Skip to main content
. 2022 Jun 9;16:911679. doi: 10.3389/fninf.2022.911679

Table 3.

Comparison of U-Net and its variants and the proposed Half-UNet on three datasets.

Architecture Params FLOPs Mammography Dice Lung nodule Dice Endocardium Dice Epicardium Dice
U-Net 31.04 M 11× 0.8939 0.8842 0.8797 0.9299
UNet3+ 26.97 M 43× 0.8920 0.8864 0.8633 0.9316
DC-UNet 10.07 M 0.8940 0.8855 0.9059 0.9503
Half-UNet*†_u 20.03 M 20× 0.8911 0.8873 0.8691 0.8976
Half-UNet*†_d 38.09 M 0.8922 0.8853 0.8926 0.9107
Half-UNet† 0.41 M 0.8944 0.8858 0.8794 0.9281
Half-UNet 0.21 M 0.8892 0.8821 0.9122 0.9555
Sensitivity Sensitivity Sensitivity Sensitivity
U-Net 31.04 M 11× 0.8745 0.9037 0.8475 0.9097
UNet3+ 26.97 M 43× 0.8738 0.9033 0.8345 0.9134
DC-UNet 10.07 M 0.8804 0.9046 0.8906 0.9310
Half-UNet*†_u 20.03 M 20× 0.8725 0.8971 0.8547 0.8877
Half-UNet*†_d 38.09 M 0.8763 0.8916 0.8914 0.9027
Half-UNet† 0.41 M 0.8875 0.9131 0.8773 0.9209
Half-UNet 0.21 M 0.8821 0.9208 0.9029 0.9488
Specificity Specificity Specificity Specificity
U-Net 31.04 M 11× 0.9942 0.9941 0.9995 0.9991
UNet3+ 26.97 M 43× 0.9939 0.9939 0.9995 0.9991
DC-UNet 10.07 M 0.9934 0.9945 0.9995 0.9994
Half-UNet*†_u 20.03 M 20× 0.9938 0.9946 0.9994 0.9989
Half-UNet*†_d 38.09 M 0.9933 0.9949 0.9993 0.9989
Half-UNet† 0.41 M 0.9926 0.9931 0.9992 0.9989
Half-UNet 0.21 M 0.9923 0.9925 0.9994 0.9990

The symbol means that the Ghost module is not used, and * indicates that the numbers of channels are not unified. The best results are highlighted in bold. “_u” represents feature fusion using the Upsampling2D + 3 × 3 convolution strategy. “_d” represents feature fusion using the deconvolution strategy.