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Abstract

Objective: Graphical deep learning models provide a desirable way for brain functional 

connectivity analysis. However, the application of current graph deep learning models to brain 

network analysis is challenging due to the limited sample size and complex relationships between 

different brain regions.

Method: In this work, a graph convolutional network (GCN) based framework is proposed 

by exploiting the information from both region-to-region connectivities of the brain and subject-

subject relationships. We first construct an affinity subject-subject graph followed by GCN 

analysis. A Laplacian regularization term is introduced in our model to tackle the overfitting 

problem. We apply and validate the proposed model to the Philadelphia Neurodevelopmental 

Cohort for the brain cognition study.

Results: Experimental analysis shows that our proposed framework outperforms other competing 

models in classifying groups with low and high Wide Range Achievement Test (WRAT) scores. 

Moreover, to examine each brain region’s contribution to cognitive function, we use the occlusion 
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sensitivity analysis method to identify cognition-related brain functional networks. The results are 

consistent with previous research yet yield new findings.

Conclusion and significance: Our study demonstrates that GCN incorporating prior 

knowledge about brain networks offers a powerful way to detect important brain networks and 

regions associated with cognitive functions.

Index Terms—

Graph convolutional networks; functional magnetic resonance imaging; functional connectivity; 
brain functional networks; human cognition

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) measures blood-oxygen-level-dependent 

(BOLD) contrast signals to track the brain cells’ energy activity, providing a non-invasive, 

high-resolution way to analyze the brain statistical patterns. The human brain is a complex 

functional system, in which nerves communicate via trillions of connections. However, the 

brain regions can functionally interact with each other even in the absence of a direct 

anatomical connection [1]. To this end, functional connectivity (FC) [2]–[4], defined as 

temporal correlations of different regions of interest (ROIs), has been used to study human 

psychology and physical brain development. Meier et al. [5] analyzed FC networks built 

from resting-state fMRI to discriminate different age groups. Greene and Gao et al. [6], 

[7] showed that FC derived from task fMRI can be used for predicting fluid intelligence. 

Xiao et al. [8], [9] used FC derived from multiple paradigms of fMRI for intelligence 

quotient prediction. All these studies demonstrate that FC contains essential discriminative 

information for human cognitive trait prediction, measures of human brain maturation, and 

biomarker identification.

Recently, deep learning has gained attraction for FC studies [10]–[12] due to its power for 

feature representation. With massive parameters to optimize, deep learning models generally 

require large quantities of data. However, fMRI data is generally of a limited sample size 

to perform FC analysis because the data collection process is costly and time-consuming. 

In addition, the cognitive and psychiatric assessments conducted for subjects contain high 

evaluation errors and variance, increasing the difficulty in predictive tasks. To this end, the 

relationship between subjects can be explored as prior knowledge to improve the fitting of 

deep learning models. To incorporate both subject relationship information and FC of each 

subject, models based on graph theory [13], [14] are utilized.

In this paper, we propose a graph convolutional network (GCN) based framework to predict 

subjects’ cognition using FCs. Specifically, we build a subject-subject affinity graph for 

each fMRI paradigm, in which each node corresponds to one subject. The features of 

nodes are the FCs derived from the fMRI. Likewise, the edges between nodes represent 

the similarities of FCs between subjects, suggesting that each node can aggregate the 

information from neighbors. As a result, the labels on a small subset of nodes can be 

propagated through the whole graph to the unlabeled nodes. Then, GCN [15]–[18] is applied 

to the subject-subject graph to perform the classification task. Using the graph as the input, 
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GCN can automatically extract features from each node and then aggregate them based on 

spatial structures of the graph via localized graph filters. As a result, semi-supervised graph 

embedding [19] is delivered, which uses both features on the nodes and topological structure 

of the graph. However, the over-smoothing issue limits the predictive performance and 

results in the overfitting problem for a small sample size, which has not been investigated 

by previous research [15]–[18]. We enforce a Laplacian regularization term [20] as an 

additional smoothness term on the embedding layer to address the over-smoothing issue. 

Besides, the effect of the different similarity functions is investigated, which directly 

constrains the input graph’s smoothness.

To validate our framework, we apply it to the Philadelphia Neurodevelopmental Cohort 

(PNC) [21] to study the brain mechanisms underlying human cognition. The Wide Range 

Achievement Test (WRAT) score [22], which measures an individual’s ability in reading, 

spelling, comprehending, and solving mathematical problems, is adopted as the measure of 

cognitive ability. We divide subjects into different groups based on their WRAT scores, and 

apply a semi-supervised GCN to perform the cognition level classification on the partial 

labeled subject-subject graph. Moreover, with the trained GCN model, we identify the 

significant brain networks underlying human cognition.

The main contributions of this paper are summarized as follows: 1) we propose a 

GCN based framework to incorporate subject-subject information and obtain superior 

performance for cognition classification using FC; 2) we alleviate the overfitting problem by 

enforcing a Laplacian regularization term; 3) the functional networks associated with human 

cognition are identified using the occlusion sensitivity method.

The remainder of this paper is structured as follows. We first present the proposed GCN 

model and the corresponding pipeline in Section II. We then conduct the experiments on 

the PNC dataset, including the comparison of performance with other models, parameter 

sensitivity studies, and brain functional network identification in Section III. We discuss 

some limitations with an outlook on future work in Section IV, followed by conclusion in 

Section V.

II. METHODOLOGY

In this section, we present the key components of our proposed GCN model and the 

corresponding pipeline.

A. Graph Convolutional Networks

As shown in Fig.1, the BOLD fMRI signal is first pre-processed and projected into the ROI 

time series according to the Power template [23]. A subject-subject affinity graph G = V, ℰ
is then built using the ROI time series, in which V is the set of nodes as V = υ1, υ2⋯υN , 

and ℰ is the set of edges, representing subject-subject relationships. Here, we assume 

the graph G is weighted and undirected. The vectorized functional connectivity x ∈ ℝd is 

regarded as the input feature calculated from the ROI time series for individuals, where d 

is the feature dimension. The Laplacian matrix L ∈ ℝN × N, defined in Eq.1, is then used 
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to represent the subject-subject graph, where A ∈ ℝN × N is the adjacency matrix and A(i,j) 
represents the edge weight between subject i and subject j.

L: = IN − D− 1
2AD− 1

2 , (1)

where D is the degree matrix, i.e., D i, i = ∑jA i, j , and IN ∈ ℝN × N is the identity matrix. 

Graph Laplacian [24] is positive-semi-definite, whose eigendecomposition is

L = UΛUT , (2)

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues of L, and U is the 

matrix of eigenvectors.

Graph convolution uses the eigenvectors of the Laplacian matrix L in Eq.1 as the bases of 

the graph spectrum. Accordingly, the graph convolutional networks [17], [25] are defined as

H l + 1 = ϕ UgUT H l , (3)

where H(l) is the feature representation at the lth hidden layer, and ϕ is the activation 

function.

The graph filter g is designed to incorporate the graph structure, which enables each node to 

aggregate the information from neighbors. It can be approximated as a truncated expansion 

in terms of polynomials in Eq.4 to reduce computational cost.

g Λ = ∑
k = 0

K − 1
θkΛk, (4)

where θk is the weight of Λk. The Chebyshev polynomial approximation in Eq.5 is next 

utilized to reduce the number of parameters.

g Λ = ∑
k = 0

K − 1
θkTk L ,

L = 2
λmax

L − IN, (5)

where λmax refers to the largest eigenvalue of L; Tk = 2LTk − 1 − Tk − 2 is the kth order 

Chebyshev polynomial with k = 1, T0 = IN and T1 = L. Therefore, the GCN layers [17] are 

simplified to
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H l + 1 = ϕ D− 1
2AD− 1

2H l W l + B l ,

A = A + IN

(6)

where D i, i = ∑jA i, j , and W(l) and B(l) are the weight matrix and the bias matrix for the 

lth hidden layer, respectively. The weight and bias matrices are shared for all nodes, which 

can be learned with the labeled nodes and then tested on the unlabeled nodes.

B. Subject-subject graph analysis using semi-supervised GCN

Here we demonstrate the procedures by applying GCN to analyze the FCs derived from 

fMRI time series. Specifically, the FC of each subject is calculated by the Pearson 

correlation of pairwise ROIs. The FC of the ith subject is then vectorized to xi ∈ ℝd. The 

feature matrix of the graph can be defined as X = x1, x2, ⋯, xN
T ∈ ℝN × d, where N is the 

total number of subjects.

The subject-subject affinity graph is then built as follows. The edges of the graph are defined 

as the similarity between the node features, which can capture the affinity relationship 

between subjects. Several similarity functions are considered including: the Gaussian 

similarity in Eq.7, the cosine similarity in Eq.8, and the median similarity [26] in Eq.9.

Gaussian similarity = exp −
xi − xj 2

2

2β2 , (7)

Cosine similarity = xiT − xj
xi 2 xj 2

, (8)

Median similarity = exp −
xi − xj 2

2

σ xi σ xj
, (9)

where xi and xj represent the feature vectors for node i and node j, respectively; β in Eq.7 is 

a scaling parameter; σ(xi) in Eq.9 is defined as the median of the distances between node i 
and its neighbors.

In addition, the K-nearest-neighbor (KNN) is applied to the adjacency matrix A before 

calculating A in Eq.6. That is, only K most substantial connection edges are reserved, while 

the rest of the edges are set to zeros. In the process of graph convolution, some information 

aggregated from neighbors is simply noise, i.e., small correlation values are observed 

between the pair of nodes. KNN edge-selection significantly reduces the noise, resulting 

in increased sparsity of the graph. The graph is then partially labeled for semi-supervised 

learning. Specifically, the GCN is applied to learn the embedding of the nodes first. The 
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weight matrix W(l) and the bias matrix B(l) of each GCN layer learned through the labeled 

nodes for training are then shared with unlabeled nodes during testing.

C. Laplacian regularization term

GCN aggregates the information of neighboring nodes via mean pooling. This recursive 

local smoothing raises the risk of over-smoothing, i.e., the embeddings of connected nodes 

with a larger edge weight tend to be more similar. Therefore, a Laplacian regularization term 

RLap is enforced in Eq.10.

RLap = yLyT = 1
2 ∑

i, j

N
A i, j yi

D i, i − yj
D j, j

2
, (10)

where y = y1, y2, ⋯, yN
T ∈ ℝN is the embedding output of the nodes, L is the Laplacian 

matrix in Eq.1, and A is the adjacency matrix before applying KNN. The Laplacian 

regularization term, enforced at the output layer of GCN, can smooth the embedding results 

over the whole graph and reduce the variations in the graph. This regularization is applied 

to both labeled and unlabeled nodes. Besides the Laplacian regularization term, the l2 

regularization term RL2 = ∑l W l
F
2

 is also enforced.

For the semi-supervised classification task, the loss function is defined by cross entropy 

balanced with the regularization terms, shown in Eq.11.

Loss = − ∑
d ∈ ℋ, f = 1

F
ydflnydf + λ1RLap + λ2RL2, (11)

where ℋ is the set of labeled nodes, and ydf, between 0 and 1, is the embedding value of 

nodes. F(= 2) represents the number of classes, and λ1 and λ2 are the parameters for RLap 

and RL2, respectively.

III. EXPERIMENT

In the experiment, we examined the relationship between human cognitive ability and 

brain connectivity networks by applying the proposed framework to the analysis of PNC 

data. Multiple studies, including accuracy comparison, parameter sensitivity studies, and 

brain functional network identification, demonstrated the effectiveness of the proposed GCN 

model.

A. PNC data

The brain fMRI datasets from the PNC were used for the experiment. The data includes 

three paradigms of fMRI: resting-state fMRI (rest-fMRI), emotion task fMRI (emoid-fMRI), 

and nback state fMRI (nback-fMRI) (collected from 975 subjects). All BOLD scans 

were acquired on a single 3T Siemens TIM Trio whole-body scanner with a single-shot, 
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interleaved multi-slice, gradient-echo, echo-planar imaging sequence. The total scanning 

time was 50 minutes, 32 seconds, with a voxel resolution of 3 × 3 × 3 mm with 46 slices. 

The imaging parameters were set to achieve whole brain coverage (i.e., TR = 3000 ms, 

TE = 32 ms, and flip angle = 90 degrees) [21]. Gradient performance was 45 mT/m, with 

a maximum slew rate of 200 T/m/s. The rest-fMRI scan duration was 6.2 minutes (124 

TR), during which subjects were asked to stay still and keep awake with eyes open. The 

duration of emoid-fMRI scan was 10.5 minutes (210 TR), during which subjects were asked 

to view faces displaying different emotions, e.g., angry, sad, fearful, happy, and to label the 

emotion type of the face. The nback-fMRI scan duration was 11.6 minutes (231 TR), during 

which subjects were asked to conduct n-back memory tasks, which indicated the ability of 

lexical processing and working memory. In our experiment, the WRAT scores were used 

as cognitive assessments to investigate the relationship between FCs and human cognitive 

abilities. The WRAT distributions of tested subjects for each of three paradigms of fMRI are 

shown in the Fig.3. The numbers of subjects, as shown in Fig.2, were 910 (nback-fMRI), 

680 (emoid-fMRI), and 878 (rest-fMRI), respectively.

SPM12 1 was used to conduct motion correction, spatial normalization, and smoothing with 

a 3mm Gaussian kernel. Multiple regressions were used to remove the influence of motion 

[27]. As a result, 264 ROIs were obtained (containing 21,384 voxels) using the Power 

template (sphere radius of the ROI was 5mm) [23]. Potential confounders (age, gender, head 

motion) for WRAT and fMRI association were explored.

• Age: The WRAT-age distribution was shown in Fig. 3 (b). The standardized 

WRAT scores [22] were considered, for which the grade and age norms were 

enforced to control the age factor for the WRAT scores calibration.

• Gender: The gender-WRAT information was shown in Table I. Since the mean 

and standard deviation of WRAT scores for males and females were close, the 

gender effects on WRAT classification were ignorable.

• Head motion: 6 rigid body motion parameters (3 translations pi x , pi y , pi z , and 

3 rotations pi rx , pi ry , pi rz  at time step i) were collected as a vector pi ∈ ℝ6. 

The framewise displacement (FD) [28] shown in Eq.12 was then calculated.

Δpi = pi − pi − 1,
FDi = Δpi x + Δpi y + Δpi y + Δpi rx

+ Δpi ry + Δpi rz .
(12)

Using Pearson correlation coefficients, we further tested the hypothesis that there was no 

relationship between the WRAT scores and the mean FD over time. The p-values were 

0.3029 for emoid-fMRI, 0.3599 for nback-fMRI, and 0.1785 for rest-fMRI, respectively. No 

significant relationships between FD and WRAT scores were observed at 0.05 level.

Next, the top 20% and the bottom 20% of the subjects from each fMRI paradigm were 

grouped as high and low WRAT cognitive groups. Accordingly, 268, 356, and 342 subjects 

1 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/ 
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for emoid-fMRI, nback-fMRI, and rest-fMRI were selected, respectively. The affinity graphs 

were built separately for each paradigm. The principal component analysis was used for 

all three paradigms to reduce the dimension of node features. The number of components 

was selected such that 90% of the total variance was explained, resulting in 165, 214, 

224 components remained for the emoid-fMRI, nback-fMRI, and rest-fMRI, respectively. 

We repeated the experiments with different ratios between unlabelled and labelled nodes. 

The ratios of labeled nodes used for training and validation ranged from 30% to 70% in 

increments of 5%. No significant improvements of classification performance for testing 

were observed after using more than 50% of the subjects for training and validation.

B. Experiment set-up

We randomly selected 50% of nodes from each group to be labeled (1 for high WRAT 

score and 0 for low WRAT score). For each experiment, 10% of these labeled nodes (5% 

of total) were regarded as validation dataset, and the rest 90% were used for training. The 

FCs derived from different paradigms were used as the node features. The classification 

accuracy was evaluated on the unlabeled nodes. The ADAM optimizer [29] was used for 

optimization. The hyperparameters of GCN, including the number of layers, the number of 

channels in each layer, activation function for each layer, learning rate, learning rate decay, 

epochs number, the trade-off parameters of L2 and the Laplacian regularization term, were 

tuned via random search [30]. The results were shown in Table.II. The models were trained 

on the computer with an Intel(R) Core™ i7–8700K Processor, a 16G RAM, and a NVIDIA 

GeForce GTX 1080 GPU, 8G RAM. The training time was recorded to document the 

complexity of the models. Bootstrapping analysis was utilized to evaluate the performance 

of the models, which reduced the effect of sampling bias via 10 repeated experiments. We 

randomly split the nodes into training, validation, and test sets for each repeated experiment. 

Then the means and standard deviations of the accuracy were reported and compared for 

different models. Specifically, pairwise t-test comparisons were performed between the 

results of our method and the other competing approaches. Next, p-values were reported to 

demonstrate if significant improvement of the predictive performance was observed.

In the experiment, we found that more layers (e.g., 4 or 5 hidden layers) did not significantly 

improve the performance. In contrast, setting more than 3 layers increased the chance of 

over-smoothing. This was consistent with the conclusion in [31] that more stacked layers of 

GCN would not help the final results for limited labeled datasets.

C. Hyperparameter selection

Hyperparameter selection can influence the topological graph structures. Therefore, the 

selection of these hyperparameters (K for KNN, and similarity function ) was further 

investigated.

1) KNN parameter: The selection on the number of the nearest neighbors K impacts the 

sparsity level of the graph. In the experiment, K was set to 10, 20, compared to the fully 

connected graph (K = N − 1). Gaussian similarity in Eq.7 was utilized. The parameter of 

the Laplacian regularization term was set to 0. The classification results on emoid-fMRI and 

nback-fMRI with different values of K were shown in Fig.4. The model frequently failed 
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to converge when setting K = 10 and K = N − 1 for rest-fMRI. The classification accuracy 

was 0.658 ± 0.012 for K = 20 using rest-fMRI. Based on the experiment, we found that 

the optimization of the model will be challenging with the observed overfitting. However, 

enforcing the Laplacian regularization term helped to solve the problem.

2) Similarity function selection: The use of different similarity function can have an 

effect on the weight distribution of the connected edges. Three frequently used similarity 

functions (the Gaussian similarity in Eq.7, the cosine similarity in Eq.8, and the median 

similarity in Eq.9) were compared. K for KNN was set to 20. The parameter of the 

Laplacian regularization term was set to 0. The rest of the hyperparameters were set to 

the default values.

From the results in Table III, the models with Gaussian similarity outperformed those 

with the cosine similarity and the median similarity. The median similarity function further 

smoothed the graph, which could worsen the over-smoothness problem if not properly used 

[31], [32]. The edge weights calculated using Gaussian similarity are more discriminative, 

as shown in Fig.6, which resulted in better predictive performance. Therefore, the Gaussian 

similarity was chosen in this work to evaluate the performance of the GCN.

3) Regularization and visualization: The overfitting issue was observed for the GCN 

model as shown in Fig.5 (a). The Laplacian regularization was thus applied. The parameter 

of the Laplacian regularization was tuned using random search between 0.1 and 0.001, with 

the best value found to be 0.005. With the Laplacian regularization term, the gap between 

the training and testing accuracy decreased significantly. In addition, higher classification 

accuracy was also observed via adding the Laplacian regularization term, shown in Table IV.

The t-distributed stochastic neighbor embedding (t-SNE) was utilized to visualize the GCN 

via mapping the high dimensional data to a 2D space. The results of the input layer and the 

last hidden layer of GCN were shown in Fig.5. In the figure, the nodes were observed to 

be clustered into two classes. From Fig.5 (c) (d), the two clusters were observed to be more 

discriminative from the input layer to the last hidden layer.

D. Model performance evaluation

1) Running time comparison: Multiple epochs were trained for deep learning models. 

Therefore, multi-layer perceptron (MLP) network with an equal number of hidden layers 

and equal number of neurons in each layer was compared with GCN to evaluate the 

complexity. The average running time for 100 epochs was 6.92s for MLP and 7.43s for 

GCN, respectively. GCN spent around 7.3% more time than MLP.

2) Model comparison: The performance of GCN was evaluated on the PNC dataset. 

The FCs derived from emoid-fMRI, nback-fMRI, and rest-fMRI were used as raw inputs, 

respectively. The same dataset splitting strategy was applied:

• 45% samples were used for training.

• 5% samples were used for validation.
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• 50% samples were used for testing.

The dataset was divided without bias regarding different groups into different classes. 

The principal components analysis (PCA) was next applied to avoid out-of-memory. 

Bootstrapping analysis was used to evaluate the classification performance. The two-

sample t-test between the competing model and GCN was performed using 10 repeated 

experiments. The dataset splitting and model training procedure was repeated for each 

experiment, after which the mean and standard deviation of the accuracy was recorded. The 

GCN was compared with following models:

• PCA+SVM: performing PCA followed by classification via Support Vector 

Machine (SVM).

• DM+SVM: performing diffusion map (DM) [33] followed by classification via 

SVM.

• PCA+SRC: performing PCA followed by classification via sparse representation 

coding (SRC) [34].

• PCA+DT: performing PCA followed by classification via decision tree classifier 

(DT).

• PCA+MLP: performing PCA followed by classification via MLP, the neuron 

network structure of which was identical to GCN.

• PCA+GCN*: performing PCA followed by classification via GCN without the 

use of the Laplacian regularization term.

We tuned the penalty parameter C of the SVM within the range of {10−3,10−2,10−1,1,10} 

and found the linear kernel resulted in better classification performance for PCA and DM. 

The target dimension varied within the range of {10,20,…,100} in the DM. The criterion 

was set to be Gini impurity in the DT and the l1 parameter of SRC was tuned within 

the range of {10−5,10−4,10−3,10−2,10−1}. As can be seen, SVM, SRC, and DT, yielded 

significantly lower accuracy than the deep learning models, e.g., MLP and GCN. The 

groups can be better discriminated by task fMRI (emoid-fMRI and nback-fMRI) than by 

rest-fMRI when the neural networks (MLP and GCN) were used. In addition, GCN without 

the Laplacian regularization term still outperformed the MLP and its performance can be 

further improved via enforcing the Laplacian regularization term.

E. Result analysis

From the results about hyperparameter selection, using 20 nearest neighbors and Gaussian 

similarly function was the best choice. Because of the overfitting problem on the small 

sample dataset, as shown in Fig.5 (a), the Laplacian regularization term was enforced. 

Fig.5 (b) showed that the gap between training and testing accuracy become narrower after 

enforcing the Laplacian regularization term. In particular, the t-SNE mapping in Fig.5(c) and 

(d) showed that GCN learned an embedding map, based on which the subjects can be better 

clustered into different groups.

The performance of GCN was compared to that of other classifiers in Section III-D2. 

Results in Table IV demonstrate superior performance of GCN over other conventional 
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models. Even GCN without the Laplacian regularization term still outperformed the MLP 

with the same network structure. This experimental result supports our argument that the 

classification performance can be enhanced by incorporating the subject-subject relationship 

information.

F. Brain functional network identification via occlusion sensitivity analysis

Occlusion sensitivity (OS) [35], [36] can be used to visualize and understand the neuron 

networks via tracking the activation parts of the input features. This approach was applied 

to identify relevant brain functional networks. From the results summarized in Table IV, the 

emoid-fMRI was shown to better classify different WRAT groups than other paradigms of 

fMRI. As a result, FC derived from the emoid-fMRI was used to identify critical networks. 

To be specific, first, the parameters (e.g., the weights of the hidden layers and the correlation 

matrix for PCA) of 10 trained GCN were fixed. The FCs derived from emoid-fMRI on 

individual brain functional networks were then zero-out, which simulated the situation when 

a specific brain network was not working correctly. 10 GCN models were then tested using 

different region-blocked FC matrices. Thus, brain functional networks that played essential 

roles were inferred. Since brain functional networks differ in size, the ROI-level average 

sensitivity, defined as the OS of the brain functional network divided by the number of 

ROIs in the network, was also measured. Accordingly, SM, CNG, AUD, DMN, which play 

essential roles in WRAT classification, were identified, as shown in Fig.7. Besides, memory 

retrieval network (MEM), ventral attention (VTRL), and cerebellum (CB) were observed 

with high ROI-level average OS. The visualization results are shown in Fig.8.

IV. DISCUSSION

GCN is an ideal model to extract essential information from a network. In particular, we 

can incorporate both the node features and between-node relationships into the GCN. We 

investigated the application of GCN to the fMRI dataset with a small sample size. The 

experimental results in Section III showed that GCN can achieve superior classification 

accuracy than several competing models.

A. Brain functional network identification via GCN

We applied GCN to analyze the relationship between specific brain functional networks and 

cognitive functions. The OS of each brain functional network was explored. In particular, 

four brain functional networks were identified, including SM, CNG, AUD, and DMN.

• SM: according to the study in [37]–[39], SM plays a critical role in various 

cognitive functions, such as verbal creativity, memory retrieval, imaginative 

process, and feedback-based control of vocal pitch.

• CNG: a downstream role for CNG is observed, which involves cognitive control 

and maintaining cognitive functions available for current processing [40], [41].

• AUD: study in [42] reveals that attention and cognitive control networks can be 

identified via the auditory discrimination task. However, little evidence on the 

direct relationship between AUD and human cognitive ability can be found.
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• DMN: the largest brain functional network, which contains more connections 

with other brain regions. Results from previous research [37], [43]–[45] show 

that DMN closely associates with ongoing cognition for goaldirected and goal-

irrelevant task.

Interestingly, MEM, VTRL, and CB were discovered to deliver high ROI-level average OS. 

Particular ROIs with high ROI-level average OS, which were located in the brain functional 

networks with low OS, may still function critically in human cognition.

• MEM: memory is part of the general human cognitive standard, which is closely 

related to the ability of various tasks [46]. In the experiment, WRAT scores were 

used to measure human cognitive ability, which impacts the academic ability of a 

subject. This measurement may result in MEM network to be underestimated.

• VTRL: VTRL are positively correlated with various other brain regions, 

e.g., resting-state DMN network [44], [47]. Reports in [48], [49] reveal the 

recruitment of these areas under cognitive loading conditions.

• CB: CB is believed to play an essential role in movement control. Studies in [50] 

[50], [51] suggest that CB also contributes to the cognitive functions of language, 

attention, and the response of fear or pressure.

These results uncover the relationship between brain functional networks and human 

cognitive function, which are consistent with previous findings.

B. Limitations and future work

Despite the success, our work still has the following limitations. First, our analysis relies 

on the assumption on static FC, without accounting for time-varying functional information 

[52]. Second, the PCA was applied to reduce the computational complexity of our model 

from O NQ2  to O Nd , where N is the number of subjects, Q = 264 is the number of ROIs, 

and d is the dimension of the feature vector. However, from the results of our previous work 

[53], the classification accuracy of SVM without PCA on rest-fMRI FC was comparable 

to that of MLP, and the use of PCA can cause a decrease in classification accuracy. A 

balance between computational complexity and classification accuracy should be further 

explored. Third, currently we performed classification based on FCs derived from each 

fMRI paradigm separately; it would be more helpful by using the integrated FCs as the 

inputs for the GCN model. Besides, the standard template used in SPM was derived from 

the adults, which may have limitations when applying to children subjects. The use of the 

templates for different ages deserves further study while beyond the scope of current focus.

V. CONCLUSION

This paper proposed a GCN based framework to extract fruitful information from 

brain FCs, which was used to study the brain-cognition relationship. We simultaneously 

incorporated the information of FC from each subject and between different subjects as prior 

knowledge. The Laplacian regularization term was enforced to overcome the overfitting 

problem when only a small size of sample is available. We validated the framework by 

classifying subject groups with high and low WRAT scores using real data from the 
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PNC study. Through the experiment, GCN outperformed other conventional approaches 

with a classification accuracy of 76.5%, 74.2%, 68.9% for emoid-fMRI, nback-fMRI, and 

rest-fMRI, respectively. The superior classification accuracy demonstrates that incorporating 

the relationship between subjects can improve the fitting of the GCN model to real data. 

Furthermore, four important functional networks with the brain, including SM, CNG, AUD, 

and DMN, were identified via occlusion sensitivity analysis, which play critical roles 

in human cognitive functions. The results were consistent with the previous studies [9], 

[36], [54], [55]. In addition, specific brain regions or ROIs were identified, which may 

significantly contribute to human cognition. Therefore, these results demonstrate that the 

proposed GCN framework provides a valuable way for brain-cognition studies.
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Fig. 1. 
The flowchart of this study. First, the fMRI for each subject is mapped to the ROI time series 

using the Power brain template [23], followed by FC calculation via Pearson correlation. 

The affinity subject-subject graph is then built by measuring the similarity between FCs as 

edges, e.g., eij between node i and node j. Next, the GCN is applied for the classification 

of different cognitive functions. In this step, the graph is sparsified by K-nearest neighbors, 

and partially labeled (e.g., nodes with labels are marked in green, while nodes without labels 

are marked in red) for semi-supervised learning. The Laplacian regularization term RLap is 

enforced at the output layer, and the model parameters are estimated via back-propagation.
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Fig. 2. 
The Venn diagram of the number of subjects for three fMRI paradigms
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Fig. 3. 
(a) The WRAT score distributions of tested subjects for three paradigms of fMRI; (b) The 

age-WRAT scatter plot for all subjects
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Fig. 4. 
The accuracy of classification for different K on emoid-fMRI and nback-fMRI
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Fig. 5. 
(a) An example of the overfitting, where a large gap (around 27%) can be observed between 

training and testing accuracy. (b) Both the training and testing accuracy after the Laplacian 

regularization term is applied. The overfitting problem is thus alleviated. Figures (c) (d) are 

the visualization of GCN trained on rest-fMRI, in which red dots represent subjects with 

high WRAT scores, and blue asterisks represent subjects with low WRAT scores. From 

the first layer to the third layer of GCN, two groups are observed to be clustered more 

discriminatively.
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Fig. 6. 
Edge distributions using different similarity functions
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Fig. 7. 
The classification accuracy on FC derived from emoid-fMRI in different functional-

network-blocked cases. The models were tested under the condition that a particular brain 

functional network was blocked. The full names of brain functional networks are: no brain 

functional networks were blocked (No block), sensorimotor network (SM) with 35 ROIs, 

cingulo-opercular task control (CNG) with 14 ROIs, auditory network (AUD) with 13 ROIs, 

default mode network (DMN) with 58 ROIs, memory retrieval network (MEM) with 5 ROIs, 

visual network (VIS) With 31 ROIs, Fronto-parietal Task Control (FRN) with 25 ROIs, 

salience network (SAL) with 18 ROIs, subcortical network (SCT) with 13 ROIs, ventral 

attention (VTRL) with 9 ROIs, dorsal attention (DSL) with 11 ROIs, cerebellum (CB) with 4 

ROIs.(a) describes the result of the accuracy alteration via blocking specific brain functional 

network, and (b) shows the ROI-level average occlusion sensitivity in the specific brain 

functional network.
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Fig. 8. 
The brain functional networks identified with ROI-level average OS in sagittal, axial, and 

coronal views, respectively, including SM, CNG, DMN, AUD, MEM, VTRL, and CB. Dots 

with different colors represent ROIs in different brain functional networks.
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TABLE I

GENDER-WRAT INFORMATION.

property\group male female Total

number of subjects 463 512 975

mean WRAT scores 102.927 100.891 101.857

std WRAT scores 16.572 14.745 15.664
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TABLE II

THE DEFAULT HYPERPARAMETERS.

Hyperparamter Value

Network architecture (channels) [1024, 512, 512, 1]

Activation function [ReLu, ReLu, ReLu, Sigmoid]

Similarity Function Gaussian

Maximum Epochs 5000

Learning Rate 1e-5

Optimizer ADAM

λ1 (RL2 parameter) 1e-4

λ2 (RLap parameter) 0.005

Learning rate exponential decay 0.9/1000 epochs
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