Skip to main content
. 2022 Jun 9;7(24):21035–21042. doi: 10.1021/acsomega.2c01818

Table 1. Physical Properties of Superhard B–N–O Compounds with Cohesive Energy >6.75 eV Discovered in This Studya.

crystal ρ K G E ν AU KIC H EgPBE/Eg Ecoh Eform
B5N3O2 0.151 286 257 593 0.155 0.294 4.38 42 4.3/5.5 6.761  
B5N3O3 0.150 279 255 586 0.150 0.088 4.09 43 6.3/7.6 6.935 83
B6N4O2 0.156 322 284 658 0.160 0.121 5.26 44 3.0/4.4 6.810  
B6N4O3 0.155 292 268 616 0.149 0.311 4.33 45 4.5/5.7 6.900 120
B7N5O2 0.146 272 241 559 0.157 0.336 4.09 40 3.6/4.6 6.776  
B7N5O3 0.158 306 283 649 0.147 0.276 4.54 47 4.1/5.3 6.904 117
B9N7O2 0.161 330 296 683 0.154 0.139 5.31 46 3.2/4.5 6.802  
B9N7O3 0.160 318 301 688 0.140 0.245 4.42 50 3.9/5.1 6.926 97
c-BN 0.168 373 383 856 0.118 0.172 4.73 64 4.5/5.3 7.028 0
B2O3 0.101 35 33 75 0.127 2.347 0.14 12 6.3/8.9 7.008 0
a

Density ρ (atom/Å3), bulk modulus K (GPa), shear modulus G (GPa), Young’s modulus E (GPa), Poisson’s ratio ν, universal elastic anisotropy AU, fracture toughness KIC (MPa·m1/2), hardness H (GPa), bandgap Eg (eV), cohesive energy Ecoh (eV/atom), and formation energy Eform (meV/atom). The fracture toughness is based on the empirical model by Mazhnik and Oganov.58 The bandgaps are computed respectively with the standard Perdew–Burke–Ernzerhof (PBE)49 functional and the Tran-Blaha modified Becke-Johnson (TB-mBJ)63,64 exchange potential for improved bandgap estimation. For benchmark, the experimental hardness Hexp = 50–70 GPa for c-BN,14 and Hexp = 1.5 GPa for B2O3.65 The experimental bandgap Egexp=6.36 eV for c-BN,66 and Eg > 10 eV for B2O3.67