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Abstract

Mounting clinical evidence suggests that viral infections can lead to detectable changes in an 

individual’s normal physiologic and behavioral metrics, including heart and respiration rates, 

heart rate variability, temperature, activity, and sleep prior to symptom onset, potentially even in 

asymptomatic individuals. While the ability of wearable devices to detect viral infections in a 

real-world setting has yet to be proven, multiple recent studies have established that individual, 

continuous data from a range of biometric monitoring technologies can be easily acquired and 

that through the use of machine learning techniques, physiological signals and warning signs can 

be identified. In this review, we highlight the existing knowledge base supporting the potential 

for widespread implementation of biometric data to address existing gaps in the diagnosis and 

treatment of viral illnesses, with a particular focus on the many important lessons learned from the 

coronavirus disease 2019 pandemic.
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1. INTRODUCTION

Recent advancements in wearable sensors, also known as wearables, have improved their 

popularity and ability to continuously collect raw physiological parameters that can be 

used to determine clinically useful health information. The combination of data collected 

from a range of wearable sensors with advanced data processing algorithms has unearthed 

the potential for early stage infection detection, a key step to limiting the spread of 

infectious diseases. The objective of this review is to highlight recent advancements in 

biometric monitoring technologies (BioMeTs), data processing algorithms, and clinical 

insights associated with the detection of influenza-like illnesses (ILIs). Particular attention is 

paid to data quality, machine learning (ML) algorithms, the need for standards, and clinical 

challenges that remain to be addressed. While much work is still to be done before BioMeTs 

are routinely used for detection of infections, the potential for continuous monitoring to help 

limit the spread of infectious disease is great, especially given the recent coronavirus disease 

2019 (COVID-19) pandemic.

2. CURRENT AND FUTURE BioMeTs

BioMeTs process mobile sensor–generated data to develop physiological and/or behavioral 

measures using algorithms (1). These technologies are also referred to as biometric 

monitoring devices, wearable health devices, smart devices (e.g., smartwatches), wearable 

sensors, or simply wearables. Form factors include watches/wristbands, rings, earbuds, 

headbands, clothing, and patches that capture information on movement, heart rate (HR), 

heart rate variability (HRV), respiratory rate (RR), blood pressure, eye tracking, hydration 

level, glucose level, skin conductivity, sleep, temperature, posture, brain activity, oxygen 

level, muscle activity, and gastric activity, among others. BioMeTs have shown promise 

for promoting general health and wellness by enabling self-monitoring of habits, providing 

data-driven feedback, and supporting sharing of personal data with healthcare providers and 

family members.

New wellness features such as displaying fitness and sleep statistics and trends, personalized 

coaching, and tailored self-monitoring ranging from water intake to women’s health tracking 

are continuously being added to commercially available consumer BioMeTs as demand 

for such capabilities increases. The ease of use, cost, efficacy, and ability of BioMeTs to 

continuously monitor fitness, wellness, and more recently, health, has led to an increase in 

the number of people using these devices. A study to evaluate the use of wearable devices 

among US adults found that 30% use wearable devices and 82% are willing to share the 

health data from their BioMeTs with their care providers (2). Increased access to long-term 

user data can help healthcare providers understand and monitor individual health trends 

and concerns and facilitate more personalized treatment paths, highlighting the tremendous 

potential of BioMeTs to transform health care.

2.1. Intended BioMeT Use

As a result of the types of continuous and longitudinal information collected, BioMeTs 

hold immense potential for real-time health tracking and illness prediction in free-living 

and remote conditions. They may also provide insights into disease origin, severity, and 
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progression. Thus, BioMeTs offer a huge advantage over in-clinic measurements at single 

points in time that do not provide the complete picture of an individual’s health. Due to their 

capabilities, low cost, and ease of use, BioMeTs now form a major component of digital 

medicine technologies. Digital medicine is the use of technologies for improving human 

health through measurement and intervention to support the practice of medicine (3). These 

technologies include high-quality hardware and software tools that undergo rigorous clinical 

validation for their impact on disease diagnosis, treatment, recovery, prevention, and health 

promotion (3, 4).

BioMeTs can be classified into two main designations depending on their intended use (5):

• Wellness: nonmedical, low-risk products that promote a healthy lifestyle and are 

intended by the manufacturer for self-monitoring (6). Examples of consumer 

wearables in the wellness category include the Xiaomi Mi Band, the Amazon 

Halo band, and the Garmin smartwatch.

• Medical: products intended for the diagnosis or treatment of medical conditions. 

Medical devices are used primarily for prediction, anomaly detection, and 

diagnosis support. Examples include the Philips Actiwatch Spectrum Pro, 

the VitalConnect HealthPatch MD, the Empatica Embrace, and Dexcom’s 

Continuous Glucose Monitoring System (7).

The reader should note that this is a rapidly evolving climate where existing wellness 

devices are increasingly being adapted toward medical purposes by improving accuracy and 

expanding functionality. The US Food and Drug Administration (FDA) defines intended 

use of medical devices as the “objective intent of the persons legally responsible for the 

labeling of devices.” The intended use can be shown through “labeling claims, advertising 

matter, or oral or written statements” (8). However, some BioMeTs simultaneously have 

separate functionalities, where one feature is intended for wellness and another feature is 

intended for medical purposes. Thus, a single device can be subject to different sets of 

FDA regulations, making it difficult for consumers and clinicians to assess the evidence 

supporting their approval status. For instance, at the time of this writing, the Apple Watch 

Series 6 electrocardiogram (ECG) is FDA cleared for detecting irregular cardiac rhythms, 

while the blood oxygen monitor on the same device is advertised by the company for 

wellness purposes and is therefore not subject to FDA regulations (9).

The FDA’s Center for Devices and Radiological Health (CDRH) regulates companies 

who “manufacture, repackage, relabel, and/or import medical devices sold in the United 

States” and establishes requirements for safe and effective medical devices (7, 10). The 

CDRH’s Digital Health Center of Excellence works toward digital health advancements 

by fostering responsible innovations in digital health (https://www.fda.gov/medical-devices/

digital-health-center-excellence). In a step toward collaboration and interdisciplinary 

partnership, the Network of Digital Health Experts created by the CDRH comprises 

scientists, clinicians, and engineers from diverse organizations who advise the FDA staff on 

matters regarding digital health oversight (7). Similarly, there are collaborative communities 

led by private- and public-sector stakeholders that often work with and provide guidance to 

the CDRH to advance digital health.
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2.2. BioMeT Accuracy

The accuracy of BioMeTs is a key consideration for their real-world deployment in health 

research and care. Therefore, standardized best practice guidelines for the systematic 

evaluation of BioMeTs are essential. Goldsack et al. (1) describe such a framework 

to evaluate BioMeTs, including verification, analytical validation, and clinical validation 

(which they refer to as V3). Verification is determining sample-level sensor data accuracy 

compared with a reference standard (e.g., evaluating an accelerometer using an in-lab 

vibration plate), and validation is determining the real-world performance for detecting 

behavior and physiology against predefined criteria (11). The latter is divided into analytic 

and clinical validation, which are defined respectively as evaluation from the bench to in 

vivo (e.g., evaluating an accelerometer to detect steps from a human) and evaluation on 

patients to determine the ability of the technology to distinguish health and disease states. It 

is also essential to determine whether a BioMeT is fit for purpose; in other words, that its 

data collection and processing methods are adequate for the BioMeT’s intended purpose and 

that these functions have been confirmed experimentally. This determination may include 

assessing other useful BioMeT characteristics such as economic feasibility, security risks, 

data protections, utility, and usability, all of which are currently understudied areas (11).

BioMeT data processing algorithms may also vary substantially by manufacturer. The lack 

of transparency around BioMeT data processing by manufacturers is problematic because 

there is a loss of interpretability for research and clinical decision-making. Wearables 

can be prone to inaccuracies in measurements due to several factors, including on-body 

placement, improper wear, and the processing algorithms. For instance, inaccuracies in 

photoplethysmography (PPG), which is used to derive HR from optical sensing, can arise 

from diverse skin types, motion artifacts, and signal crossover (12). The accuracy of 

BioMeTs for measuring steps and HR can vary by manufacturer, device type, activity 

intensity, and type of exercise or activity being performed (13, 14). To convey such 

important digital health facts for consumers in an easy-to-understand way, labels for digital 

health products have been proposed that can detail information about product accuracy, 

past use, adverse events, data safety, and other important digital health facts, similar to 

food nutrition labels (15). Transparency, measurement accuracy, reliability, and sensitivity 

of BioMeTs are some of the factors that need to be carefully considered and reported when 

including consumer BioMeTs in clinical trials or for healthcare purposes. Product labels 

with this information could greatly benefit both clinicians and consumers.

2.3. Detecting Infection Using BioMeTs

Infection detection models based on physiological signals can be used for personal infection 

risk alerts and prescreening assessments to intelligently guide who should be tested for 

infections and when. If an individual is determined to be at-risk for infection, they can 

quarantine and get tested promptly, hence reducing further spread. Furthermore, contact 

tracing using ubiquitous personal technologies such as smartphones can be done to notify 

people who have been exposed to a pathogen and enable them to take timely precautions 

and isolate. Hence, individuals can be nudged toward a proactive, data-empowered, 

and personal-responsibility-driven approach for infection prevention using a network of 

combined biometric monitoring and digital contact tracing technologies, as shown in Figure 
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1. This approach can reduce infection transmission while conserving expensive resources. A 

number of studies using wearables that were implemented to help address care gaps exposed 

during the COVID-19 pandemic are discussed in detail later in this review.

2.4. Reproducibility and Replicability

To improve the generalizability of results from studies using BioMeTs and the utility of 

those results in clinical settings, it is crucial to address issues that affect replicability (using a 

new data set that should produce the same results as the original data set) and reproducibility 

(using the same data set to obtain the same results in a repeated analysis). Various factors 

that can influence reproducibility and replicability and should be involved in standard 

reporting include, but are not limited to, protocol design, data cleaning, defining nonwear 

time and nonadherence, wear location characteristics (e.g., skin tone, freckling/tattoos, skin 

thickness, hair level, etc.), data provenance/the data supply chain, individual biobehavioral 

and demographic data, device type, version, sampling rate, known algorithmic changes, etc. 

(1, 16).

There are other factors that can improve replicability of studies involving BioMeTs. 

Preregistering studies, an already established practice in clinical trials, can prevent 

publication bias and define modifications to the original analysis plan. Study groups 

can report all aspects of the study including the detailed analysis plan and expected 

outcomes before the data collection process. For bring-your-own-device (BYOD) studies, 

collaborations between different study sites and groups can increase the power and 

generalizability of the study. However, BYOD studies can be impacted by unequal BioMeT 

ownership among different demographic groups, and efforts must be made to ensure a 

balanced representation from all groups in the study population, such as adoption of 

demographic improvement guidelines (17). Collaborative and transparent solutions will 

improve replicability and generalizability of wearable devices studies.

2.5. Opportunities and Challenges When Partnering with Corporate and Healthcare 
Systems

The increasing footprint of the BioMeT industry has created a unique opportunity for 

industry partnerships with clinical research teams to explore and expand the usefulness 

of BioMeTs for health. Preplanning such relationships can facilitate a mutually beneficial 

and smooth partnership. Maintaining privacy and stringent data security standards while 

sharing user data is critical. Ensuring that users understand the risks and benefits associated 

with sharing their data with third parties is another crucial aspect that could be addressed 

through dedicated digital health counselors. With growing sensing capabilities, the world of 

personal health is constantly evolving. It is important to ensure that as these capabilities and 

opportunities grow, so do the requirements for privacy and security standards.

2.6. Multimodal Sensing for Infection Monitoring

Novel and multimodal technologies that passively monitor aspects of human health 

potentially related to infection are advancing at a rapid pace. Sensors capable of assessing 

sleep duration and quality exist in smartwatches, rings, and bed sensors (18). Audio signals 

can be used for cough detection and lung health assessment (19). Wearable eccrine sweat 
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sensors measuring cytokine markers are being explored for real-time infection detection 

(20). Data collected from these different sources can be combined with an individual’s 

contextual information to provide a holistic picture of human health and show infection 

indicators in real time. These data can provide the foundation for the future development 

of alarm systems to prompt users to seek care at the right time. These personalized alarm 

systems can be displayed to the users via a cloud-based analytics platform that combines 

data from multiple sources and uses ML to detect abnormalities that might have been missed 

from single-source data. For instance, multiple cough detections alone might not trigger the 

alarm because, for example, they may be a consequence of allergies. This could be verified 

by geographical, environmental, and smart home sensor data. However, coughing episodes 

in the absence of environmental allergens with consistent increased resting HR and disturbed 

sleep patterns might be a cause for concern. These can only be identified by processing 

multiple sensor data to detect deviations from personal baselines. Such personalized health 

dashboards can enable individuals to take active charge of their health and give healthcare 

providers timely access to data to support medical applications (21). Long-term stability, 

user acceptability, interdevice compatibility, accuracy, and biocompatibility are some of the 

major aspects that will determine which sensing technologies prove to be the major players 

in the connected sensor network for passive, holistic human health monitoring.

3. DEVICE ACCESS AND DATA AGGREGATION IN MULTIPLATFORM 

ENVIRONMENTS

The advent of low-cost consumer BioMeTs has allowed for large-scale physiological data 

collection without the need for device distribution. This can result in lower-cost BioMeT 

studies and fewer lost devices as well as further reach to various participant populations. 

Consumer-grade BioMeTs are often easy to use and connect to familiar smartphone 

ecosystems. However, consumer BioMeTs are subject to less regulation than validated 

medical BioMeTs. Given their intended use, consumer BioMeTs also may not have the same 

durability or battery life as cleared medical devices. A major challenge of multiplatform 

BioMeT studies is the necessary agglomeration and alignment of disparate data streams. 

Data sets that are collected across different devices must be eventually reconciled, although 

they could have been sampled at different rates with separate hardware.

3.1. Current and Proposed Standards

There is no uniform standard currently governing how data from BioMeTs are joined or 

stored. The pharmaceutical world adopted the Study Data Tabulation Model defined by the 

Clinical Data Interchange Standards Consortium in 2004 as the FDA sought to streamline 

the review process for clinical trial data. Accompanying standards such as the Analytical 

Data Model, the Operational Data Model, and the Clinical Data Acquisition Standards 

Harmonization model have also risen to meet these needs and are now required components 

during FDA clinical trial submission (22). Organizations are seeking to maintain health data 

interoperability through standards such as Fast Healthcare Interoperability Resources and 

Health Level 7, but these largely concern intrahospital data streams. For data generated and 

collected in mobile environments, the Open mHealth standard has been proposed.
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3.1.1. Data compression.—BioMeTs are often required to transmit freshly collected 

data in a nearly continuous manner. This is especially true in the context of monitoring 

viral infections that progress rapidly. In these situations, data compression is necessary 

to conserve power and maintain data transmission rates. Furthermore, optimizing the rate 

at which data streams are sampled for the intended use is critical (23). Particularly in 

limited resource settings, devices may not be recharged for the duration of their wear. 

Compressive sensing techniques (24) are well suited for BioMeT data compression since 

they can be implemented using analog-to-digital conversion and digital signal processing 

(DSP) hardware on the device itself. Data reconstruction is then needed for downstream 

interpretation of BioMeT signals, but this can be performed centrally after data transmission. 

The Biosignal Compression Toolbox is the first open-source software to address this need 

(25).

In the case of ECG-based signals, adaptive linear data prediction methods have performed 

well (26). Hybrid approaches combining both lossy and lossless compression techniques 

allow for a reduction in power consumption by nearly 50% (27), even during lossless 

Bluetooth transmission. Recent findings also suggest that the ECG signal can be 

successfully compressed and reconstructed using a neural network architecture (28, 29). 

The particular method of data compression can be further dictated by the arrangement of 

sensor nodes and the mode of transmission (30). Determining how to maintain data privacy 

during compression and transmission remains an active area of research (29).

3.1.2. Interplatform harmonization.—Although there is not yet a unifying standard to 

harmonize BioMeT data, several data- and patient-focused approaches have been proposed 

(31). The wearable knowledge-as-a-service platform (32) is presented as an extension of the 

National Institute of Standards and Technology big data model (33) and incorporates data 

semantics to merge information from different BioMeTs. Other platforms focus on clinical 

decision support with open BioMeT data warehousing and dashboard tools that integrate 

across multiple electronic health record (EHR) systems (34, 35). During outbreaks of viral 

infection, such tools could be markedly useful in drawing public health insights across 

various healthcare information systems.

The application of the International Organization for Standardization/Institute of Electrical 

and Electronics Engineers (IEEE) 11073 standard was proposed for connected personal 

health devices (36) but has not been widely or consistently adopted. More recently, the effort 

to codify a BioMeT data standard continues with the IEEE P2933 Working Group on the 

Standard for Clinical Internet of Things Data and Device Interoperability. Focus is placed 

on integration with existing EHR systems and onboarding of BioMeTs that are not currently 

interoperable with these platforms. The Open mHealth community has also been leading 

the development of the now-approved IEEE 1752.1–2021 standard for personal health data 

collected from sensors and mobile applications. Data privacy and security considerations 

remain at the forefront of this standard.
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3.2. Clinical Trials

Consumer BioMeTs in the wellness category are increasingly being explored for use in 

clinical trials and telehealth to assess physiological parameters in novel ways and over 

longer periods. Clinical trials are selectively employing customized digital endpoints, 

some of which are exemplified in the Digital Medicine Society’s Digital Endpoints 

Library. In both clinical trials and telehealth, the lines between the medical and wellness 

FDA categories have been blurred. Current consumer BioMeTs have capabilities to 

continuously measure both traditional vital signs (5) and additional biosignals to gain 

more information about evolving physiological state during clinical trials. BioMeTs allow 

continuous physiological measurements in real-world, ambulatory environments as opposed 

to single measurements at predefined time points in clinical settings (37). Such flexibility 

gives researchers and clinicians the ability to assess intervention and treatment outcomes 

longitudinally as well as avoid confounding effects of circadian variation (38, 39). 

Mitigating these effects is especially important in times when trial participant mobility is 

affected, as during the COVID-19 pandemic. However, these devices need to be removed 

periodically for battery charging and comfort. Hence, reports of problems with adherence 

where participants lose or regularly forget to wear the device are unsurprising (38). These 

problems create issues with data missingness that need to be comprehensively reported.

Hundreds of clinical trials have already incorporated BioMeTs into their protocols, and this 

number continues to grow (40, 41). As of July 2021, ClinicalTrials.gov listed the Fitbit, 

Apple Watch, Garmin, and Oura ring in 661, 67, 80, and 14 clinical trials, respectively. 

The trial indications spanned cancer, heart failure, sleep apnea, atrial fibrillation, diabetes, 

alcohol use disorder, obesity, and depression. These numbers highlight the increasing use of 

consumer BioMeTs to measure and evaluate outcomes in clinical trials, thus moving them 

beyond their intended use for wellness purposes.

As novel data types are streamed from BioMeTs and stored as part of clinical trials, an 

ethical question is how to communicate off-target findings. For instance, it remains unclear 

how clinical trial operators ought to inform a trial participant of their detected arrhythmia in 

a noncardiac clinical trial. Additionally, clinical trials of the past have been rife with inequity 

along race, sex, and age dimensions (42, 43). Time will tell whether digital endpoints 

and incorporation of BioMeTs aid in exposing clinical trial disparities and reducing these 

imbalances.

3.3. Health Equity in Bring-Your-Own-Device Studies

In studies supplying BioMeTs, each participant typically receives the same quality of 

measurement, although this can be subject to wear and compliance. When participants 

supply their own BioMeTs for a study in a bring-your-own-device (BYOD) configuration, 

a host of health equity questions come into play. By default, robust conclusions might 

result only for those participants resourced enough to obtain high-quality devices. It is thus 

important to consider how to equitably analyze data from devices of differing quality and 

manufactures.
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To obtain generalizable results, an analyzed data set must first be representative of the entire 

target population (44). However, demographic distributions of BYOD studies in the US 

frequently do not align with the broader population (Table 1). Even among large studies, 

minority groups are notably underrepresented. These underrepresented groups, including 

Black and Latino populations, also experience disproportionately greater COVID-19 

mortality rates (56). To improve representation in the CovIdentify (17) study, targeted 

advertising as well as BioMeT subsidies were pursued. However, BioMeT subsidies or 

even donations were insufficient at times, since many consumer BioMeTs rely on specific 

smartphone models for pairing and use.

3.4. Developing World

BioMeTs have proven even more difficult to obtain in low- and middle-income countries, 

although they are perhaps more needed in these settings to monitor infectious diseases 

outside of the direct care of medical professionals. Low-power BioMeTs such as the 

MultiSense patient sensor (57) have demonstrated utility during Ebola treatment in Sierra 

Leone. This device, equipped with single-lead ECG capability, also wirelessly transmits 

skin temperature, RR, actigraphy, and oxygen saturation information for more frequent 

touchpoints than the typical 8-h intervals healthcare workers could provide. The disposable 

device with a Band-Aid form factor (Figure 2) resulted in measurements that correlated 

well with known references (58). A networking hub is still necessary to receive transmitted 

data, but such equipment for centralized hubs could be strategically distributed to treatment 

centers more easily than costly BioMeTs for each patient. Low-cost BioMeTs have also 

been proposed for remote hemoglobin monitoring (59), interferometry (60), and pulse 

oximetry (61). In settings with limited resources, remote sensing via satellite imagery can 

reveal mosquito activity (62) or ecological change (63, 64) related to vector-borne infectious 

diseases.

More recently, the developing world has felt extreme impact from the COVID-19 

pandemic. Internet of medical things (IoMT)-embedded applications (65) and even BioMeTs 

(66, 67) were proposed for quarantine and contact tracing purposes in India. Newly 

designed BioMeT remote monitoring solutions (68, 69) for COVID-19 patient management 

included HR, RR pulse oximetry, and temperature sensing. If integrated, such remote 

monitoring systems could bolster geography-specific epidemiological models (70, 71) 

predicting hospital utilization and supply needs. However, many of the aforementioned 

challenges surrounding multiplatform BioMeTs’ interoperability and real-time processing 

have remained major impediments to large-scale BioMeT integration during COVID-19 

outbreaks in India and much of the developing world (72).

4. ANALYTICS AND MACHINE LEARNING FOR BIOMETRIC DATA

The development of ML techniques has created a number of possibilities for improved 

mining, searching, and analyzing of large amounts of BioMeT data. As BioMeT data 

is typically considered big data made up of a growing number of physiologic metrics, 

automated and intelligent ML approaches have become increasingly necessary (73). With 

that in mind, ML is typically defined as computational approaches that can extract 
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desired information from data via a variety of learning paradigms using probabilistic 

frameworks. A variety of ML techniques for predicting patient outcomes or detecting 

events have become common in biomedical research and healthcare (74). For example, 

ML algorithms have shown promise in rapidly and robustly characterizing the relationship 

between predictor BioMeT data and clinical outcomes (75–77). Established methods include 

principal component analysis, decision trees, k-nearest neighbors, and random forests, with 

a greater current interest in neural networks (78) (Figure 3). As technology has advanced 

and larger and more complex data sets are collected, consideration has also been given 

to (a) where the data analysis occurs (i.e., on a device or in a cloud-based platform), (b) 

data quality and availability, and (c) the ultimate ability of users and clinicians to detect 

clinically important events. Advancements in wearable technology in particular have opened 

possibilities both for the integration of BioMeT data into clinical decision-making and for 

BioMeT data to serve as a direct source for ML algorithms to help identify changes that 

may be early signs of ILIs (79). The following subsections highlight recent advancements 

concerning how data analytics and ML tools are being used to obtain clinically useful 

information from BioMeTs.

4.1. Data Availability and Computational Modalities

Biosensor data collected by BioMeTs drive the derivation of physiological parameters. 

Generally, there are two data collection schemes used with wearable devices: BioMeTs that 

acquire and store data on board for later offload and those that acquire data and transfer 

them in real time (or near real time) to secondary processing systems. Patient-monitoring 

applications where clinical outcomes are highly dependent on early intervention require real-

time data collection, whereas research involving the collection of observational study data 

may not. That said, even in the observational case, having real-time knowledge of participant 

compliance may be important to ensure that BioMeTs data intended to be collected per 

a study protocol actually are. The ubiquity of cellular networks has enabled real-time, 

continuous monitoring using BioMeTs. Additionally, the cost and data bandwidth of cellular 

networks have continued to improve over recent years. These improvements have enabled 

the acquisition and wireless transfer of high-resolution, 24–7 biosensor data during activities 

of daily living. Raw biosensor data have become more commonly available; this availability 

has in turn enabled the development and deployment of advanced signal processing and 

ML techniques applied directly to raw sensor data, replacing reliance on typically available 

onboard calculated physiological features such as average HR, step counts, and activity level 

summaries. As the availability of raw sensor data continues to increase, the development of 

advanced algorithms will continue to progress as well, enhancing the clinical and actionable 

insights that BioMeTs can provide (80, 81).

The physiological parameters that can be derived from, and the ML techniques that can be 

applied to, data collected from BioMeTs are entirely dependent on the embedded sensors, 

data collection schemes, and computational resources available to process sensor data. 

There are several common computational modalities used with BioMeTs today, each with 

advantages and disadvantages as summarized in Table 2. Often a combination of these 

modalities is utilized. As cellular technology and coverage, low-power electronics, and 

wearable sensor technologies have continued to evolve, more and more raw sensor data are 
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being captured, uploaded, and processed using cloud computing resources that support the 

application of advanced ML techniques to those data. This evolution has enabled BioMeT-

driven early detection of clinically significant health issues not only related to viral infection 

but also found in other areas as far ranging as heart failure exacerbation detection and safety 

monitoring of patients undergoing cancer therapy (82–84).

4.2. Signal Processing, Quality, Availability, and Implementation

Physiological features can be extracted from a variety of BioMeTs, including ECG, PPG, 

ballistocardiograms, electrodermal activity sensors, accelerometers, magnetometers, and 

gyroscopes. However, a schism exists in use cases for BioMeTs between the benefit of 

cardiorespiratory plus actigraphy versus actigraphy-only monitoring (40). Cardiorespiratory 

BioMeTs are sensitive to motion artifacts, electromyographic interference, and baseline 

wander (85, 86). Extracting physiological features from these inherently noisy signals can 

lead to false metrics, incorrect conclusions, or missed symptomology (87, 88). Therefore, 

to mitigate the possibility of false feature extraction, DSP and quality assessments are 

necessary. For the purposes of evaluating infectious diseases, we focus only on those 

sensors capable of continuous ambulatory cardiorespiratory monitoring (ECG and PPG) 

when discussing quality, availability, and usability.

4.2.1. Quality.—Quality assessment determines the usability of a signal by identifying 

fiducial points, amplitude, duration, and/or frequency (89, 90). Traditional algorithms for 

determining signal quality index (SQI) include perfusion, skewness, kurtosis, entropy, 

zero-crossing rate, signal-to-noise ratio, matching of multiple systolic wave detection, and 

relative power (91–93). However, as more BioMeT data become readily available, more 

computationally expensive methods such as long short-term memory, least-squares support 

vector machine, and convolutional neural networks will become more commonplace (94–

97).

4.2.2. Filtering.—While ECG and PPG signals utilize different filtering approaches, 

both aim to reduce noise to amplify the signal. These filtering approaches rely on specific 

frequencies and sampling rates related to the desired output. For example, filtering for an 

HR algorithm may utilize a passband between 0.5 and 5 Hz (30–300 bpm), whereas an RR 

algorithm may utilize one between 0.08 and 0.7 Hz (4.8–42 breaths/min), (98). Popular ECG 

and PPG filtering approaches implement wavelet transforms or DSP filters such as low-pass, 

high-pass, band-pass, adaptive, Chebyshev, Kalman, and notch (70, 94, 98–101). However, 

in addition to traditional PPG filtering methods, it is becoming more common to leverage 

accelerometer signals in tandem with PPG in a multimodal approach to account for motion 

artifacts to enable monitoring during higher activity periods (102–104). This multimodal 

approach tends to work best during periodic motion (e.g., walking, cycling, or running), 

rather than during sporadic, nonperiodic motion (102). While there have been significant 

advancements in this field, effective DSP approaches are constantly being developed in an 

effort to optimize data yield as their implementation, in combination with an SQI, has drastic 

implications for downstream feature extraction, including improved accuracy and decreased 

data availability that may introduce biases (105, 106).
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4.2.3. Aggregate comparisons.—To better characterize how SQI implementation can 

impact downstream feature extraction, algorithmic input requirements must be defined. 

Similar to variations in band-pass filters, the minimum continuity of quality data is 

dependent on features being extracted. For example, HR algorithms can require anywhere 

from 8 to 60 s to generate an output (107–109), while an RR algorithm may require 20 to 

30 s of data (110) and HRV can require more than 5 min (111). It is hypothesized that the 

continuity of ECG signals frequently meets these requirements; however, PPG, as a more 

sensitive signal, is less likely to have long contiguous segments of quality data. Current 

literature only reports the accuracy of SQI algorithms and aggregate levels of good data/

availability. ECG availability is typically greater than 90% while PPG falls between 20–50% 

(112–114), with a bias toward low activity and sleep (12, 115, 116). To date, however, no 

studies have reported on the intermittency of signal quality and how often quality segments 

of varying lengths occur for each signal; nor has it been reported how mixing high- and low-

quality data to meet algorithmic requirements impacts accuracy. Definitions of acceptable 

accuracy are varied (117), though these can be dependent upon the use case. For example, 

monitoring the frequency of tachycardia throughout a day versus a daily HR may have 

different thresholds of validity. Further characterization of a signal’s SQI as a function of 

accuracy is required to better evaluate possible applications for continuous monitoring.

4.2.4. Data completeness.—To analytically benefit from continuous monitoring, 

continuous data streams must be present, and this is only possible with participant 

compliance (PC). Factors directly impacting PC include long-term comfort, complexity 

of setup, and user interface (118, 119). Additionally, various factors impact these data 

streams, including seasonality, diurnal variation, menstrual cycles, fitness regimes, and 

daily schedules (120, 121). Other factors substantially impacting downstream analyses 

include definitions of a day of data and clinical implementation. Currently, there is no 

consensus as to how many minutes are needed to summarize a day of data. However, 

there have been numerous studies demonstrating the minimal duration of monitoring to 

accurately characterize physical activity (122–124), although this research is lacking for 

cardiorespiratory monitoring. Additionally, current ML applications focus on data science’s 

definitions of success (i.e., area under the curve, sensitivity, specificity, etc.) rather than 

a clinical definition. To better validate the success of an algorithm in clinical practice, 

a decision curve analysis could be leveraged (125). However, more research into these 

approaches is required as ML becomes more prevalent in today’s medical space.

4.3. Symptom Tracking via Machine Learning and BioMeTs

Disease symptoms can be thought of as biological features that are indicative of sickness. 

While symptom detection via BioMeTs is not likely to be able to diagnose illness with 

any real-level certainty in the near future, identification of early changes in BioMeT 

data via ambulatory monitoring does have the potential to signal that a patient may be 

experiencing the initial stages of infection (79). This type of event or persistent change 

in information could help with early testing and quarantine efforts designed to limit the 

spread of infectious diseases but will require continued efforts to characterize algorithm 

performance, verify and validate underlying code, and implement event criteria that can 

benefit clinical decisions. A key question then is what constitutes baseline BioMeT data 
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and what period of time is needed to robustly characterize a patient’s physiological state 

(38). While still in the relatively early stages of development and testing, the multiparameter 

aspects of BioMeTs combined with advanced ML techniques have the potential to greatly 

improve both sensitivity and specificity of event detection related to infections (126).

5. REAL-WORLD EXPERIENCE

The collection and analysis of individual biometric data via BioMeTs to help diagnose and 

manage infectious diseases such as COVID-19 are still in their earliest stages of clinical 

use, with a great deal to learn. While the COVID-19 pandemic has rapidly accelerated 

research in this area, related work addressing other infectious diseases had been ongoing 

in the preceding years (127). Those experiences, in addition to the knowledge being 

gained through multiple programs addressing COVID-19, have helped identify some early 

successes along with challenges and knowledge gaps. Building off these early real-world 

experiences will help move the field beyond just research programs and toward large-scale, 

global implementation.

5.1. Hospitalized Patients

Prior to the recent availability of consumer BioMeTs, hospitalized patients were the only 

people whose physiologic vital signs were routinely monitored serially and, occasionally, 

continuously. As concerns for serious infections such as pneumonia and sepsis often lead to 

hospitalizations, and because infections are a common complication in people hospitalized 

for other reasons, the ability to promptly recognize someone with an infection, or at risk for 

decompensating from one, has long been recognized as a critical need.

5.1.1. Heart rate variability.—Multiple investigators have evaluated a single metric, 

HRV, as a measure of severe infection or to identify a concerning trajectory toward 

decompensation (128). In a study of 17 bone-marrow transplant patients who underwent 

continuous HR monitoring beginning the day prior to transplant, 14 patients developed 

sepsis requiring antibiotic therapy (129). By initiating monitoring prior to transplant, the 

investigators were able to explore changes in an individual’s baseline well HRV to identify 

the earliest changes prior to the development of sepsis. They found that the majority (12 

out of 14) of the people who developed sepsis experienced a 25% reduction in several 

measures of HRV, whereas none of the three people who did not develop sepsis experienced 

a decrease. For infected individuals, wavelet HRV decreased to the 25% threshold, on 

average, 35 h prior to the clinical diagnosis of sepsis. Despite decades of research and 

encouraging early results, HRV as a predictor of infection remains primarily a focus of 

research rather than a valuable clinical tool. Challenges to clinical implementation of HRV 

tracking include the plurality of analytic techniques available to determine HRV and their 

inconsistent application across studies (130).

5.1.2. Multiparametric prediction algorithms.—The early prediction of 

decompensation of hospitalized patients due to sepsis has also been evaluated using 

multiparametric vital signs (blood pressure, HR, temperature, RR, and oxygen saturation), 

age, and additional selected lab inputs when they were available, often with the use of 
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ML techniques. In a small, prospective, randomized trial, 142 eligible adults admitted to 

an intensive care unit were randomized to either standard care or the ML-based predictive 

algorithm (131). Use of the predictive algorithm was associated with a decrease in both 

mortality and length of stay. In a real-world analysis of the impact of implementation of a 

predictive algorithm for severe sepsis, outcomes in more than 17,700 sepsis-related patients 

hospitalized in nine hospitals across the United States were compared with historical 

controls (132). After implementation of the predictive algorithm into routine clinical care, 

significant reductions of in-hospital mortality (39.5%), length of stay (32.3%), and 30-day 

readmission (22.7%) were seen relative to preimplementation. Nonetheless, the true value 

of widespread implementation of early sepsis prediction algorithms remains unclear, as a 

recent external validation study of the Epic Sepsis Model, already used in hundreds of 

healthcare systems, found dismal performance for early warning with a sensitivity of 33% 

and a positive predictive value of only 12% (133).

5.2. Population Data for Viral Illness Epidemiology

The initial description of the potential value of recognizing changes in individuals’ normal 

patterns of activity, sleep, and HR via a consumer wearable as a tool for better identifying 

population trends in influenza was in 2018 (127). By identifying trends in deviations from 

normal in ~64,000 Fitbit users in various regions of the United States, Radin and colleagues 

were able to demonstrate a strong correlation with weekly ILI rates from the US Centers 

for Disease Control and Prevention. Since then, multiple groups across the globe have 

explored the use of BioMeTs to improve surveillance for influenza and, more recently, 

COVID-19 (Supplemental Table 1). The size of these studies, most notably one from China 

including data from more than 1 million smartwatch/activity tracker users (134), highlights 

the potential for incorporating these unique data from willing volunteers to help guide future 

routine epidemiological surveillance.

These population-based studies provide early, encouraging results supporting how BioMeT 

data from large, geographically dispersed populations could potentially offer valuable 

insights into the location, timing, and trajectory of future infectious diseases. While 

many of these analyses were conducted without the active consent and knowledge of the 

participants, the Corona Data Donation project is an exception and an example of peoples’ 

willingness to voluntarily donate their deidentified BioMeT data to help address COVID-19 

(https://corona-datenspende.de/science/en/). In just a month after launching, several hundred 

thousand people had enrolled, and the project eventually attracted more than half a million 

participants, leading to the development of fever maps for all of Germany. The example 

of using BioMeT data to demonstrate the behavioral and physiologic impact of various 

degrees of quarantine across different countries also highlights the usefulness of these data 

to track the impact of different disease prevention measures at a population level (135). 

For epidemiological purposes, the use of BioMeT data in linkage with other surveillance 

methods such as Internet searches, social media, and wastewater surveillance might be 

especially powerful (136).
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5.3. BioMeT Data for Individual Diagnosis and Prognosis

As part of a wide-ranging, multisensor, long-term monitoring study from Stanford 

University, one participant noticed he had an unusual, small increase in his expected 

resting HR and skin temperature (137). He later developed a fever and was subsequently 

diagnosed with Lyme disease, likely marking the first time a BioMeT provided an early 

indication of an infectious disease. Shortly after, investigators from Evidation were able to 

identify individuals with influenza-like symptoms during the 2017–2018 influenza season 

via sleep and HR changes tracked by BioMeTs (138). Since that time, with the increasing 

ubiquity of multiparametric BioMeTs and the rapid acceleration of implementation of large 

research programs due to the COVID-19 pandemic, the body of literature describing the 

use of BioMeTs as novel diagnostic and prognostic tools has rapidly expanded. Within 

the initial weeks of the enormity of the COVID-19 pandemic being recognized, multiple 

studies were rapidly set up to determine if individual-level data from BioMeTs could enable 

the earlier diagnosis of COVID-19 infection, or subsequent decompensation. To date, the 

findings of nearly a dozen of these studies have been published (Supplemental Table 2). 

Most reported studies have focused on data from wrist-based wearables, but at least one 

has used a chest patch sensor and another a ring sensor. All the studies have provided 

novel information supporting the potential for BioMeT data to contribute valuable diagnostic 

and prognostic information in the setting of infection. For example, some studies described 

the diagnostic value in a single parameter, such as RR (139), resting HR (140), peripheral 

temperature (141), or HRV (142). Other studies evaluated individual changes in multiple 

parameters, typically resting HR, sleep, and activity (79, 126, 143, 144). Several studies 

even incorporated interaction features between measured parameters, such as HR and/or RR 

during activity, in their predictive models (126, 145).

The potential value of prospective implementation of real-time alerting based solely on 

individual changes in BioMeT-generated physiologic data was demonstrated in a study 

of more than 2,000 individuals (140). Alerts were sent to volunteers if their resting 

HR was elevated above their expected normal for two consecutive nights. Alerts were 

generated in 78% of all participants who tested positive for COVID-19 during the study—

both asymptomatic and symptomatic—with the alert being sent a median of 3 days prior 

to symptom onset in presymptomatic individuals. In addition, one wrist-wearable device 

has recently received regulatory approval in Europe for the early detection of an acute 

respiratory infection, although no data are yet available supporting its performance (146).

While the limited results available are encouraging, there is still a great deal to learn about 

the value of real-world implementation of BioMeTs for individual illness detection. One 

especially important concern, discussed earlier, is that since many of the studies described 

were initiated rapidly and without external funding, the majority depended on enrolling 

individuals who already owned their own BioMeT, potentially introducing important biases 

through the limited inclusion of populations most impacted by COVID-19 (17).

5.4. BioMeT Data in Complications and Treatments of Viral Infections

Beyond the capability of BioMeTs to enable the detection of the acute physiologic and 

behavioral changes secondary to an acute infection, knowledge of an individual’s healthy 
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baseline can also be of unique value in understanding an individual’s trajectory of recovery 

and their response to specific therapeutic interventions. Two examples of that capability 

from the COVID-19 pandemic are the inter-individual variability in long-term recovery from 

acute COVID-19 and the detection of individual response to vaccination.

5.4.1. Postacute sequelae of severe acute respiratory syndrome coronavirus 
2 infection.—More than 70% of people who have recovered from an acute episode of 

COVID-19 report continuing to experience at least one symptom beyond 60 days after 

their initial diagnosis (147). Studies evaluating HR changes with COVID-19 infection have 

consistently shown a characteristic HR pattern in the acute setting with an initial spike, 

followed by a several-week transient bradycardia (143). One study has looked beyond the 

first weeks of recovery in 234 COVID-19-positive individuals relative to 641 symptomatic 

COVID-19-negative individuals (147). They found that individuals with COVID-19, but not 

those with acute respiratory infection symptoms who were COVID-19 negative, experienced 

a relative tachycardia that did not return to baseline, on average, until 79 days after symptom 

onset. Additionally, variable trajectories of recovery were identifiable on the basis of how 

long resting HR remained above a person’s pre-COVID normal, with a subset of ~10% 

whose resting HR remained >2 standard deviations above their preinfection value for >130 

days from infection (Figure 4). More work is needed to explore the correlation between 

these objective changes and subjective symptoms.

5.4.2. Response to vaccination.—Vaccination has long been the key to controlling 

seasonal influenza and, most recently, has proven to be remarkably effective in helping 

control the COVID-19 pandemic (148). While most people undergoing vaccination appear 

to receive protection, no vaccine is 100% effective. The ability to determine if someone 

has had the expected immune system activation following vaccination could help guide 

next steps, such as the need for an additional booster shot. It is possible that BioMeT 

data might be able to provide some indication of that. Two early studies from individuals 

receiving a COVID-19 vaccination have shown that the majority of people experience a 

detectable increase in their normal HR in the days following the vaccine, with the degree 

of change influenced by the vaccine type, prior infection status, and age (149, 150). Future 

work correlating physiologic changes with measures of immune system activation and 

specific humoral and T cell responses may lead to the tracking of physiologic response after 

vaccination becoming a key component of any vaccination program.

6. CONCLUSIONS AND FUTURE DIRECTIONS

Wrist-based fitness devices that can measure HR have been available to consumers for less 

than a decade, but already more than one-third of people in the United States use one. 

Over this short period of time, data types and quality have continuously improved, while 

the form factors available for BioMeTs keep simultaneously expanding. As more and better 

consumer devices reach the shelves, the questions about how to incorporate such devices 

in clinical studies, and more importantly in clinical care, will become even more important. 

One could imagine multiplatform IoMT ecosystems in which smartwatches, continuous 

glucose monitors, implanted devices, and even ambient sensing systems could all stream to 
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the cloud irrespective of a manufacturer. Privacy and security will need to be maintained, 

with data managed in a patient-centric way.

These are still the very early days of BioMeTs, continuous remote monitors, and advanced 

individualized big-data analytics. The COVID-19 pandemic has rapidly accelerated the 

implementation of these technologies in research and even in healthcare. While this 

experience has established BioMeTs as being central to a future care paradigm based on 

the recognition of subtle individual changes, there remains a great deal to learn. Nonetheless, 

the time is now right to start taking advantage of what BioMeTs make possible to improve 

the treatment of individuals at risk for infectious diseases by developing innovative systems 

of care that enable earlier, individualized alerting at the earliest sign of possible infection, 

possibly triggering home diagnostic testing followed by, if appropriate, early isolation and 

more intensive remote monitoring. With the ongoing collaboration of engineers, clinicians, 

researchers, and manufacturers, healthcare can be transformed around BioMeTs to extend 

better care to people everywhere.
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SUMMARY POINTS

1. Biometric monitoring technologies (BioMeTs) hold the potential for remote 

and continuous physiological monitoring. They have increasingly been 

utilized in clinical trials, and their use is being explored for infectious disease 

detection monitoring.

2. Clinical trials and research studies on infectious disease now include 

both medical- and consumer-grade BioMeTs. The challenge of reconciling 

data from different BioMeTs and ensuring equitable participation among 

historically underrepresented populations, especially those in the developing 

world, continues to grow as more devices become available.

3. The ubiquity of wireless networks along with the computational capabilities 

of BioMeT platforms has enabled real-time, continuous monitoring of 

individuals for a variety of clinical applications including viral infection 

detection and severity monitoring. The artificial intelligence and machine 

learning (ML) algorithms that rely on data produced by BioMeTs continue 

to advance as well, thus improving the physiological monitoring capabilities 

that BioMeTs can provide. Determining best clinical monitoring practices for 

selecting the type of BioMeTs and their computational modalities, in addition 

to establishing consistent data collection requirements (i.e., amount of data 

per day, minimum participant compliance, and definition of accuracy), are 

imperative for ensuring continued advancements.

4. Real-world experience using wearable devices and biometric data to address 

infectious diseases is limited but encouraging. Further work in the setting 

of infectious diseases and other noninfectious stressors will be critical for 

refining the diagnostic and prognostic capabilities of these technologies.
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FUTURE ISSUES

1. Accuracy and reliability of BioMeT data are important factors to consider 

for inclusion in clinical trials and infectious disease monitoring. Coherence 

between intended use of BioMeTs and regulatory oversight needs to be 

evaluated when employing such devices in clinical trials.

2. Uniform standards and data compression methods will be required to 

meaningfully harmonize data streams from different BioMeTs. As consumer 

BioMeTs become more popular in research studies, it is important to ensure 

equitable access to BioMeTs across populations and geography.

3. As BioMeT-based artificial intelligence and ML algorithms continue to 

evolve, it is crucial that these algorithms are properly validated, repeatable, 

and replicable; otherwise, clinical adoption is unlikely.

4. As the types and quality of wearable sensors continue to increase and 

data analytic techniques consistently improve, implementation of these 

technologies as meaningful solutions to address infectious diseases will 

require a focus on all aspects of usability, especially the return of value to 

users.
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Figure 1. 
Biometric monitoring and tracking. A conceptual framework is shown for an infectious-

disease tracking network using biometric monitoring technologies (BioMeTs) and digital 

contact tracing tools for rapid test, trace, isolate, and quarantine strategies.
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Figure 2. 
MultiSense patch for remote sensing of vital signs. The wireless, low-power sensor 

transmitted multiple biometrics from patients in an Ebola treatment center in Sierra Leone. 

Figure adapted from Reference 57 (CC BY 4.0).
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Figure 3. 
Timeline and breakdown of various machine learning tasks. (a) Timeline of artificial 

intelligence developing into deep learning since the 1950s. (b) Machine learning tasks 

related to data analytics.
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Figure 4. 
Change in resting heart rate (HR) by Z-score, relative to peoples’ normal, preinfection 

mean, during recovery from symptomatic acute respiratory infection. (a) Data based on 

whether the patient tested positive or negative for coronavirus disease 2019 (COVID-19). 

(b) Trajectories in resting HR change in subsets of COVID-19-positive individuals based on 

degree of abnormality in Z-score relative to their preinfection normal in the second month 

after symptom onset. Figure adapted from Reference 147 (CC BY 4.0).
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Table 1

Racial and ethnic representations in US BYOD studies

Study name/data White Black Asian Hispanic/Latino Other Reference(s)

All of Us (Fitbit) 82.4 4.5 3.0 6.4 2.4 45

All of Us (all participants) 51.5 21.2 3.3 18.8 NA 45

Asthma Health App 69 5 NA 14 7 46

CovIdentify 87.6 3.6 3.3 4 NA 47

MyHeart Counts 76.1 3.3 8.8 7.3 4.44 48

MyPHD 74.9 2.9 3.9 0 18.3 49

PARADE App 80.7 4 2.8 10 NA 50

Predicting Daily Mood 57.5 16.2 NA 15.1 NA 51

SleepHealth Mobile App 77.9 2.9 5.2 11.3 3.7 52

TemPredict 81 0 4 17 15 53

US Census demographics 60.1 13.4 5.9 18.5 NA 54,55

COVID-19 positive cases 34.8 21.8 3.9 33.4 NA 54,55

Deaths in the United States due to COVID-19 53.6 23.3 5.0 17.1 NA 54,55

Studies such as All of Us and Predicting Daily Mood have promoted inclusivity; however, minorities remain routinely underrepresented in US 
BYOD studies. This includes studies focused on COVID-19, although Black and Hispanic/Latino populations exhibit disproportionately greater 
mortality rates due to COVID-19.

Abbreviations: BYOD, bring-your-own-device; COVID-19, coronavirus disease 2019.
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Table 2

Computational modalities of biometric monitoring technologies: advantages and disadvantages

Computational 
modality

Advantages Disadvantages

Onboard 
microcontroller 
units/embedded 
firmware

Low power utilization
Longer battery life
Enables continuous data collection for long periods 
of time
Smaller data transfer size

Limited computational capabilities; low random access 
memory (RAM)
Loss of raw biosensor data
Limited support for new algorithm development
Real-time access to results often limited
Uncommon to have direct access to Internet
Limited data storage

Smartphone Higher computational capabilities
Ubiquity of smartphones
Good battery life
Advanced data displays
Real-time display of results
Access to Internet
Waveform data viewable

Competing with other apps; limits available RAM
Many different phone types; testing and user support can be 
difficult
Real-time display requires radio connection to device
Limited data storage

Cloud processing Very high computational capabilities
Deep learning algorithms are feasible
Virtually unlimited data storage
Enables development of advanced machine learning 
algorithms
Raw data can be reprocessed
Waveform data viewable

High bandwidth requirement for data transfer from device
Lower device battery life
Requires data storage host
Higher end-to-end complexity
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