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Interictal SEEG Resting-State Connectivity Localizes the
Seizure Onset Zone and Predicts Seizure Outcome

Haiteng Jiang, Vasileios Kokkinos, Shuai Ye, Alexandra Urban, Anto Bagíc,
Mark Richardson, and Bin He*

Localization of epileptogenic zone currently requires prolonged intracranial
recordings to capture seizure, which may take days to weeks. The authors
developed a novel method to identify the seizure onset zone (SOZ) and
predict seizure outcome using short-time resting-state
stereotacticelectroencephalography (SEEG) data. In a cohort of 27
drug-resistant epilepsy patients, the authors estimated the information flow
via directional connectivity and inferred the excitation-inhibition ratio from the
1/f power slope. They hypothesized that the antagonism of information flow
at multiple frequencies between SOZ and non-SOZ underlying the relatively
stable epilepsy resting state could be related to the disrupted
excitation-inhibition balance. They found flatter 1/f power slope in non-SOZ
regions compared to the SOZ, with dominant information flow from non-SOZ
to SOZ regions. Greater differences in resting-state information flow between
SOZ and non-SOZ regions are associated with favorable seizure outcome. By
integrating a balanced random forest model with resting-state connectivity,
their method localized the SOZ with an accuracy of 88% and predicted the
seizure outcome with an accuracy of 92% using clinically determined SOZ.
Overall, this study suggests that brief resting-state SEEG data can
significantly facilitate the identification of SOZ and may eventually predict
seizure outcomes without requiring long-term ictal recordings.
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1. Introduction

Epilepsy is one of the most common neuro-
logical diseases[1] impacting about 70 mil-
lion people in the world. At least one-third
of epilepsy patients become drug-resistant
and potential candidates for surgical resec-
tion or neuromodulation treatment.[2] The
key to successful epilepsy surgery relies on
accurate localization and safe removal of
the epileptogenic zone (EZ)[3] and an under-
standing of an individual patient’s seizure
network.[4] An integral component for the
delineation of the EZ is the seizure onset
zone (SOZ): the area of cortex that initiates
clinical seizures as determined predomi-
nantly by intracranial investigations.[5] Al-
though surgery and neuromodulation have
been proven efficient in seizure reduction,
the percentage of patients with unfavorable
seizure outcomes leaves significant room
for improvement.[6]

Stereotactic-electroencephalography
(SEEG) is a well-established and safe neu-
rosurgical approach[7] to identify epileptic
regions for intervention with intracere-
bral electrodes to record ictal/interictal
brain activity.[7,8] The golden standard of
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localization of epileptogenic brain regions in clinical practice
typically depends on capturing multiple seizures during the in-
tracranial monitoring process, that may take multiple days or
even weeks to complete.[9] As such, a method which can esti-
mate SOZ and predict prognosis outcome from analysis of brief,
resting-state data segments would have tremendous clinical val-
ues to identify epileptogenic networks without requiring pro-
longed intracranial recordings, which would vastly improve pa-
tient care and reduce medical cost.[10]

In a healthy state, the balanced excitation and inhibition in
brain networks is regulated to facilitate information transfer and
communications between remote functional regions.[11] A num-
ber of studies have indicated that neuronal oscillations could
transfer information at different frequencies, and oscillatory dys-
function has been implicated in almost every major psychi-
atric and neurological disorders.[12] More specifically, it has been
demonstrated that low-frequency activity (LFA, <30 Hz), high-
frequency activity (HFA, >30 Hz), and LFA to HFA cross-
frequency interactions of the epilepsy network are disrupted.[13]

For example, high-frequency oscillations (HFOs),[14] interictal
epileptiform discharges (IEDs),[15] and phase-amplitude cou-
pling (PAC)[16] have been widely investigated as promising clin-
ical biomarkers for epilepsy.[17] However, HFOs, IEDs, and PAC
are all local biomarkers, while epilepsy is commonly consid-
ered as a network disease.[18] The underpinnings of seizure gen-
eration involve abnormal brain structures and aberrant func-
tional connections among these regions, leading to large-scale
network instability.[19] Resting-state network connectivity studies
have suggested predominantly increased functional connectivity
involving the EZ and surrounding structures,[10a] and stronger
inward directional connectivity toward EZ.[10b] Furthermore, de-
creased interictal network synchrony and local heterogeneity
were found to correlate with improved seizure outcome.[20]

Therefore, a better understanding of the functional architecture
of the epileptic network could help identify SOZ and improve
prediction of the seizure outcome.

In this work, we investigate information flow in resting-state
epilepsy networks, inferred from directional connectivity in a
cohort of 27 drug-resistant focal epilepsy patients. We hypothe-
sized that the excitation–inhibition balance is disrupted during
epilepsy resting state compared to the healthy resting state and
further reflected by aberrant information flow. Specifically, we hy-
pothesized that during the relatively stable epilepsy resting state,
there are antagonisms of information flow between SOZ and
non-SOZ regions at multiple frequencies. Furthermore, we spec-
ulated that the strength of antagonisms reflects intrinsic epilep-
tic network characteristic, which is eventually associated with
seizure outcome. The ultimate goal of this work is to develop a
method to identify the SOZ for treatment intervention and to pre-
dict treatment outcomes, based on brief resting-state SEEG data
without necessitating prolonged ictal recordings (Figure 1).

2. Results and Discussion

2.1. Dominant Information Flow from Non-SOZ to SOZ
Underlying the Resting State

First, we examined the confrontations of resting-state informa-
tion flows between SOZ and non-SOZ by comparing their differ-

ences in directional interaction both within-frequency and cross-
frequency. The within-frequency directional information flow
was calculated by directed transfer function (DTF),[21] while the
cross-frequency directional information was estimated by cross-
frequency directionality (CFD).[22] As shown in Figure 2A, mea-
sures of within-frequency information flow strength were signif-
icantly weaker from SOZ to non-SOZ than in the other direction,
over the wide frequency range (1–250 Hz). Furthermore, we ob-
served that SOZ exhibited significantly higher inward strength
(mean information received from other electrodes) than non-
SOZ (Figure 2B), but outward strength (mean information sent
to other electrodes) did not differ between the regions (Fig-
ure 2C). Note that the patterns were reversed during the ictal pe-
riod (Figure S1, Supporting Information). In the cross-frequency
directional interactions, both the SOZ phase to non-SOZ ampli-
tude and non-SOZ phase to SOZ amplitude CFD showed promi-
nent negative 1–4 to 40–150 Hz CFD (Figure 3A), indicating in-
formation flow from HFA to LFA. Since CFD varied across elec-
trode pairs to a different extent, we utilized k-means clustering to
extract the most consistent and strongest CFD pattern across all
electrode pairs.[23] After applying the k-means procedure in each
patient, we found the significant negative CFD from SOZ phase
to non-SOZ amplitude CFD (Figure 3B), suggesting the domi-
nant cross-frequency information flow from non-SOZ HFA to
SOZ LFA. Overall, the within-frequency and cross-frequency re-
sults indicated that the prevailing resting-state information flow
is always from non-SOZ to SOZ.

2.2. Higher Excitation–Inhibition Imbalance in SOZ versus
Non-SOZ Revealed by 1/f Power Slope During the Resting State

The differences in information flow between SOZ and non-SOZ
could be related to alternation in excitation/inhibition (E/I) bal-
ance. Based on computational modeling, it has been shown that
the E:I ratio could be estimated from the 1/f power slope, in
which the more negative power slope is associated with higher
excitation–inhibition imbalance.[24] Therefore, we investigated
the 1/f power slope as an indicator of E:I imbalance. After com-
puting the power spectrum between 1 and 250 Hz at each
electrode, the 1/f power slope was derived with the FOOOF
algorithm.[25] Among 116 SOZ and 573 non-SOZ electrodes, we
found that power slopes of SOZ were significantly more negative
than non-SOZ electrodes (two-sample t-test, p< 10−9, Figure 4A).
On a single patient basis, 21 out of 27 patients had a more neg-
ative power slope in SOZ (Figure 4B). Taken together, SOZ had
a more negative 1/f power slope in comparison to non-SOZ dur-
ing the resting state, probably reflecting the higher excitation–
inhibition imbalance in SOZ.

2.3. Larger Resting-State Information Flow Asymmetry Between
SOZ and Non-SOZ is Associated with Favorable Seizure
Outcome

Next, we investigated the association between the resting-state
connectivity and seizure outcome. Of these 27 patients, there
were 19 patients with Engel I outcome (70.4%), 4 patients with
Engel II outcome (14.8%), 3 patients with Engel III outcome
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Figure 1. Schematic illustration of the study design. Within-frequency and cross-frequency directional connectivity (indication of information flow), 1/f
power slope (indication of excitation and inhibition ratio) were investigated in the SEEG resting state data to predict SOZ and seizure outcome. LFA:
low-frequency activity; HFA: high-frequency activity; SOZ: seizure-onset zone; E:I: excitation:inhibition.

Figure 2. Within-frequency information flow during the resting state. A) Mean bidirectional information flows between SOZ and non-SOZ across all
electrode pairs and patients. The shaded gray area indicates significant differences at the p = 0.01 level after multiple corrections. B) Inward (receiving)
information flow strength in SOZ and non-SOZ. The shaded gray area indicates significant differences at the p = 0.01 level after multiple corrections. C)
Outward (sending) information flow strength in SOZ and non-SOZ. Data are shown in mean and standard error.
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Figure 3. Cross-frequency information flow during the resting state. A) Grand averaged SOZ phase to non-SOZ amplitude CFD (left panel) and non-SOZ
phase to SOZ amplitude CFD (right panel) across all electrode pairs and patients. (B) Grand averaged CFD after the k-means clustering procedure. The
SOZ phase to non-SOZ amplitude CFD is significant compared to zero. The error bar represents standard deviation. **p < 0.01.

Figure 4. 1/f power slope during the resting-state. A) Distribution of 1/f power slope values shifts leftward (more negative) in SOZ (red) versus non-SOZ
(blue) electrodes. B) Individual-patient comparison of averaged 1/f power slopes between SOZ (red) and non-SOZ (blue), each patient represented by
a pair of connected dots showing that the majority of patients (76.7%) had more negative slopes in SOZ compared to non-SOZ. ***p < 0.001.

(10.7%), and 1 patient with Engel IV outcome (3.7%). We classi-
fied Engel I outcome as seizure-free and Engel II–IV outcome as
the nonseizure free outcome. In the neural data, we found signif-
icant differences in within-frequency bidirectional information
flow between SOZ and non-SOZ in the broadband frequency
range in the seizure-free patients. At the same time, there was
no significant difference in nonseizure free patients (Figure 5A).
After averaging over the broadband frequencies, the differences
in seizure outcome were driven by weaker SOZ to non-SOZ in-
formation flow strength and stronger non-SOZ to SOZ infor-
mation flow strength in seizure-free patients (Figure 5B). Note
that we did not find such significant differences in the cross-
frequency information flow. Taken together, these suggested that
larger resting-state within-frequency information flow asymme-
try between SOZ and non-SOZ was associated with favorable
seizure outcome.

2.4. Individual Predictions of SOZ and Seizure Outcome with
Random Forest Classifier

Lastly, we utilized the random forest classifier to predict: 1)
whether an individual electrode is likely to be SOZ; 2) whether
the patient will be seizure-free. Based on the statistical results
above, within-frequency interaction was significantly different in

both information flow between SOZ and non-SOZ comparison
(Figure 2) and seizure-free outcome versus nonseizure free out-
come comparison (Figure 5). We only used the broadband within
frequency information flow as feature inputs into the random
forest classifier to increase interpretability. For SOZ prediction,
the mean strength of within-frequency inward information flow
(1–250 Hz range in step of 1 Hz) at each electrode was computed
as features. More specifically, each electrode has 250 features,
which were obtained by averaging the within-frequency inward
information flow from all other electrodes in that patient. For
outcome prediction, the strength of mean non-SOZ to SOZ
within-frequency information flow (1-250 Hz) over all non-SOZ
and SOZ paired electrodes for each patient was calculated as
features. To evaluate random forest classifier’s performance,
we applied a fivefold cross-validation approach. This approach
randomly divided all samples into five subsets with each one
consisting of the same proportion of each class label. Of the
five subsets, four subsets (labels known) were used to train the
model and the remaining one (unseen) was retained to test the
model. This procedure was repeated five times until all subsets
were used once as a testing test. As shown in Figure 6A, the
model demonstrated an accuracy of 0.88 and an AUC of 0.94 in
predicting SOZ (Precision: 0.95; Recall: 0.76) versus non-SOZ
(Precision: 0.92; Recall: 0.84). For seizure outcome prediction,
the model achieved an accuracy of 0.92 and an AUC of 0.93
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Figure 5. Association of resting-state information flow with post-seizure outcome. A) Within-frequency information flow between SOZ and non-SOZ
according to seizure outcome. The shaded gray area indicates significant difference at the p = 0.05 level after FDR correction. Data are shown in mean
and standard error. B) Averaged bidirectional within-frequency information flow between SOZ and non-SOZ over the broadband frequencies in (A). SOZ
to non-SOZ information flow strength was significantly weaker, but non-SOZ to SOZ information flow strength was substantially stronger in seizure-free
than nonseizure free patients. Error bar represents standard deviation. ***p < 0.001.

when SOZ was identified by clinicians (Precision: [0.89 0.94];
Recall: [0.89 0.94] for seizure free and nonseizure free outcomes)
(Figure 6B). If SOZ was estimated by our prediction model, the
seizure outcome prediction accuracy was 0.86 with an AUC of
0.89 (Precision: [0.73 0.94]; Recall: [0.89 0.83] for seizure free and
nonseizure free outcomes (Figure 6C). Overall, these findings
suggest that the combination of random forest classifier and
resting-state connectivity may help identify SOZ and predict
seizure outcome at the individual level with satisfactory accuracy.

Overall, our results suggest that the dominant information
flow is always from non-SOZ to SOZ at multiple frequencies
in the interictal resting-state period, which is probably due to
the lower excitation–inhibition imbalance in non-SOZ regions.
Moreover, larger resting-state information flow asymmetry be-
tween SOZ and non-SOZ is associated with favorable seizure out-
come. By incorporating both resting-state connectivity and ran-
dom forest classifier, it is possible to localize SOZ and predict
seizure outcome at the individual level with satisfactory accuracy.

2.5. Multiple Oscillatory Push–Pull Antagonisms Underlying the
Epilepsy Network

We hypothesized that there is competition in information flow
between SOZ and non-SOZ underlying epilepsy resting state
(Figure S2, Supporting Information). There are two possibilities
under our hypothesis: 1) SOZ tends to send more information
to non-SOZ; 2) non-SOZ sends more information to SOZ. Our
data show the dominant information flow from SOZ to non-SOZ
during the ictal period (Figure S1, Supporting Information) and
the opposite pattern during the resting-state (Figure 2). More
specifically, SOZ received more information flow from non-SOZ

in a broadband frequency in the within-frequency network (Fig-
ure 2), while the HFA of non-SOZ sent information to the LFA
of SOZ in the cross-frequency network (Figure 3). Interestingly,
a previous study has shown that the focal seizure propagation
dynamic was constrained by push–pull antagonisms between
SOZ and non-SOZ.[23] The modulation of non-SOZ primarily
determines whether the seizure propagates or not. During the
resting state, non-SOZ may send more directional information
flow to SOZ to prevent seizure spread, probably reflecting the
widespread network inhibition.[26] Furthermore, more consid-
erable asymmetry in resting-state within-frequency information
flow between SOZ and non-SOZ (weaker SOZ to non-SOZ infor-
mation flow and stronger non-SOZ to SOZ information flow) was
associated with favorable seizure outcome. These might suggest
that the less capacity for SOZ to spread during the resting state,
the more suppression from non-SOZ to SOZ, the better seizure
outcome.

2.6. Disrupted Excitation–Inhibition Balance in Epilepsy

Neural circuits rely on a dynamic E:I balance, and the balance
of E:I interaction is critical for neuronal homeostasis and neural
oscillation formation.[27] Emerging evidence indicates that E:I
balance has dynamically fluctuated with neural computation,
task demands, and cognitive states.[25] More dramatic changes
and aberrant E:I patterns are implicated in neurological disor-
ders such as epilepsy.[28] The computation model developed by
Gao et al. suggested that the E:I ratio can be quantified from
the power spectrum, with a flatter 1/f power slope (less negative
value) indicating a lower E:I imbalance.[24] This was supported
by the evidence that 1/f power slope tracked the propofol-induced
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Figure 6. Performance of SOZ and seizure outcome predictions at the individual level. A) SOZ versus non-SOZ prediction. Receiver-operating character-
istic (ROC) curves show the true-positive and false-positive rates in predicting SOZ versus non-SOZ. The area under the curve (AUC) is 0.94. Precision
= True Positive / (True Positive + False Positive); Recall = True Positive / (True Positive + False Negative). B) Similar to (A) but for prediction of seizure
outcome with clinically determined SOZ, i.e., seizure-free versus nonseizure free. C) Similar to (B) but with model predicted SOZ, where only 10 min
resting state SEEG data were used.

global inhibition, in which significant slope decrease was ob-
served during anesthesia when compared to awake. In our data,
1/f power slope changes significantly between the resting-state
and ictal state (Figure S3, Supporting Information), indicting
different levels of excitation–inhibition imbalance. Moreover, a
more negative power slope in SOZ was found when compar-
ing to non-SOZ during the resting state (Figure 4), probably
reflecting high excitation–inhibition imbalance in SOZ but low
excitation–inhibition imbalance in non-SOZ. The disrupted
excitation–inhibition balance might be linked to our findings in
information flow. The non-SOZ with low excitation–inhibition
imbalance could be the source of information sender to SOZ
with high excitation–inhibition imbalance, explaining why the

dominant information is from non-SOZ to SOZ. However, it
is not satisfactory to predict SOZ at the individual electrode
level using 1/f power slope as features (Figure S4, Supporting
Information), in which the model demonstrated an accuracy
of 0.56 and an AUC of 0.58 in predicting SOZ (Precision: 0.40,
Recall: 0.79) versus non-SOZ (Precision: 0.20, Recall: 0.66).

2.7. Long-Range Communication Disruption of High-Frequency
Activity in the Epilepsy Network

Synchronization between neuronal populations is critical for
information transfer between brain areas.[29] Theoretical and
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Figure 7. Within-frequency directional information flow as a function of distance during the resting state. Left panel: Mean SOZ to non-SOZ DTF
information flow of all electrode pairs in distance-range quartiles. Middle panel: Mean non-SOZ to SOZ DTF information flow of all electrode pairs in
distance-range quartiles. Right panel: statistical difference between SOZ to non-SOZ DTF information flow and non-SOZ to SOZ DTF information flow
in distance-range quartiles. Significant area at the p = 0.05 level after FDR correction is marked in shadow. Data are shown in mean and standard error.

experimental evidence has shown that synchronization between
neuronal oscillations depend on the axonal conduction delays, so
LFA are generally more stably synchronized over long distance
than HFA.[30] Surprisingly, our data challenged this classical
view and demonstrated HFA exhibiting long-range communica-
tion both within SOZ, within non-SOZ (Figure S5, Supporting
Information), and between SOZ and non-SOZ (Figure 7). We
estimated the information flow using DTF between all SEEG
electrode pairs from 1 to 250 Hz and divided them into three
groups based on distances. If the distance between paired
electrodes is shorter than 33 mm, it is termed as short-range
connection while it is long-range connection if the distance is
longer than 60 mm. DTF information flows were first averaged
over all patients in three quartiles of interelectrode distances.
The mean DTF information flow increased from 1 to 6 Hz in all
distance quartiles and then decayed to 80 Hz. However, through-
out the 80–250 Hz HFA, inter-electrode DTF information flow
started to increase again and exhibited a peak at around 240 Hz.
Note that the long-range communication coordinated by HFA
was shown in a recent study in healthy brain regions.[31] Here, we
extended the previous findings and provided the first evidence of
long-range communication disruption of HFA between SOZ and
non-SOZ in the pathological epilepsy network. The long-range
neuronal communication of HFA could arise in large-scale net-
work because the joint roles of local synchronization and high
collective firing rates enable local pyramidal cell populations
with largely increased efficiency in regulating their post-synaptic
targets in distant regions.[32] This could be experimentally
observable as inter-areal HFA phase coupling and would con-

stitute a direct indication of spiking based long-range neuronal
communication per se.

2.8. Influences of MRI Findings and Outcome in the Model

The performance of the prediction model could be influenced by
the MRI findings and outcome of the epilepsy patients. In our
cohort, it had 15 nonlesional patients and 12 lesional patients (9
patients with focal lesions and 3 patients with diffuse lesions).
Our SOZ prediction model works best in the patients without
MRI visible lesions (Precision: 0.94, Recall: 0.89) followed by
the patients with focal lesions (Precision: 0.81, Recall: 0.83) and
then the patients with diffuse lesions (Precision: 0.69, Recall:
0.83) (Figure S6A, Supporting Information). When statistically
comparing the 1/f power slope between the lesional and non-
lesional groups (Figure S6B, Supporting Information), they are
not significantly different in both SOZ (lesional group: −2.23 ±
0.33, nonlesional group: −2.30 ± 0.30; t(114) = 1.16, p = 0.24)
and non-SOZ (lesional group: −2.08 ± 0.44, nonlesional group:
−2.07 ± 0.38; t(571) = −0.48, p = 0.63). When patients were
divided by outcome, the overlap between our model estimated
SOZ and clinically determined SOZ was significantly lower in
the nonseizure free group (Mean = 0.78, SD = 0.22) than the
seizure free group (Mean = 0.85, SD = 0.19) (t(25) = -2.19,
p = 0.038, Figure S7A, Supporting Information), suggesting
the epileptogenic zone in the nonseizure free group may not
be properly targeted during surgery or intervention. Besides,
the performance of concordance in detecting the SOZ at the

Adv. Sci. 2022, 9, 2200887 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2200887 (7 of 11)



www.advancedsciencenews.com www.advancedscience.com

individual patient level is shown in Figure S7B (Supporting
Information), in which the sensitivity and precision were higher
in the seizure free group (Sensitivity: Mean = 0.85, Range =
[0.5 1],Precision: Mean = 0.88, Range = [0.62 1]) compared to
the nonseizure free group (Sensitivity: Mean = 0.80, Range =
[0.33 1]; Precision: Mean = 0.75, Range = [0.57 1]). However, the
specificity was lower in the seizure free group (Specificity: Mean
= 0.91, Range = [0.77 1]) when comparing to the nonseizure
group (Sensitivity: Mean = 0.93, Range = [0.84 1]).

2.9. Stability of the Results During Long-Term Implantation

The short duration interictal resting state data represent only
snapshots of the long-term implantation period, while studies
have shown temporal variations of the epileptiform activity dur-
ing longer periods of time.[33] Thus, the stability of the results for
several intervals on different days is under question. For exam-
ple, antiepileptic drugs (AEDs) are gradually withdrawn to facili-
tate seizure occurrence during the SEEG implantation, do the re-
sults change with respect to AED withdrawal strategy? To address
these questions, we performed several control analyses. First, we
showed that our findings are stable and robust for all patients
under different durations with 5, 10, 15, and 30 min (Figure S8,
Supporting Information). Then, we selected 5 patients and ex-
tracted 10 min resting-state data on 3 different time periods of
a day (Early Morning/Afternoon/ Evening) and 3 different days
(Day2/Day3/Day4) during the implantation period. After calcu-
lating the 1/f power slope and the within-frequency information
flows, the grand average results of these patients are shown in
Figures S9 and S10 (Supporting Information). Although fluctua-
tions do exist, the results were quite stable over different intervals
on different days.

2.10. Contributions of Resting-State Data in Clinical Decision
Making

Ultimately, this study aims to improve seizure outcome of
epilepsy patients, which largely relies on the precise delineation
of epileptic networks. Here, we demonstrated that our approach
could predict both SOZ and seizure outcome with about 90% ac-
curacy in a large cohort of 27 drug-resistant focal epilepsy patients
using a few minutes of interictal intracranial EEG resting-state
data. In classical neuroimaging studies, resting state is the pe-
riod when participant is awake and not performing an explicit
mental or physical task. In our study, resting state refers to in-
terictal period without visible pathological activity. We selected
epochs recorded between 7:00AM and 12:30 PM, during which
patients were most likely in eyes-open and awake condition. The
interpretations of ictal data have limitations, mainly imposed by
accelerated meditation changes during the intracranial study and
electrode coverage leading to sampling biases that may affect
localization accuracy.[9,34] Moreover, it is challenging to capture
all types of seizures during hospitalization.[35] For example, one
study showed that approximately one-third of bilateral temporal
lobe epilepsy patients required more than four weeks of record-
ings to capture bilateral independent seizures.[36] In addition,
seizure clusters may provide discordant data that may misdirect

interpretation and surgical treatment.[37] However, it should be
pointed out that we explored the possibility to localize SOZ and
predict seizure outcome using short duration interictal record-
ings while the golden standard of localization of epileptogenic
brain regions in current clinical practice still depends on captur-
ing multiple seizures during the intracranial monitoring process.
We believe our method could aid clinicians estimate the location
of SOZ and assess the likelihood of benefit from surgery in an
automatic and objective way, which has the potential to improve
the current practice. For example, if the preoperative prediction
of seizure outcome for a specific patient from our model is non-
seizure free, it would suggest nonusual resection or other treat-
ment option.

The underlying pathology of seizure generation most likely
involves both abnormal brain structures and aberrant con-
nectivity among these regions, leading to large-scale network
disruptions.[19b] The aberrant network connectivity could be stud-
ied under resting-state, and many resting-state intracranial EEG
studies have shown overwhelmingly enhanced connectivity in-
volving EZ and surrounding regions.[38] Verhoeven et al. used
directed functional connectivity patterns estimated during EEG
periods without visible pathological activity to automatically di-
agnose and lateralized temporal lobe epilepsy (TLE). The diagno-
sis and lateralization classifiers achieved a high accuracy (90.7%
and 90.0%, respectively) and the most important features for di-
agnosis were the outflows from left and right medial temporal
lobe, and for lateralization the right anterior cingulate cortex.[39]

It should be pointed out that our study aimed to predict SOZ
while Verhoeven et al. tried to distinguish TLE versus healthy
controls and left versus right TLE. More recently, two SEEG
resting-state studies suggested the possibility to predict SOZ/EZ
at the individual electrode level.[10a,b] Goodale et al. computed 8–
12 Hz alpha-band imaginary coherence across all electrodes us-
ing 2 min resting-state SEEG data in a cohort of 15 adult focal
epilepsy patients.[10a] Six functional connectivity measures were
incorporated in the logistic regression model to predict epilepto-
genicity of individual regions, and their model showed an AUC
of 0.78 and an accuracy of 80.4%. Narasimhan et al. investigated
25 focal epilepsy patients with 2 min of resting-state, artifact-free
SEEG data, and calculated three nondirected connectivity mea-
sures and four directed measures in the alpha band.[10b] Logistic
regression was further applied to generate a predictive model of
ictogenicity with an AUC of 0.88 and an accuracy of 84.3%. In
our work, we used 10 min resting-state SEEG data to predict both
SOZ and seizure outcome in a cohort of 27 epilepsy patients. We
investigated both within-frequency and cross-frequency direc-
tional connectivity network during a wide frequency range from
1 to 250 Hz. To tackle the problem of severely imbalanced data
between SOZ and non-SOZ, a balanced random forest model
was introduced by optimizing the cost function and the sampling
technique. Our results, obtained from a relatively large patient
population using a network connectivity approach, demonstrated
enhanced performance of localizing SOZ with an AUC of 0.94
and an accuracy of 0.88. Besides, we examined the E:I ratio by
computing the 1/f power slope and provided deeper mechanis-
tic insights between the E:I alteration and aberrant connectivity
in the resting-state epilepsy network. Furthermore, by utilizing
directional connectivity network information, we made impor-
tant advancement to predict seizure outcome with satisfactory
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accuracy. Prospective validation of our findings would pave the
way to reducing traditional prolonged seizure recordings, lead-
ing to shorter hospitalizations and improved patient care.

2.11. Study Limitations

One limitation of this study is that we used only the clinical SOZ
to approximate the EZ concept. This is a limitation because the
SOZ can be a subset of the EZ, but the fact that only a fraction
of our patients achieved seizure-freedom (i.e., Engel I). Quanti-
tative methods such as fingerprint have been developed to objec-
tively delineate EZ.[17b,40] The EZ fingerprint as a time-frequency
pattern that is defined by a combination of preictal spike(s), fast
oscillatory activity, and concurrent suppression of lower frequen-
cies. Not surprisingly, the fingerprint estimated EZ and clini-
cian determined SOZ is largely overlapped (Overlap percentage:
71.29% ± 10.22%). When using fingerprint estimated EZ to pre-
dict seizure outcome (Figure S11, Supporting Information), the
model achieved an accuracy of 0.77 and an AUC of 0.78 (Pre-
cision: [0.73 0.82]; Recall: [0.86 0.67] for seizure free and non-
seizure free outcomes), which was not as good as clinician deter-
mined SOZ and our model predicted SOZ. Besides, the seizure
typically originates in the SOZ and propagates to the propaga-
tion zone (PZ), which is often presented in the SEEG record-
ings. Here, we used SOZ to represent EZ and attributed the PZ
to non-SOZ in our model to make the framework more concise
and easier to interpret. When comparing the E:I ratio inferred
by 1/f power slope between different zones (Figure S12, Sup-
porting Information), PZ has a more negative 1/f power slope
than other zones (t(573) = –3.68, p < 0.001), but less negative 1/f
power slope than SOZ (t(205) = –2.12, p < 0.05). Another limita-
tion stems from the short 10-min artifact and spike-free interictal
data selection for our analysis. The selected recordings were visu-
ally examined for the presence of epileptiform activity or signifi-
cant spiking activity, while it was still possible that some spiking
activity may exist. Azeem et al. showed that interictal spike net-
works predict surgical outcome in patients with drug-resistant fo-
cal epilepsy.[41] To assess the influence of interictal spikes on our
results, we selected 10 min continuous interictal recordings (not
excluding spikes) for all patients and re-performed the SOZ and
seizure outcome prediction analysis. As shown in Figure S13A
(Supporting Information), the SOZ model demonstrated an ac-
curacy of 0.86 and an AUC of 0.81 in predicting SOZ (Precision:
0.85, Recall: 0.89) vs non-SOZ (Precision: 0.81, Recall: 0.87). For
seizure outcome prediction (Figure S13B, Supporting Informa-
tion), the model achieved an accuracy of 0.89 and an AUC of 0.90
for seizure free (Precision: 0.92, Recall: 0.86) and nonseizure free
(Precision: 0.90, Recall: 0.88) outcomes. Therefore, the perfor-
mances of SOZ and outcome prediction with or without spikes
are comparable and quite similar, suggesting that spikes have lit-
tle influence on our results. Besides, we did not control patients’
state specifically, while behavior states such as eyes open/eyes
closed and sleep/awake conditions could influence our findings.
However, the results from data during morning, afternoon and
evening remained unchanged (Figure S10, Supporting Informa-
tion), indicating that our findings may be independent of behav-
ior states. Moreover, we only used within-frequency information
flow as features to make an individual prediction of seizure out-

come for simplicity and more straightforward interpretation. We
argued that network dynamics may be inherited properties that
would impact outcome. Besides, we did not take the resection lo-
cation and extent into account in our model because we would
like to make prediction before the surgery actually performed.
It is also important to note that a few clinical variables such
as absence of generalized tonic-clonic seizures and presence of
hippocampal atrophy were significantly associated with seizure
remission.[42] Future studies will be needed to develop multivari-
ate outcome prediction models by taking clinical variables into
account. Lastly, the majority of patients (19 out of 27) are tempo-
ral lobe epilepsy patients. It should be cautious to generalize our
findings to all candidates for epilepsy surgery.

3. Conclusion

We have investigated the aberrant information flow and the
disrupted excitation–inhibition balance in epilepsy resting state
during interictal period. We found that the lower excitation–
inhibition imbalance in non-SOZ versus SOZ regions during the
resting state could be linked to the dominant information flows
from non-SOZ to SOZ at multiple frequencies, probably reflect-
ing insufficient excitability to initiate seizure and widespread net-
work inhibition to prevent seizure initiation. Moreover, stronger
resting-state information flow from non-SOZ to SOZ was found
in seizure free patients compared to nonseizure free patients.
In combination with the balanced random forest machine learn-
ing model and resting-state connectivity, localization of SOZ and
seizure outcome prediction without long-term recordings may
supplement traditional interpretation of SEEG and help identify
epilepsy treatment targets, thus improving patient care and treat-
ment outcome.

4. Experimental Section
Patients: The study included 27 drug-resistant focal epilepsy patients

who underwent complete presurgical evaluation, including SEEG at the
University of Pittsburgh Medical Center between 2014 and 2019. All pa-
tients enrolled during the period with SEEG recordings were considered
and patients with clear recordings of SOZ were included. Demographic
and clinical information of patients is summarized in Table S1 (Supporting
Information). Treatments such as surgical resection (19 patients) and ab-
lation (8 patients) were conducted during the medical care. Besides, post-
operative seizure outcome was evaluated at the last follow-up (>1 year)
using the Engle classification scale.[43] This study was approved by local in-
stitutional review boards at the University of Pittsburgh and Carnegie Mel-
lon University (STUDY2018_00000097). Written informed consent was ob-
tained from all patients.

SEEG Data Collection: The SEEG data were recorded using the Xltek
acquisition system (Natus Medical Inc, Pleasanton, CA) with a 2 kHz or
1 kHz (3 patients) sampling rate. Ten-minute epochs were randomly se-
lected from the long-term SEEG recordings during interictal periods in
which the patient was at rest. All selected epochs were recorded between
7:00AM and 12:30PM, and at least 2 h away from an ictal event. Each se-
lected recording segment was about 3 min long and visually examined for
the presence of epileptiform activity or significant spiking activity. Follow-
ing this procedure, these segments were concatenated and merged into
various length. Raw data were notch filtered at 60 Hz and re-referenced
using bipolar montage. Electrode pairs residing in white matter were ex-
cluded from further analysis.

SOZ was marked by board-certificated epileptologists using estab-
lished clinical interpretation. The SOZ determination occurred during the
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intracranial recording session and was completed before any data analysis
in this study. The seizure onset was indicated by a variety of stereotypical
electrographic features, which include, but were not limited to, the onset of
fast rhythmic activity, an isolated spike or spike and wave complex followed
by rhythmic activity, or an electrodecremental response.[44] Besides, one
typical focal seizure for each patient was extracted for the control analysis.

Directional Connectivity Estimation: The within-frequency and cross-
frequency directional information flow were estimated by means of the
directed transfer function (DTF)[45] and cross-frequency directionality
(CFD)[22,23] respectively. Based on the framework of multivariate autore-
gressive (MVAR) models, DTF provides a spectral measure for directed
information flow in the spectral domain in the multivariate system.[21,45b]

It has been demonstrated that DTF was useful in objectively determining
underlying pathological connections such as epilepsy.[46] The DTF anal-
ysis was conducted using the open-source toolbox Fieldtrip,[47] which is
freely available at https://www.fieldtriptoolbox.org/.

Since DTF is only able to estimate the directional information flow at a
single frequency, CFD is further utilized to quantify the directional interac-
tions between different frequencies.[22] CFD has been applied in different
electrophysiological modalities, including magnetoencephalography,[48]

electroencephalography,[49] and electrocorticography,[23,50] often reveal-
ing new insights into multilayer network interactions. The core basis of
CFD is the phase-slope index (PSI), assuming that constant lag in the
time lag could be represented by linearly increasing or decreasing phase
differences in the considered frequency range.[51] By computing the PSI
between the phase of low-frequency activity (LFA) (< 30 Hz) and the am-
plitude of high-frequency activity (HFA) (> 30 Hz), the positive CFD in-
dicates information flow from LFA to HFA and vice versa for the negative
CFD.

1/f Power Slope Estimation: The power-law exponent (slope) of the
power spectrum (1/f) has been suggested to estimate synaptic excita-
tion (E) – inhibition (I) ratios and changes dynamically under differ-
ent states.[24] Here, the 1/f power slope with FOOOF package (https:
//github.com/fooof-tools/fooof ) is estimated. To obtain power spectrum,
data were epoched into 1 s segment without overlapping, and the time-
frequency decomposition was estimated by a Fast Fourier Transformation
in combination with a Hanning taper from 1 to 250 Hz in 1 Hz step. Then,
the power spectrum of each epoch was computed and subsequently aver-
aged over all epochs. After the power spectrum calculation, the FOOOF
algorithm operates on power spectrum densities in semilog-power space,
which are linearly spaced frequencies and log-spaced power values.[25] Es-
sentially, the 1/f power slope is fit as a function across the selected range
of the spectrum, and each oscillatory peak is modeled with a Gaussian
function individually.

Random Forest Classification: To predict at the individual electrode
level (e.g., SOZ vs non-SOZ) and patient-level (e.g., seizure-free vs non-
seizure free outcome), the random forest machine learning technique was
utilized. Random forest is an ensemble machine learning method that
induces each constituent decision tree from bootstrap samples of the
training data.[52] The prediction is made by aggregating all decision trees’
predictions. For SOZ individual prediction, the majority of electrodes are
non-SOZ. Thus, these two classes (SOZ and non-SOZ) are severely im-
balanced. Dealing with highly imbalanced data, a sample may contain
few or even none of the minority class, resulting in a tree with a poor
predicting performance for the minority class. To tackle the problem of
severely imbalanced data, a balanced random forest was introduced by
adopting two strategies: 1) minimizing the overall cost by assigning a
high cost to the misclassification of minority class; 2) either oversam-
pling the minority class or downsampling the majority class or both.[53]

Here, a synthetic minority oversampling technique (SMOTE) was applied,
a combination of oversampling the minority class and undersampling the
majority class.[54] The balanced random forest is implemented in open-
source python toolbox imbalanced-learn (https://github.com/scikit-learn-
contrib/imbalanced-learn) and adapted in the study.[55] To evaluate the
model’s performance, the five-fold cross-validation approach was applied,
further generated the receiver operator characteristic (ROC) curve, and
computed the area under the curve (AUC). The metrics of precision, re-
call, and overall accuracy were also assessed.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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