449 0.5359 0.5499 0.7868 0.8577 0.7252 0.6430

(i) Precision denotes the share of true positives in total predicted positives; recall is the share of true positives in total actual positives; F1 score is the harmonic mean of the precision and recall; area under the curve (AUC) measures the ability of a classifier to distinguish between classes (on a scale from 0 to 1, with larger values signalising better performance)