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ABSTRACT: Acetylcholinesterase (AChE) is one of the most
important drug targets for Alzheimer’s disease (AD) treatment. In
this work, a machine learning model was trained to rapidly and
accurately screen large chemical databases for the potential
inhibitors of AChE. The obtained results were then validated via
in vitro enzyme assay. Moreover, atomistic simulations including
molecular docking and molecular dynamics simulations were then
used to understand molecular insights into the binding process of
ligands to AChE. In particular, two compounds including benzyl
trifluoromethyl ketone and trifluoromethylstyryl ketone were
indicated as highly potent inhibitors of AChE because they established IC50 values of 0.51 and 0.33 μM, respectively. The
obtained IC50 of two compounds is significantly lower than that of galantamine (2.10 μM). The predicted log(BB) suggests that the
compounds may be able to traverse the blood−brain barrier. A good agreement between computational and experimental studies
was observed, indicating that the hybrid approach can enhance AD therapy.

■ INTRODUCTION

The chronic neurodegenerative Alzheimer’s disease (AD), the
most common form of dementia, causes loss of memory and
cognitive abilities in several million elderly people world-
wide.1−3 The disease develops slowly over 20 years or longer
before showing clear symptoms. Patients’ brains are gradually
damaged until their normal functions are lost, at which point
extensive and intensive care are needed. Moreover, the number
of patients has rapidly increased over the last few years.4

Unfortunately, it is irrefutable that AD therapy is actually
unavailable2,5 despite much efforts of the scientific commun-
ity.6−10

Several hypotheses have been proposed to clarify this insight
into the mechanism of the disease. Among these, a hallmark
called the cholinergic hypothesis, is associated with a
neurotransmitter enzyme named acetylcholinesterase
(AChE).11,12 The enzyme catalyzes the interruption of choline
esters such as acetylcholine (ACh). The AChE enzyme has
been identified as a major drug target for AD drug
development.13,14 The inhibition of ACh in cholinergic
neurons can hinder synaptic depression and block ACh
hydrolysis. Screening inhibitors for AChE enzymes have
gained some success with three commercial drugs approved
by the FDA including donepezil,13 galantamine,15 and
rivastigmine.16 However, these drugs have caused many side
effects. Thus, the design of AChE inhibitors still attracts great
interest from scientists.17−19 Many candidates for inhibiting
the AChE enzyme are being investigated such as the

metabolites from Zijuan tea20 and tacrine derivatives.21

Especially, some compounds are under clinical trial such as
ganstigmine22 and huperzine A.23

Computer-aided drug design (CADD) approaches have
been found increasingly useful in screening large databases of
compounds for potential inhibitors.24,25 The accurate and
efficient estimation of ligand-binding free energy is a main
focus of most CADD approaches.26 To this end, many
computational schemes have been developed.27 Ligand-bind-
ing affinity of a large database of ligands to a protein is often
predicted by molecular docking28 or quantitative structure−
activity relationship29 methods. This initial screening reduces
the large ligand set to a shortlist of compounds which can be
subjected to further refined calculations. More computationally
expensive methods such as the molecular mechanics/Poisson−
Boltzmann surface area,30−32 linear interaction energy,33,34 or
fast pulling of ligand35 can be used to obtain a more accurate
prediction of ligand-binding free energy for the reduced set.
Moreover, recent advancements in machine learning (ML)
approaches have brought many benefits to various areas of
society. In particular, CADD including drug discovery and
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repurposing has also benefited from ML.36,37 ML has been
applied in various areas because it is able to automatically find
hidden patterns in large volumes of data and link them to a
target variable to be predicted.38 Applied to protein−ligand
binding problems, ML can learn a mapping function from
molecular inputs such as structural, physical, and chemical
properties to ligand-binding affinities and poses. Therefore,
ML has also been widely employed in CADD.39 Popular ML
algorithms used in CADD include both conventional methods
such as logistic regression, random forest (RF), and support
vector machine and more modern approaches such as extreme
gradient boosting (XGBoost) and deep learning. They are
increasingly employed in CADD to estimate strong binding
ligands to enzyme targets.40−42

In this work, a combination of rigorous computational
methods including conventional atomistic simulations and ML
models were used to study the interaction between AChE and
inhibitors. The computational outcome was then validated via
an in vitro experiment. In particular, ML models were trained
to predict the binding affinity of ca. 2 million compounds from
the ChEMBL database43 to AChE. The ligand-binding affinity
was then refined via an in vitro study. Besides, the binding pose
of the top-lead substances to the enzyme was then clarified via
atomistic simulations including molecular docking and

molecular dynamics (MD) simulations. The important
residues controlling the binding process were thus identified.
Interestingly, all of the experimentally investigated compounds
formed a strong binding affinity to AChE in comparison with
3′-methyl-2,2,2-trifluoroacetophenone and galantamine, which
were used as positive controls. Other suggested potential
inhibitors for AChE inhibition are expected to have high
reliability and offer a foundation for further experimental
studies. The obtained results could help enhance the
development of AD therapy.

■ MATERIALS AND METHODS

The computational and experimental strategies to estimate the
binding affinity of ChEMBL compounds43 to AChE are
presented in Figure 1. In particular, ML models were trained
and tested to rapidly and accurately predict the ligand-binding
affinity of ChEMBL compounds. The potential inhibitors for
AChE, which were suggested by ML calculations, were selected
for an in vitro enzyme assay. Besides, molecular docking, MD,
and ADME calculations were also performed to clarify the
binding mechanism of ligands to AChE and assess the ability
to cross the blood−brain (BB) barrier of these compounds.
Finally, the list of potential inhibitors of AChE screened from
the ChEMBL database was indicated.

Figure 1. Workflow for predicting potential inhibitors for AChE. (A) Investigation scheme was applied to estimate potential inhibitors for AChE
using ML, atomistic calculations, and in vitro studies. (B) Refined investigation of the ML prediction via an in vitro enzyme assay. (C) Predicted
potential inhibitors by the ML model were docked to the AChE active site via the modified AutoDock Vina.44 (D) AChE + trifluoromethylstyryl
ketone complex was simulated using MD simulations to find the ligand-binding pose.
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Data Set. The labeled data set was collected from the
binding database.45,46 It includes 762 compounds with
corresponding values of the association constant Ki. The
experimental binding free energy, which was calculated as ΔG
= RT ln Ki, was used as a label for training regression models.
The list of labeled data with SMILES strings and the
corresponding experimental binding free energy is mentioned
in Table S2 of the Supporting Information. The distribution of
ΔG for the labeled data set is shown in Figure 2. 600
compounds were randomly selected for the training set and the
rest (162 compounds) for the test set. A best model was
selected based on root-mean-square error (RMSE), Pearson’s
R, and Spearman’s ρ correlation coefficients. The ChEMBL
database43 was then used for screening AChE inhibitors.
ChEMBL contains ca. 2 million compounds, which were
downloaded in May 2020.
Regression Model Training. Our aim was to train a

model that could predict the binding free energy of ligands to
the target protein AchE with high correlation. Therefore, we
framed this modeling task as a regression problem. We would
then use the trained model to make predictions for the
ChEMBL set and select top-lead compounds for further
refined free energy calculations based on MD simulations. Four
ML models were trained including linear regression (LR), RF,
XGBoost,47 and a deep learning model based on the
convolutional networks on graphs (GraphConv).48 Similar to
RF, XGBoost is based on an ensemble of decision trees.
However, unlike RF, decision trees in XGBoost are not
independent. Instead, they are iteratively trained such that at
each iteration, the residual prediction error of all the previous
trees is used to fit the next tree.47 In a sense, each tree tries to
fix the mistake made by the previous ones. Predictions from all
the trees are combined using a weighted sum to output a single
final prediction. GraphConv48 is a deep learning model based
on convolutional networks on graphs. Input into the model is a
molecule, which is represented as an undirected graph. The
convolution layer will learn a fixed-length embedding vector
(called a molecular fingerprint) from the graph and then input
it into a densely connected layer. Both the embedding vectors
and weights of densely connected layers are learned together
during the training of the model. In GraphConv, manual
feature extraction is not needed because it can learn features on
the fly.
Among the four models, LR is the simplest approach, less

prone to overfitting, and was used as a baseline model. Ten-
fold cross-validation was applied to tune hyperparameters. The
Hyperopt library49 was used to search for the optimal values of
hyperparameters by minimizing mean square error. For LR, the
tuned hyperparameter was L2 regularization strength (alpha).
For RF, tuned hyperparameters included max_depth,

min_samples_split, min_samples_leaf, and max_features. For
XGBoost, tuned hyperparameters included max_depth,
min_child_weight, subsample, colsample_bytree, reg_lambda,
and learning_rate. For the GraphConv model, different
combinations of the number of units in the graph_cov layers
and dense layers, learning rate, and dropout rates were tried.
We used the Python library Scikit-Learn50 to train LR and RF
models and the XGBoost library for XGBoost models. We used
the library DeepChem,51 which implements GraphConv48 to
build and train deep learning models.
To extract features for LR, RF, and XGBoost, we used the

RDKitDescriptors tool kit implemented in DeepChem,51

which computed 200 physical and chemical properties such
as the numbers of hydrogen bond donors and acceptors,
number of valence electrons, maximum and minimum partial
charge, molecular weight, polar surface area, and so forth.
Among these 200 features, there are many features that are
mostly zero. Therefore, we removed those features having
more than 99% zero. Furthermore, we also removed highly
correlated features (an absolute value of Pearson’s R > 0.95).
Eventually, we are left with 123 features. Missing values were
imputed with the median of each feature. Finally, all the
features were standardized to have a zero mean and a standard
deviation of one. These 123 features were used to train LR, RF,
and XGBoost models. The Python code for extracting features
and training models is available at this GitHub URL https://
github.com/nguyentrunghai/AchE_inhibitor_ML.

Molecular Docking Simulations. AutoDock Vina with
modified empirical parameters44 was employed to characterize
the binding pose and binding affinity of ligands to AChE.52 In
particular, the structure of human AChE was downloaded from
the Protein Data Bank (PDB) with an ID of 4M0E.53

AutoDockTools was employed to topologize both the receptor
and ligands. The docking grid center was selected as the native
ligand center of mass. The grid size was selected as 26 × 26 ×
26 Å. The global exhaustiveness of modified Vina was chosen
as the default value, referring to the previous assessment.44 The
largest energy difference between docking modes was 7 kcal
mol−1. Lowest-energy docking structures were recorded for the
subsequent analysis via MD simulations.

MD Simulations. Atomistic simulations were often
performed to refine the docking results.54,55 GROMACS
version 201956 was thus employed to simulate the AChE +
inhibitor systems. In the first step, the complexes were
topologized via an all-atom force field. In particular, the
Amber99SB-iLDN force field57 was used to represent AChE
and neutralizing ions. The TIP3P water model58 was used for
topologizing water molecules. The general Amber force field,59

also known as GAFF, was contemporaneously utilized to
parameterize the ligand, in which the work was completed

Figure 2. Distribution of binding free energy from the experiment for the labeled set (left) and from prediction by the GraphConv model for the
test and ChEMBL sets.
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using a combination of AmberTools1860 and ACPYPE60

packages. During which, the geometrical and charged
parameters of ligands were obtained via quantum mechanics
calculation using the B3LYP/6-31G(d,p) level of theory with
an implicit solvent (ε = 78.4). The atomic charges were
assigned using the restrained electrostatic potential method.59

Besides, the AChE + inhibitor was put into a simulation box
having a volume of 662.7 Nm3 as shown in Figure 1D.
Dodecahedron periodic boundary conditions were applied.
The solvated complex thus consists of ca. 65 700 atoms totally
(1 AChE, 1 inhibitor, ca. 19 175 water molecules, and ca. 8
Na+ ions).
The AChE + inhibitor system was simulated via three steps

including energy minimization, NVT, and NPT. A steepest
descent approach was used to minimize the complex structure.
The minimized system was positionally restrained over 0.1 ns
of NVT simulations, in which all the atoms of AChE +
inhibitors were constrained via a harmonic force with a value of
ca. 240.0 kcal mol−1 nm−2 spring constant. The last snapshot of
NVT simulations was used as an initial of 0.1 ns NPT
simulations. The unbiased MD simulations with a length of
100 ns were then carried out to relax the AChE + inhibitor
complex to the stable states.
In Vitro AChE Enzyme Assay. The selected compounds

and 3′-methyl-2,2,2-trifluoroacetophenone were purchased
from AK Scientific (USA) and Oakwood Product (USA),
respectively. AChE, acetylthiocholine iodide (ACTI), 5,5′-
dithobis-(2-nitrobenzoic acid) (DTNB), and dimethyl sulf-
oxide (DMSO) were obtained from Sigma (USA). Galant-
amine was purchased from TCI (Japan). 96-well microplates
were acquired from Corning (USA). All the others chemicals
were obtained at standard purity.
The AChE inhibitory activities of selected compounds were

determined by the spectrophotometric method of Ellman61

with slight modification,62 using ACTI as a substrate, in 96-
well microplates. All the tested compounds and the positive
controls (3′-methyl-2,2,2-trifluoroacetophenone and galant-
amine) were dissolved in a minimum volume of DMSO (100%
of concentration) and diluted to various concentrations using
deionized water. The reaction mixture contained the following:
140 μL of sodium phosphate buffer (pH 8.0); 20 μL of the
tested sample solution; and 20 μL of the AChE solution (0.25
IU/mL), which were mixed and incubated for 15 min at 25 °C.
The reaction was initiated by adding 10 μL of DTNB 2.5 mM
and 10 μL of ACTI 2.5 mM to each well and was incubated for
10 min at 25 °C. The hydrolysis of ACTI was monitored by
following the formation of the yellow 5-thio-2-nitrobenzoate
anion at 412 nm for 15 min, which resulted from the reaction
of DTNB with thiocholine, released by the enzymatic
hydrolysis of ACTI. The reaction was performed in triplicate
and recorded in 96-well microplates using an Elisa microplate
reader system (Biotek Instruments, Agilent, CA, USA). Each
compound was evaluated at four concentrations (100, 20, 4,
and 0.8 μM). The percentage of inhibitory samples was
calculated as follows

=
[ − ]

×

I

100

%
absorbance of control absorbance of sample

absorbance of control

The analyses were performed using Microsoft Excel
(Microsoft Corp., Redmond, WA, USA) and the values are
expressed as mean ± SD. The AChE inhibitory activity of each

sample was expressed in terms of the IC50 value (μM required
to inhibit the hydrolysis of the substrate, ACTI by 50%), as
calculated using TableCurve 2Dv4 software.

Analysis Tools. The protonation states of ligands in MD
simulations were predicted via the chemicalize webserver, an
application of ChemAxon. The statistical errors of correlation
and RMSE were estimated via the bootstrapping analysis with
1000 circle resampling.63 The docking success rate p̂ was
calculated via comparing the non-hydrogen atoms’ root-mean-
square deviation (rmsd) between docking and experimental
poses. The rmsd was calculated using the GROMACS tool
“gmx rms”.56 The cluster analysis was carried out via the
GROMACS tool “gmx cluster”.56 The interaction diagram
between the AChE inhibitor was prepared via the free version
of Maestro.64 The log(BB) is calculated using the PreADME
webserver.65

■ RESULTS AND DISCUSSION
Performance comparison of four ML models including LR, RF,
XGBoost, and GraphConv is shown in Table 1. In addition to

the two commonly used evaluation metrics, RMSE and
Pearson’s R, Spearman’s ρ was also used. It measures the
degree of association in rank of two variables and is useful for
assessing ranking prediction. As expected, the LR model gave
the poorest performance, with the highest RMSE (2.155 ±
0.160 kcal mol−1) and the lowest Pearson’s R (0.427 ± 0.070)
and Spearman’s ρ (0.522 ± 0.064) among the four models
(Table 1). The poor performance of LR is due to its inability
to capture nonlinear relationships between features and targets.
Overall, the GraphConv model shows the best predictive
performance on the test set with the lowest RMSE (1.580 ±
0.137 kcal mol−1) and the highest Pearson’s R (0.721 ± 0.050)
and Spearman’s ρ (0.692 ± 0.054) (Table 1). The second best
model, XGBoost, is very close behind with an RMSE of 1.702
± 0.154 kcal mol−1, Pearson’s R of 0.669 ± 0.059, and
Spearman’s ρ of 0.658 ± 0.061 (Table 1). In fact, due to the

Table 1. Performance of ML Models in Predicting Binding
Free Energy of 162 Test Ligands to AChEa

model RMSE (kcal mol−1) Pearson’s R Spearman’sρ

LR 2.155 ± 0.160 0.427 ± 0.070 0.522 ± 0.064
RF 1.648 ± 0.126 0.694 ± 0.055 0.681 ± 0.055
XGBoost 1.702 ± 0.154 0.669 ± 0.059 0.658 ± 0.061
GraphConv 1.580 ± 0.137 0.721 ± 0.050 0.692 ± 0.054

aThe error bars were estimated using bootstrapping.

Figure 3. Comparison of binding free energy between the experiment
and prediction made by the GraphConv model for 162 test
compounds.
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sizable error bars, the difference in performance between
GraphConv and XGBoost is not significant. Nevertheless, our
main goal here is to obtain a reasonably accurate model for
inhibitor screening but not to determine precisely which model
performs best. The GraphConv model was selected to make a
prediction of binding free energy for the unlabeled ChEMBL
set. See Figure 2 for the distribution of predicted binding free
energy. The predicted binding free energy falls in the range
from −4.56 to −13.77 kcal mol−1, in which the mean value is
of −8.41 kcal mol−1. The comparison of binding free energy
between the experiment and prediction made by GraphConv
for the test set is shown in Figure 3.
Although the training size is quite small, the trained ML

model shows reasonably good predictive power. Interestingly,
among the top 100 ligand-binding affinities via the ML model,
25 compounds were indicated to bind well to AChE by
previous experiments (Table S3 of the Supporting Informa-
tion). In particular, the association constant of 15 compounds
was already reported in the respective experiments (cf. Table
2).66 It should be noted that these compounds were not
included in both the training and testing sets. Over the subset
of compounds, the obtained ligand-binding affinity by ML
calculation is an accurate result with an RMSE of 1.36 ± 0.37

kcal mol−1. Besides, the ΔGML is underestimated in
comparison with the experimental values66−70 by an amount
of ca. 0.78 kcal mol−1. Moreover, the obtained Pearson’s R =
0.747 ± 0.117 is in good agreement with the corresponding
value of the testing test with a value of 0.721 ± 0.050 (cf. Table
1). Overall, the outcome again confirms the realization of the
ML model. A clear advantage of the ML approach is that ML
models make predictions much faster than molecular docking.
It took about 43 min to extract features and make predictions
of binding affinity for 2 million compounds. For molecular
dockings it takes about 10 min to perform one docking
calculation. A limitation of the ML approach is that it requires
a large data set of experimental binding affinities.
In the next step, we selected six compounds (cf. Table 3)

from the top 100 lowest predicted binding free energies and
did not test the AChE inhibition activities before for further
refinement via the in vitro enzyme assay. The affinity of 3′-
methyl-2,2,2-trifluoroacetophenone (CHEMBL86868) and
galantamine (CHEMBL659) was also investigated as positive
controls. It should be noted that the compound 3′-methyl-
2,2,2-trifluoroacetophenone was ranked at #37 position in the
list of predicted binding free energies. The compound formed
ΔGEXP = −11.80 kcal mol−1 according to the previous
publication in comparison with a predicted value of ΔGML =
−12.16 kcal mol−1.66 Besides, although galantamine was placed
at #855268 over ca. 2 million trial compounds with a predicted
value of ΔGML = −8.46 kcal mol−1, the compound is a drug
that was approved for AD treatment by the U.S. Food and
Drug Administration.71 Moreover, the predicted-binding
affinity of galantamine is in good agreement with the respective
experiments because the mean of the experimental binding free
energy of ΔGEXP = −8.82 kcal mol−1.72−86 Furthermore, the
obtained IC50 of eight assessed compounds ranges from 0.33 ±
0.05 to 52.65 ± 4.14 μM by the in vitro enzyme assays. In

Table 2. Comparison of the ML Outcome and Available
Experimentsa

N0 ChEMBL ID ΔGML ΔGEXP
b

1 CHEMBL89354 −13.77 −15.6566

2 CHEMBL87098 −13.75 −15.1666

3 CHEMBL315634 −13.02 −12.8866

4 CHEMBL208599 −12.89 −14.4967

5 CHEMBL140476 −12.77 −14.3568

6 CHEMBL3958859 −12.75 −16.7469

7 CHEMBL3785269 −12.40 −12.8070

8 CHEMBL3786448 −12.39 −12.4370

9 CHEMBL3787223 −12.34 −12.2970

10 CHEMBL3786719 −12.31 −12.5270

11 CHEMBL3786442 −12.27 −12.2070

12 CHEMBL86868 −12.16 −11.8066

13 CHEMBL3786873 −12.13 −12.1570

14 CHEMBL3787502 −11.85 −12.2970

15 CHEMBL3786516 −11.83 −12.5670
aThe unit of energy is of kcal mol−1. bThe experimental binding free
energy ΔGEXP, which was calculated from the reported association
constant66−70 via the formula ΔGEXP = RT ln(ki), where R is the gas
constant, T is the absolute temperature, and ki is the association
constant.

Table 3. Top-Lead Compounds Formed the Largest Binding Affinity to AChE by ML Calculationsa

N0 ChEMBL ID name ΔGML ΔGdock ΔGEXP
b IC50 log(BB)

1 CHEMBL293277 trifluoroacetophenone −12.18 −9.4 4.61 ± 0.34 0.05
2 CHEMBL86868 3′-methyl-2,2,2-trifluoroacetophenone −12.16 −10.4 −11.8066 0.35 ± 0.03 0.08
3 CHEMBL292454 benzyl trifluoromethyl ketone −12.07 −9.9 0.51 ± 0.09 0.05
4 CHEMBL1200607 perflexane −12.02 −12.4 50.75 ± 3.73 1.05
5 CHEMBL74630 1-[4-(trifluoromethyl)phenyl]but-1-en-3-one −11.95 −11.0 26.33 ± 2.18 0.05
6 CHEMBL75566 trifluoromethylstyryl ketone −11.88 −10.8 0.33 ± 0.05 0.07
7 CHEMBL500823 methyl nonafluorobutyl ether −11.83 −10.5 52.65 ± 4.14 0.50
8 CHEMBL659 galantamine −8.46 −11.7 −8.8272−86 2.10 ± 0.17 −0.24

aThe unit of energy and IC50 is of kcal mol−1 and μM. bThe experimental binding free energy ΔGEXP, which was calculated from the reported
association constant66,72−86 via the formula ΔGEXP=RT ln(ki), where R is the gas constant, T is the absolute temperature, and ki is the association
constant.

Figure 4. Correlation between docking and experimental data.
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particular, the largest ligand-binding affinity is the compound
named trifluoromethylstyryl ketone (CHEMBL75566) with an
amount of IC50 = 0.33 ± 0.05 μM. The value is slightly smaller
than that of 3′-methyl-2,2,2-trifluoroacetophenone (IC50 =
0.35 ± 0.03 μM) and significantly smaller than that of
galantamine (IC50 = 2.1 ± 0.17 μM). It should be noted that
the obtained IC50 value of galantamine is in good agreement
with the reported values from the previous works that the
corresponding metric is of 2.0187 and 2.09 μM.88 Besides, the
ligand-binding affinity of benzyl trifluoromethyl ketone
(CHEMBL292454 ) and t r ifluo r o a c e t oph enone
(CHEMBL293277) was also impressive, with an experimental
value IC50 of 0.51 ± 0.09 and 4.61 ± 0.34 μM (cf. Table 3),
respect ively . The other l igands including 1-[4-
(trifluoromethyl)phenyl]but-1-en-3-one, perflexane, and meth-
yl nonafluorobutyl ether formed appropriate values of IC50,
which measured as 26.33 ± 2.18, 50.75 ± 3.73, and 52.65 ±
4.14 μM, respectively. The obtained results indicated that six
proposed ligands can inhibit the biological activity of AChE
and it also reaffirmed the acceptable estimation of the ML
model.

In order to gain insights into the binding process of eight
compounds to AChE, these ligands were docked to the
enzymic binding cavity using AutoDock Vina with the
modified empirical parameters.44 In order to validate our
docking approach, we selected 10 compounds whose bound
structures with the receptor are available in the PDB. The
experimental binding affinity of the 10 compounds is also
available (see Table S1 in the Supporting Information). These
10 ligands were redocked into AChE and the results are
reported in Table S1. The obtained docking success rate was of
ρ̂ = 90 ± 10 %, in which a docking trial is considered a success
if the non-hydrogen atom rmsd between experimental and
docking poses was smaller than 0.20 nm. Moreover, the
Pearson’s R over these complexes was 0.863 ± 0.091 (see
Figure 4). It is significantly larger than that by the default
parameter, which is of R = 0.75 ± 11.89 Therefore, it may be
concluded that AutoDock Vina with the modified empirical
parameters is an appropriate approach to preliminarily predict
the ligand binding pose and affinity of ligands to AChE. The
approach was thus utilized to estimate the binding poses of
eight compounds, which were indicated by ML calculation and

Figure 5. Interaction diagram of the AChE + inhibitor complex. The outcome was obtained via the analysis of Maestro over the representative
structure of the solvated complex. The structure was obtained via clustering all of the conformational complex within the interval of 40−100 ns with
a cutoff of 0.12 nm.
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confirmed via the in vitro enzyme assay. The docking outcome
is mentioned in Table 3. Interestingly, the docking simulations
provided highly accurate results compared with ML calcu-
lations, with an RMSE value of 1.94 ± 0.27 kcal mol−1.
Although docking had a high docking success rate, the

obtained pose is probably limited because the docking
approach uses many approximations to enhance the computing
speed.54,90 The unbiased MD simulations with a length of 100
ns were thus performed to turn the solvated complex into
equilibrium states. The AChE + inhibitor complex reaches
stable states after ca. 55 ns of MD simulations (Figures S1−S3
of the Supporting Information). The factors controlling the
binding process of inhibitors to the AChE are then clarified by
analyzing the representative structures of the AChE + inhibitor
complex. The structure was obtained via clustering all of the
conformational complexes within the interval of 40−100 ns
with a cutoff of 0.12 nm. The interaction diagram between
AChE + inhibitors was then estimated via the Maestro
program.64 The diagram was mentioned in Figures 5 and S4 of
the Supporting Information. In particular, we may argue that
residues Trp86, Gly121, Tyr124, Ser125, Phe297, Tyr337,
Phe338, and Tyr341 are important factors governing the
binding process of ligands to AChE. Because the ligands
frequently formed intermolecular non-bonded contacts to
eight residues of AChE, which residues establish contact to
inhibitors over 50% of the appraised systems. Interestingly,
almost all the ligands formed non-bonded contacts with AChE
and only one hydrogen bond between galantamine and Asp74
of AChE was found. Therefore, the hydrophobic interaction
probably dominates over electrostatic interaction in the
binding process of ligands to AChE.
A potent inhibitor for preventing AChE is necessary to be

able to traverse the BB barrier because the neurotransmitter is
situated in the brain. The log(BB) of eight inhibitors was thus
predicted by using PreADME.65 The results are also described
in Table 3. Generally, a drug establishes a log(BB) in the range
from −2.0 to 1.0.91 Here, eight trial inhibitors adopted
log(BB) in the range from −0.24 to 1.05. The predicted
log(BB) suggests that the two ligands would be able to easily
traverse the BB because their log(BB) is larger than 0.3.91 The
other compounds would not be very hard to encounter AChE
inside the brain because their log(BB) is larger than −1.0.91
PreADME calculations also suggested that these compounds
would not cause significant neurotoxicity.

■ CONCLUSIONS
In this work, combined computational and in vitro studies
were proposed to predict the potent inhibitor for preventing
AChE. In particular, the GraphConv model with a Pearson’s R
on the test set of 0.721 ± 0.05 was used to screen nearly 2
million compounds in the CHEMBL database. The ligand-
binding affinity would be then evaluated via the in vitro
enzyme assay. The docking and MD simulations were finally
performed to estimate the ligand-binding pose and serious
factors governing the binding process.
The ligand-binding affinity of eight compounds to AChE

was determined via computational and experimental studies. In
particular, two compounds involving 3′-methyl-2,2,2-trifluor-
oacetophenone and galantamine were played as positive
controls. Interestingly, two compounds including benzyl
trifluoromethyl ketone and trifluoromethylstyryl ketone were
indicated as highly powerful inhibitors of AChE because they
established IC50 values of 0.51 and 0.33 μM, respectively. The

obtained IC50 of two compounds is significantly smaller than
that of galantamine (2.10 μM). These compounds also formed
an appropriate log(BB), which ranges from 0.05 to 0.07, letting
them be able to traverse the BB barrier. Moreover, the other
four compounds can also inhibit AChE in both computational
and experimental studies.
In addition, besides six compounds were evaluated the

ligand-binding affinity using both in silico and in vitro studies
in this work and 25 compounds were indicated that they can
bind well to AChE via the previous experiments, the other
ligands in the top 100 lowest predicted binding free energy
probably play as highly potent candidates to prevent AChE.
Further experimental studies should be carried out to confirm
the ligand-binding affinity of these compounds.
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