Table 3.
Comparison of U-Net and its variants and the proposed Half-UNet on three datasets.
| Architecture | Params | FLOPs | Mammography Dice | Lung nodule Dice | Endocardium Dice | Epicardium Dice |
|---|---|---|---|---|---|---|
| U-Net | 31.04 M | 11× | 0.8939 | 0.8842 | 0.8797 | 0.9299 |
| UNet3+ | 26.97 M | 43× | 0.8920 | 0.8864 | 0.8633 | 0.9316 |
| DC-UNet | 10.07 M | 6× | 0.8940 | 0.8855 | 0.9059 | 0.9503 |
| Half-UNet*†_u | 20.03 M | 20× | 0.8911 | 0.8873 | 0.8691 | 0.8976 |
| Half-UNet*†_d | 38.09 M | 7× | 0.8922 | 0.8853 | 0.8926 | 0.9107 |
| Half-UNet† | 0.41 M | 2× | 0.8944 | 0.8858 | 0.8794 | 0.9281 |
| Half-UNet | 0.21 M | 1× | 0.8892 | 0.8821 | 0.9122 | 0.9555 |
| Sensitivity | Sensitivity | Sensitivity | Sensitivity | |||
| U-Net | 31.04 M | 11× | 0.8745 | 0.9037 | 0.8475 | 0.9097 |
| UNet3+ | 26.97 M | 43× | 0.8738 | 0.9033 | 0.8345 | 0.9134 |
| DC-UNet | 10.07 M | 6× | 0.8804 | 0.9046 | 0.8906 | 0.9310 |
| Half-UNet*†_u | 20.03 M | 20× | 0.8725 | 0.8971 | 0.8547 | 0.8877 |
| Half-UNet*†_d | 38.09 M | 7× | 0.8763 | 0.8916 | 0.8914 | 0.9027 |
| Half-UNet† | 0.41 M | 2× | 0.8875 | 0.9131 | 0.8773 | 0.9209 |
| Half-UNet | 0.21 M | 1× | 0.8821 | 0.9208 | 0.9029 | 0.9488 |
| Specificity | Specificity | Specificity | Specificity | |||
| U-Net | 31.04 M | 11× | 0.9942 | 0.9941 | 0.9995 | 0.9991 |
| UNet3+ | 26.97 M | 43× | 0.9939 | 0.9939 | 0.9995 | 0.9991 |
| DC-UNet | 10.07 M | 6× | 0.9934 | 0.9945 | 0.9995 | 0.9994 |
| Half-UNet*†_u | 20.03 M | 20× | 0.9938 | 0.9946 | 0.9994 | 0.9989 |
| Half-UNet*†_d | 38.09 M | 7× | 0.9933 | 0.9949 | 0.9993 | 0.9989 |
| Half-UNet† | 0.41 M | 2× | 0.9926 | 0.9931 | 0.9992 | 0.9989 |
| Half-UNet | 0.21 M | 1× | 0.9923 | 0.9925 | 0.9994 | 0.9990 |
The symbol † means that the Ghost module is not used, and * indicates that the numbers of channels are not unified. The best results are highlighted in bold. “_u” represents feature fusion using the Upsampling2D + 3 × 3 convolution strategy. “_d” represents feature fusion using the deconvolution strategy.