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The ability of physical activity to ameliorate cardiovascular disease and improve cardiovascular health is well
accepted, but many aspects of the molecular mechanisms underlying these benefits are incompletely understood.
Exercise increases the levels of reactive oxygen species (ROS) through various mechanisms. This triggers the
activation of Nrf2, a redox-sensitive transcription factor activated by increases in oxidative stress. Activation of
Nrf2 mitigates oxidative stress by increasing the nuclear transcription of many antioxidant genes while also

mediating additional beneficial effects through the cytoprotective nature of Nrf2 signaling. Understanding the
transcriptional patterns of Nrf2 caused by exercise can help in the design of pharmacological mimicry of the
process in patients who are unable to exercise for various reasons.

Introduction

Physical activity promotes metabolic and cardiovascular health ben-
efits that derive in part from the transcriptional responses to exercise
within the cardiovascular system and other organs. There is great interest
in discovering pharmacologic exercise mimetics that could impart well-
ness and alleviate disease burden especially in individuals with metabolic
diseases, such as type 2 diabetes mellitus, and also in others who are
unable to undertake an exercise of sufficient duration or intensity.
Pharmacological approaches that could recapitulate the beneficial effects
of exercise could potentially benefit individuals with spinal cord injury,
paraplegia, morbid obesity." However, the molecular physiology by
which exercise signals the transcriptional response is complex, making it
challenging to identify a single target for pharmacological mimicry.>
Exercise mimetics can be classified as either full or specific mimetics,
where full mimetics attempt to simulate all the complex local and sys-
temic changes induced by physical exercise while specific mimetics only
target specific organs. Full exercise mimetics that were previously sug-
gested included activators of signaling molecules (e.g. GW501516,
AICAR) such as peroxisome proliferator-activated receptor y coactivator

la (PGC-1a), peroxisome proliferator-activated receptor delta (PPAR &),
and adenosine monophosphate-activated protein kinase (AMPK).> We
propose that Nrf2 activation, which is strongly associated with
cyto-protection, can mimic the effects of exercise on the cardiovascular
system by acting as a specific mimetic.

Exposure to stress or exercise can transiently expand or contract the
homeostatic range as a result of exposure to sub-toxic, non-damaging,
signaling molecules.* Examples of such signaling molecules are free
radicals including ubisemiquinone, superoxide, and other (non-radical)
reactive oxygen species (ROS) such as hydrogen peroxide (H202) and
nitric oxide (NO), which are all generated during acute and regular ex-
ercise. Increases in the concentrations of these free radicals lead to
oxidative stress from a state of oxidative eustress; for example, concen-
trations of HyO exceeding 10 nM activates adaptive stress responses via
regulation of master switches such as Nrf2/Keapl (Kelch-like
ECH-associated protein 1) or NF-kB.® Furthermore, physical exercise, by
acting as a moderate stressor, triggers ischemic preconditioning and
prevents the cytotoxicity caused by reperfusion, largely through the
activation of the Nrf2 pathway.®

Nrf2 is a basic region-leucine zipper (bZip) transcription factor that

Abbreviations: Nrf2, nuclear factor erythroid 2-related factor 2; PKC, protein kinase C; MnSOD, manganese superoxide dismutase; tBHQ, tertiary

butylhydroquinone.
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Nrf2 Activators

Fig. 1. Pathways leading to activation of Nrf2 by exercise. A: Increases in ROS modifies Keap — Nrf2 interactions, B: Shear stress in blood vessels activates PI3K, C:
Tissue hypoxia activates HIF-1a, PI3K and xanthine oxidoreductase, D: Heat stress leading to increase in ROS and Nrf2 activation, E: Activation of AMPK leading to

GS3K and Nrf2 phosphorylation.

forms heterodimers with small musculoaponeurotic fibrosarcoma protein
(MAF) K, G, and F in the nucleus. The heterodimer recognizes an
enhancer sequence termed antioxidant response element (ARE) that is
present in the regulatory regions of more than 250 ARE genes. These ARE
genes encode a network of cooperating enzymes involved in antioxidant
mechanisms that generate NADPH, glutathione (GSH), and thioredoxin.”
The Nrf2 interactome is functionally linked to cytoprotection in
low-grade stress, chronic inflammation, metabolic alterations, mechani-
cal stress, and ROS formation.® Analysis of these molecular profiles
suggests alterations of Nrf2 expression and activity as a common mech-
anism in a subnetwork of diseases referred to as the Nrf2 diseasome.® In
addition to the role of Nrf2 in various diseases, acute and regular exercise
can also induce a state of “low stress” through the production of ROS and
stimulation of other mechanoreceptors that activates Nrf2 to modulate
endogenous antioxidant systems.” Activation of Nrf2 reduces cell damage
while also conferring other cytoprotective effects on cardiac cells.'%!!
The cardiovascular system is highly susceptible to oxidative
stress-induced damage, in part due to a high metabolic rate.
Therefore, the function of Nrf2 activated by exercise is not only to
reduce oxidative stress, but also to protect cardiomyocytes from cell
injury and apoptosis. Several studies have detailed the importance of
pharmacologic Nrf2 activation in cardiac protection and performance
enhancement; for example, curcumin, an Nrf2 activator, improves exer-
cise performance of mice with coronary artery ligation.'® Trimetazidine,
another Nrf2 activator, attenuates exhaustive exercise-induced

71

myocardial injury in rats via regulation of the Nrf2/NF-xB signaling
pathway.'* In summary, Nrf2 can be activated both by pharmacological
agents and also by exercise, which can be viewed as a “low stress” con-
dition that can generate oxidative stress, as well as mechanical stress that
is able to activate Nrf2. Therefore, compounds such as sulforaphane,
bardoxolone, curcumin, and resveratrol that can activate Nrf2 can also
mimic the cardiovascular benefits of exercise because of the cytopro-
tective nature of Nrf2 signaling. Such compounds are putative-specific
mimetics of the beneficial effects of exercise. This review summarizes
different mechanisms that can lead to Nrf2 activation either by exercise
or Nrf2 activators to deliver cardiovascular benefits.

Regular exercise and Nrf2 levels
Activation of Nrf2 during exercise

Nrf2 normally resides in the cytosolic compartment by association
with a cytosolic actin-binding protein, Keap1l (Kelch-like ECH-associated
protein 1), which is also less commonly known as an inhibitor of Nrf2.
Keapl1 plays a central role in the regulation of Nrf2 activity, and exists as
dimers inside the cells, where Keapl functions as a substrate linker
protein for the interaction of Cul3/Rbx1-based E3-ubiquitin ligase com-
plex with Nrf2, leading to the continuous ubiquitination of Nrf2 and its
subsequent proteasomal degradation. Hence, the continuous degradation
of Nrf2 under basal conditions maintains Nrf2 at low levels, leading to
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low basal levels of Nrf2-regulated antioxidants. When cells encounter
stress, such as exposure to mild oxidative or electrophilic stress, or
chemical inducers, Nrf2 (via modification of critical cysteine thiols of
Keapl and Nrf2 and other mechanisms as discussed below) dissociates
from Keap1, becomes stabilized, and translocates into the nuclei, where it
forms heterodimers with small musculoaponeurotic fibrosarcoma protein
(MAF) K, G, and F in the nucleus. The heterodimer recognizes an
enhancer sequence termed antioxidant response element (ARE) that is
present in the regulatory regions of over 250 genes (ARE genes).

Findings from both in vivo and in vitro experiments indicate that ex-
ercise activates Nrf2. Cell culture studies using skeletal muscle cells
support the concept that Nrf2 is activated by ROS, and that this activation
is suppressed by antioxidants such as N-acetylcysteine.'® Additionally,
H0, treatment caused a rapid increase in endogenous Nrf2 protein
levels in rat cardiomyocytes.'® Earlier work by Muthusamy et al.’
confirmed that acute exercise stress (AES) activates Nrf2/ARE (antioxi-
dant response element) signaling in the mouse heart, with subsequent
enhancement of antioxidant defense pathways while excessive oxidative
stress, along with blunted defense mechanisms, was observed in
Nrf2-null mice. There are a limited number of reports on the effects of
physical activity on human Nrf2 levels. A recent study evaluated Nrf2
signaling in response to two 30-min cycling protocols in healthy young
men, and reported increases in nuclear Nrf2 activation (measured by
protein expression of Nrf2 in the whole-cell and nuclear fractions) during
acute aerobic exercise regardless of exercise intensity.'” We next discuss
some mechanisms of signaling activated by Nrf2 during exercise.

Mechanisms of Nrf2 activation during exercise

Increase in oxidative stress

An increase in ROS levels is one of the main activators of Nrf2 during
exercise. The role of ROS in Nrf2 activation during exercise gained
traction with the identification of ROS-generating NADPH oxidase-4
(Nox4) as an essential regulator of exercise performance in mice.
Myocardial Nox4 levels increase during acute exercise and trigger acti-
vation of Nrf2, with the induction of multiple endogenous antioxidants.
Cardiomyocyte-specific Nox4-deficient (csNox4KO) mice display a loss of
exercise-induced Nrf2 activation, cardiac oxidative stress and have
reduced exercise performance.18 Keapl is a redox and electrophile sensor
that upon modification of critical cysteine residues loses its ability to
repress Nrf2. Keapl is a cysteine-rich protein, with mouse Keap1 having a
total of 25, and human with 27, cysteine residues, most of which can be
modified in vitro by different oxidants and electrophiles.'® Three of these
residues (C151, C273, and C288) alter the conformation of Keap1 leading
to nuclear translocation of Nrf2 and subsequent target gene expression
(Fig. 1, Pathway A). The Keapl-Nrf2 is a key regulator of cytoprotective
responses to endogenous and exogenous stresses caused by ROS and
electrophiles.’’ The main mechanism regulating the transcriptional ac-
tivity of Nrf2 occurs by the control of protein stabilization by Keapl.
Keapl is a homodimeric protein that bridges Nrf2 with the E3 ligase
complex formed by Cullin 3 and RING-box protein 1 (CUL3/RBX1).
Under homeostatic conditions, the N-terminal domain of the Keapl

Table 1
Nrf2 activation in different tissues.

Activation of Activation of Activation of

the heart blood vessels skeletal muscles

Increase in luminal Vv

stress (Pathway A)
Increase in oxidative v v

stress (Pathway B)
Hypoxia (Pathway C) v/ v v
Heat stress (Pathway v

D)
Increase in AMPK \/ \/ \/

(Pathway E)
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homodimer binds one molecule of Nrf2 at two amino acid sequences with
low (aspartate, leucine, and glycine; DLG) and high (glutamate, threo-
nine, glycine, and glutamate; ETGE) affinity, and hence presents Nrf2 to
ubiquitination by CUL3/RBX1%' and subsequent degradation by the
proteasome. Moderate increases in ROS levels during exercise activates
Nrf2 by altering the conformation of Keapl, which allows Nrf2 to escape
ubiquitination, with subsequent translocation into the nucleus.

Hypoxia

Hypoxia is a component of exercise’? and has at least two conse-
quences on Nrf2 activation: first is the increased expression of
hypoxia-inducible factor-1a (HIF-1 o) leading to the stimulation of the
PI3K/Akt GSK-3 p pathway,>* which then causes the phosphorylation of
serine residues on glycogen synthase kinase-3 beta and prevention of
Nrf2 ubiquitination.?* The second consequence of exercise-related hyp-
oxia is the conversion of xanthine dehydrogenase to xanthine oxidase
during exercise, perhaps due to transient hypoxia and the subsequent
generation of reactive oxygen and nitrogen species (Nrf2 activators) from
the xanthine oxidase produced®>?° (See Fig. 1, Pathway B). Other effects
of hypoxia on angiogenesis are discussed later.

Increase in luminal stress

The vascular endothelium experiences constant hemodynamic stress
resulting from frictional forces of blood flow across its surface, and also
by pressure changes with each cardiac cycle; both effects are enhanced
during exercise. The interaction between fluid shear stress and endo-
thelial function is critical in maintaining vascular homeostasis via the
integration of biomechanical forces with signal transduction mechanisms
to maintain redox balance. Endothelial cells respond to changes in shear
stress by modulating redox signaling?’ and other non-redox mechanisms
through the activation of the PI3K pathway (see Fig. 1, pathway C). When
shear stress activates PI3K, it also phosphorylates PIP2 to form PIP3,
allowing phosphoinositide-dependent kinase 1 (PDK1), which can acti-
vate PKC, a downstream substrate of PDK1) to be phosphorylated and
activated. Activation of Nrf2 by PKC can then occur through the phos-
phorylation of S40 at the Neh2 domain of Nrf2, which interacts with
Keapl and increases the nuclear translocation of Nrf2.%%2° Thus, Nrf2
acts as an endothelial mechanoreceptor transcription factor in the
coupling of intravascular physical forces with redox responses. Physical
exercise also stimulates endothelium-dependent relaxation of collateral
coronary arteries and arterioles through increased eNOS expression at
the mRNA and protein 1evels,30 leading to increased nitric oxide (NO)
production by the endothelium.®! It has been suggested that NO gener-
ated during exercise also signals the transcriptional up-regulation of
NAD(P)H: quinone oxidoreductase 1 (NQO1) and other detoxifying en-
zymes and protective genes through Nrf2 activation.>

Heat stress

The body's heat production rate can exceed 1000 W during exercise
largely due to the contraction of skeletal muscles. Some of the heat
produced is stored, increasing body core temperature to as high as 104 °F
(40°C).> The exposure of cells to this low dose of heat stress induces
adaptive survival responses that protect cells against subsequent expo-
sure to heat stress by a process known as thermotolerance, which in-
volves the Nrf2 antioxidant pathway,* leading to increases in protein
expression of the Nrf2 transcription factor and resulting in increased
levels of Nrf2 targets such as MnSOD, catalase, HO-1, glutamate-cysteine
ligase, and Hsp70 (See Fig. 1, Pathway D).

Increase in AMPK

AMPK (AMP-activated protein kinase) is a phylogenetically
conserved fuel-sensing enzyme present in all mammalian cells. It is
activated in skeletal muscle and other tissues during exercise in response
to an increase in the AMP/ATP ratio. Activation of AMPK has long been
regarded as one of the crucial signaling nodes responsible for the tran-
scriptional response to exercise, and the benefits of exercise have been
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Fig. 2. Effect of Nrf2 on mitochondrial ROS generation and biogenesis.

Abbreviations: Nrf-1 = Nuclear respiratory factor-1, PGC-1a = Peroxisome proliferator-activated receptor gamma coactivator 1-alpha, ROS = Reactive oxygen species,

UCP3= Uncoupling protein-3.

attributed to AMPK activation in part through Nrf2 activation. AMPK
phosphorylates Nrf2 at the Ser550 residue, which, in conjunction with
AMPK-mediated GSK3p inhibition, promotes nuclear accumulation of
Nrf2 for antioxidant (Fig. 1 Pathway E) response element (ARE)-driven
gene transactivation. This is demonstrated by the ability of xanthohumol
(an AMPK activator) to suppresses inflammation, leading to an increase
in the transcription of Nrf2-targeted antioxidative genes (NADPH
quinone oxidoreductase-1 [NQO-1], heme oxygenase-1 [HO-1]), as well
as an increase in nuclear localization and phosphorylation of Nrf2 pro-
tein.>> Additionally, AMPK activators are also able to induce Nrf2 acti-
vation through a pathway that is AMPK independent.>® Other activators
of AMPK include metformin and 5-aminoimidazole-4-carboxamide
ribonucleotide (AICAR). Metformin can activate AMPK by phosphory-
lation of the key regulatory site (Thr-172) on the catalytic subunit of
AMPK and confers benefits that are similar to that produced by exer-
cise,*” while AICAR can stimulate Nrf2 through AMPK dependent and
independent pathways.>® Genetic ablation and pharmacological inhibi-
tion of AMPK blunts Nrf2-dependent HO-1 expression by xanthohumol at
the mRNA level.>® Therefore, AMPK dependent activation of Nrf2 is one
of the molecular activation pathways of Nrf2 in exercise. (See Fig. 1,
pathway E).

Summarily, two major mechanisms participate in the activation of
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Nrf2: a) increases in levels of ROS and other stressful conditions such as
hypoxia, heat stress, and b) increased luminal stress through the PI3K/
Akt pathway. Both mechanisms play key roles in Nrf2 activation and
associated with the cardiovascular benefits of exercise, as summarized in
Table 1.

Role of Nrf2 in regular exercise mediated cardiovascular benefits

Regular exercise improves cardiovascular health by promoting
adaptive responses through activation of Nrf2. Rhythmic activation of
Nrf2 upregulates the transcription of several endogenous cardiac anti-
oxidants, which can reduce oxidative stress in cardiomyocytes.*® Other
benefits of Nrf2 activation include increased mitochondrial biogenesis
and capacity, physiologic remodeling of the heart muscle, improved
angiogenesis, and reduced arteriosclerosis.

Nrf2 maintains mitochondrial health

Mitochondria are the primary source of cellular ROS, and play a
central role in energy metabolism, control of the stress responses, cell
death as well as being the hub for several biosynthetic processes. Also,
mitochondria modulate ROS production to regulate apoptosis. Regular
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physical activity increases muscle mitochondrial metabolic capacity by
increasing muscle mitochondrial DNA and ATP production rates,*! while
long-term aerobic exercises reduce age-related loss of mitochondrial
DNA function in humans via the effects of transcription factor Nrf2.? The
Nrf2 gene allows for adaptation and survival under conditions of stress,
such as during exercise, by regulating the gene expression of several
cytoprotective proteins, including antioxidant, anti-inflammatory, and
detoxification enzymes, and other proteins that assist in the repair or
removal of damaged macromolecules by promoting autophagy as evi-
denced in a model of sepsis, where increasing levels of the autophago-
some marker MAP1 light chain 3-II (LC3-II) and the cargo protein p62 at
24 h post-infection which are suppressed in Nrf2-KO mice*® (Fig. 2).

Excessive ROS levels from exhaustive exercise release cytochrome c
from mitochondria, which triggers caspase activation leading to
apoptosis, whereas moderate exercise activates Nrf2 to counteract
increased mitochondrial ROS production by causing transcriptional
upregulation of uncoupling protein 3 (UCP3) (Fig. 2). One of the func-
tions of uncoupling proteins (UCP1, UCP2, and UCP3) and adenine
nucleotide translocase is to induce proton leak in response to increases in
oxidative stress. UCP3 therefore actively lowers the rate of ROS pro-
duction in isolated energized mitochondria in the absence of exogenous
activators.** High succinate levels and a high membrane potential in the
mitochondria, both of which occur in exercising muscles, induce reverse
electron transfer from complex II into complex I and is associated with
increased superoxide production.*>*® Embryonic fibroblasts from Nrf2
knockout mice are unable to regulate their membrane potential and
therefore generate high levels of ROS, unlike cells from wild-type mice
which have a decreased mitochondrial membrane potential that allows
them to regulate excessive ROS production.*’

Enhancing mitochondrial biogenesis is another mechanism by which
Nrf2 promotes mitochondrial health; as discussed earlier, Nrf2 stimulates
UCP3, which in addition to reducing ROS levels, also maintains levels of
nuclear respiratory factor 1 (NRF-1). NRF-1 encodes a protein that
homodimerizes and functions as a transcription factor and activates the
expression of some key metabolic genes regulating cellular growth and
nuclear genes required for respiration, heme biosynthesis, and mito-
chondrial DNA transcription and replication. UCP-3 also activates
peroxisome proliferator-activated receptor y coactivator 1a (making the
two classes of nuclear transcriptional regulators important for mito-
chondrial biogenesis) and promotes purine nucleotide biosynthesis
(Fig. 2). Transcription factors such as NRF-1 &2 control the expression of
both the genes encoding subunits of the five respiratory complexes and
mitochondrial translational components and also those for heme
biosynthetic enzymes that are localized in the mitochondrial matrix.*®
Nrf2-dependent transcriptional upregulation of NRF-1 promotes mito-
chondrial biogenesis (by increasing mitochondrial protein content) and
protects against cardiac cytotoxicity produced by the anthracycline
chemotherapeutic agent doxorubicin.*’ Sulforaphane mimics these ef-
fects by reversing the doxorubicin-associated reduction in nuclear Nrf2
binding activity and restoring cardiac expression of Nrf2-regulated
genes, at both the RNA and protein levels.

Summarily, Nrf2 activation during moderate exercise is critical to
mitochondrial homeostasis and survival by reducing excessive ROS
production, preventing cardiomyocyte apoptosis, and enhancing mito-
chondrial biogenesis.

Nrf2 inhibits cardiac pathological remodeling

Cardiac remodeling in humans and animals is often an adaptation to
underlying pathologic or physiologic changes. Enlargement of the ven-
tricular cavities, or increases in myocardial wall thickness, occurs in
response to an enhanced volume load or increased wall stress, which can
either be physiologic or pathologic. Physiologic changes result from the
increased hemodynamic loading of the heart during exercise, which can
be in the form of either an increased volume load or an enhanced
“pressure” afterload, or a combination of both, depending on the specific
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exercise stimulus. Therefore, structured exercise over prolonged periods,
as experienced by competitive athletes, stimulates cardiac adaptation
and physiologic remodeling®® and is termed “the athlete's heart”. In
pathologic remodeling, there is increased left ventricular (LV) volume
and perturbations of the normal elliptical LV chamber configuration
which is driven, on a histologic level, by myocyte hypertrophy and
apoptosis and increased interstitial collagen. Moderate exercise is pro-
tective against pathologic remodeling induced by isoproterenol via the
expression of Nrf2-dependent antioxidant genes; furthermore, Nrf2 at-
tenuates oxidative stress-induced myocardial damage, while echocardi-
ography analysis revealed impaired diastolic ventricular function in
untrained mice receiving isoproterenol.”’ A role for Nrf2 in cardiac
remodeling was also demonstrated in aged WT and Nrf2 knockout ani-
mals undergoing chronic endurance exercise, where aged WT and Nrf2
knockout animals both exhibited hypertrophy. The older Nrf2 knockout
animals showed ventricular remodeling coupled with profound cardiac
functional abnormalities and diastolic dysfunction.®” This suggests that
moderate exercise can prevent pathologic remodeling in cardiac tissue by
activation of Nrf2.

Both physiologic and pathologic remodeling is characterized by
initial stress and activation of Nrf2. While activation produced by regular
exercise is rhythmic, pathologic activation is continuous and unrelenting,
eventually leading to a fall in Nrf2 levels. The loss of Nrf2 activity in
pathologic remodeling is therefore in part linked to a constant and un-
wavering stress as demonstrated in mice where transverse aortic
constriction (as a source of hemodynamic stress or pressure overload) in
mice initially induced adaptive hypertrophy (days 1-14) with preserved
cardiac function; however, sustained pressure overload caused mal-
adaptive cardiac remodeling and left ventricular dysfunction (days
14-28). These changes coincided with a transient enhancement of Nrf2
expression at both mRNA and protein levels in the heart that peaked on
day 7. This then decreased to near basal levels on day 28, coinciding with
ventricular dysfunction after transverse aortic constriction.”

Nrf2 activation is therefore associated with an ability to prevent
apoptosis and pathologic remodeling in cardiac tissue by exerting an
indirect control of nuclear factor kappa-B (NF-kB) activity. This is
possible because the NRF2 gene is a master regulator of redox homeo-
stasis. Lipopolysaccharide (LPS) simultaneously activates a fast, pro-
inflammatory NF-kB response and slow Nrf2 response. The NF-kB
response is subsequently inhibited when Nrf2 is maximally active.>*
Moreover, exercise training inhibited NF-kB expression induced by water
pipe smoke in mice while exercise increased Nrf2 activity.>®

Another important effect of Nrf2 is in cardiac remodeling where it is
related to the expression of metallothioneins Mtl and Mt2 genes. The
effect of exercise on cardiac fibroblasts is due to differentially expressed
NRF2-dependent antioxidant genes - Mtl and Mt2 which are induced in
cardiac fibroblasts during exercise. Mice lacking Mt1/2 exhibit signs of
cardiac dysfunction in exercise, including cardiac fibrosis, vascular
rarefaction, and functional decline.”® These results indicate that cardiac
tissue can benefit from exercise by prevention of pathologic cardiac
remodeling through the activation of Nrf2 and its action on Mt1 and Mt2
genes.

Role of Nrf2 in arteriosclerosis

Regular exercise is a deterrent to cardiovascular diseases, and its anti-
atherogenic effects have been described in several animal models.””*>®
Oxidative stress is a leading contributor to the atherosclerotic process.>
Knock-out of several antioxidant enzymes and downstream products of
Nrf2 activation such as glutathione peroxidase 1 (Gpx1), peroxiredoxin 1
(Prdx1) and heme oxygenase 1 (HO-1) worsen atherosclerotic plaque
formation,%%%! suggesting a key role for Nrf2 in this process. Moderate
levels of regular exercise are beneficial by activating Nrf2 which upre-
gulates endogenous antioxidant enzymes such as manganese superoxide
dismutase, heme oxygenase, and catalase,’>%® as well as promoting the
synthesis of glutathione.®* These pathways are part of a plethora of
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protective resources against oxidation and inflammation in the devel-
opment of arteriosclerosis.

Our current understanding is that the effects of Nrf2 in preventing
atherosclerosis may be mediated through the inducible form of HO-1, an
Nrf2 regulated gene. HO-1 is responsible for the oxidative cleavage of
heme groups, leading to the generation of biliverdin, carbon monoxide,
and the release of ferrous iron. HO-1 has important antioxidant, anti-
inflammatory, anti-apoptotic, anti-proliferative, and immunomodula-
tory effects in vascular cells through the formation of bilirubin, which is
the most potent endogenous low-molecular-weight peroxynitrite scav-
enger currently known. Bilirubin prevents lipid peroxidation, making the
Nrf2/HO-1 axis a potent inhibitor of (endothelial nitric oxide synthase)
eNOS uncoupling, prostacyclin synthase nitration, and soluble guanylate
cyclase (sGC) oxidation. These actions prevent many pro-atherogenic
vascular signaling pathways, with significant roles in the protection
against atherogenesis.®®®>% The only known human case of
HO-1-deficiency exhibited marked endothelial cell injury and early
atherosclerotic changes, as reflected by an irregular distribution of foamy
macrophages with iron pigments, fatty streaks, and fibrous plaques in the
aorta.’”>%® Another important protective role of Nrf2 during atheroscle-
rotic plaque formation is to reduce macrophage infiltration and foam cell
formation following macrophage absorption of LDL cholesterol. Exposing
macrophages to oxidized LDLs leads to increased Nrf2 expression, which
indirectly protects macrophages from oxidized LDL-mediated injury via
phase II antioxidant enzyme activity.®®

Another Nrf2 downstream target that also inhibits monocyte migra-
tion is the activation of glutathione-cysteine ligase modifying subunit
and NAD(P)H dehydrogenase [quinone] 1 (NQO1), both of which offer
protection against atherosclerosis.”® Low serum glutathione levels are an
independent risk factor for coronary heart disease in adolescents’’; low
levels of glutathione peroxidase (GPx) levels, for which glutathione is a
cofactor,”? combined with low HDL levels, may be partly responsible for
increased atherosclerosis-related mortality rates in humans.”® Nrf2 is an
important regulator of glutathione peroxidase,”* making Nrf2 crucial in
protection against atherosclerosis.

Nrf2 also protects endothelial cells from developing a pro-
inflammatory state by suppressing p38-VCAM-1 signaling, which is
another mechanism for Nrf2 protection against atherosclerosis. Early
atherosclerotic lesions contain monocytes and T-lymphocytes, recruited
from the circulation by adhesion to activated vascular endothelial cells in
a process triggered by pro-inflammatory mediators (e.g., TNF-a). Pro-
inflammatory mediators activate cellular adhesion molecules (e.g.,
VCAM-1) via signaling intermediaries including phosphorylated p38
mitogen-activated protein (MAP) kinases 3 and 6 (MKK 3/6).7° Sup-
pression of p38-VCAM-1 signaling by Nrf2 prevents the development of
these events.”® Sulforaphane (an Nrf2 activator) reduces TNF-a mediated
secretion of endothelin-1, VCAM1, ICAM1, and E-selectin, and reduces
endothelial permeability in placental explants and also the secretion of
TNF-a induced soluble Flt-1, soluble endoglin, and activin A7

Despite the intuitive role of Nrf2 and the persuasive evidence of its
antioxidant, anti-inflammatory, and anti-atherogenic properties, the Nrf2
signaling pathway has demonstrated both pro-and anti-atherogenic ef-
fects in animal models of disease. Deletion of the Nrf2 gene in ApoE
knockout mice decreases atherosclerotic lesions at a late stage, whereas it
does not affect atherosclerotic lesions during earlier stages.”® These ob-
servations suggest that Nrf2 inhibition may be atheroprotective in
advanced plaques.

Nrf2 improves angiogenesis and endothelial health

The endothelium is an interface between circulating blood and tissues
that regulates vascular tone, thromboresistance, inflammation of the
vascular wall, and cellular adhesion. The endothelium is exquisitely
susceptible to injury as it can respond to a variety of physical and
chemical stimuli.”>®" Aged or senescent endothelial cells become
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dysfunctional, lose re-endothelialization, angiogenesis capacity and
become pro-atherogenic and pro-thrombotic.®! Regular exercise induces
coronary vascular adaptations including increased coronary blood flow
reserve,®>%% and this increase in coronary blood flow has been linked to
increased angiogenesis.84

Angiogenesis is controlled by several factors including Nrf2 signaling.
It is enhanced by treating endothelial cells with angiogenic cytokines
promoting nuclear localization of Nrf2 and an increase in expression of
HO-1. Nrf2 activation stimulates tube network formation, unlike its in-
hibition which decreases angiogenic responses of human endothelial
cells. Moreover, a lack of Nrf2 attenuates the survival, proliferation,
migration, and angiogenic potential of murine proangiogenic cells and
negatively impacts the angiogenic transcriptome in vitro.®®

Another important factor in angiogenesis and tissue repair is the level
of circulating endothelial progenitor cells (EPCs), which are bone
marrow-derived cells. These cells can target sites of ischemic injury and
repair damaged vessels. Several studies show that physical activity
significantly increases circulating EPCs, and in particular, there is evi-
dence of the beneficial effects of exercise on EPCs activity in coronary
artery disease, heart failure, and peripheral artery disease.®>®” The role
of Nrf2 in enhancing the function of EPCs was demonstrated in
streptozotocin-induced diabetic mice by silencing the NRF2 gene which
decreased EPC biological functions leading to accelerated cell senescence
and increased oxidative stress e.g., ROS and malondialdehyde upregu-
lation, decreased SOD activity. Furthermore, activation of the Nrf2 gene
protected EPCs from diabetic mice from oxidative stress and cell
senescence.'?

Hypoxia is a strong activator of angiogenesis, in part due to its ability to
activate Nrf2 during exercise.®® Hypoxia activates the HIF-1a - PI-3K/AKT
pathway,?® leading to decreased ubiquitinization and stabilization of Nrf2
through phosphorylation and inactivation of GSK-3beta. Hypoxic condi-
tions increase mRNA and protein expression of Nrf2 and HO-1 in rat car-
diac microvascular endothelial cells. Furthermore, knockdown of Nrf2
suppresses the migration and vascular tube formation of rat cardiac
microvascular endothelial cells in response to hypoxia, while also
decreasing HO-1 and VEGF expression. Finally, overexpression of Nrf2 in
cardiac microvascular endothelial cells increases HO-1 expression, cell
migration, and vascular tube formation induced by hypoxia; these effects
were attenuated by an HO-1 inhibitor such as ZnPP.®° Thus, Nrf2 gener-
ated during exercise helps to maintain endothelial health by enhancing
angiogenesis and preventing endothelial cell senescence.

Role of Nrf2 in reducing hypertension

Hypertension is a risk factor for several cardiovascular diseases
including coronary disease, left ventricular hypertrophy, valvular heart
diseases, cardiac arrhythmias, stroke, and renal failure. The effects of
exercise interventions on systolic blood pressure remain understudied,
especially in hypertensive populations. A recent meta-analysis of ran-
domized controlled trials of patients treated with antihypertensives such
as angiotensin-converting enzyme inhibitors, angiotensin-2 receptor
blockers, p-blockers, calcium channel blockers, diuretics, and exercise
interventions on systolic blood pressure concluded that exercise lowered
blood pressure to a similar extent as that produced by commonly used
antihypertensive medications.””

The ability of Nrf2 to mitigate blood pressure reduction stems from its
role as a mechanosensitive transcription factor that is activated in several
models of hypertension: DOCA-salt-induced hypertension,”’ chronic
pressure overload®? and aortic constriction.”® Similarly, treatment with
verapamil, an FDA-approved drug for the treatment of hypertension,
causes Nrf2 activation due to KEAP1 degradation,”* which might play a
part in the reduction in blood pressure exhibited by verapamil.

Nrf2 influences redox signaling in small arteries and isolated vascular
smooth muscle cells of control Wistar Kyoto (WKY) and stroke-prone
spontaneously hypertensive rats (SHRSP). Increased vascular ROS



B. Fasipe et al.

production produced by angiotensin II was associated with reduced Nrf2
activity in arteries and vascular smooth muscle cells in SHRSP, leading to
increased vascular contractility and decreased endothelial-dependent
relaxation in SHRSP; these changes were corrected by i-sulforaphane,
an activator of Nrf2.%°

The short-term regulation of blood pressure has also been shown to be
under the control of Nrf2. For example, tBHQ (Nrf2 activator) decreases
mean arterial pressure and plasma norepinephrine levels in rats, while
knockout of Nrf2 in the hypothalamic paraventricular nucleus (which
influences sympathetic outflow in the central nervous system) blunted
the blood pressure lowering effects of tBHQ,’® suggesting the blood
pressure-lowering effect of tBHQ is due to Nrf2 activation.

Heme oxygenase 1 (HO-1) is the stress-induced isoform of heme
oxygenase that is activated in part by Nrf2 activation and has a profound
effect on endothelial function and hypertension. Cardinal pathophysio-
logical features of hypertension (enhanced vascular inflammation,
vascular remodeling, vascular contractility) are all alleviated by the
heme oxygenase (HO) system. Induction of HO-1 prevents pulmonary
hypertension in response to chronic hypoxia,”’ and alterations in the
activity and expression of HO correlate with the pathophysiology of
hypertension and related complications such as hypertrophy, myocardial
infarction, and heart failure.®” Additionally, a spectrum of drugs has been
used to up-regulate HO-1 expression and HO activity to lower blood
pressure. Stannous chloride (SnCly) lowers blood pressure in spontane-
ously hypertensive rats.”® Metalloporphyrins (such as heme, heme argi-
nate, and CoPP) induce HO-1 expression and HO activity and normalize
blood pressure in animals and humans.®®'%°

Nrf2 activators mimicking exercise-induced cardiovascular benefits

Unlike ROS scavengers, Nrf2 activators do not interfere with stimu-
lation of antioxidant systems, but they can directly activate Nrf2 through
various mechanisms. This activation can result in excessive NRF2 levels
and so lowering reductive stress.>! Most pharmacological Nrf2 activators
are electrophilic molecules that covalently modify cysteine residues in
the thiol-rich Keap1 protein by oxidation or alkylation. Examples of these
Nrf2 activators include sulforaphane, bardoxolone, curcumin, and
resveratrol (see Table 2).

Many cysteine residues of Keapl are modified by electrophiles.
As discussed earlier, Keapl is a cysteine-rich protein, with 27 cysteine
residues in humans, most of which can be modified in vitro by different
oxidants and electrophiles.19 Three of these residues (C151, C273, and
C288) can alter the conformation of KEAP1 leading to nuclear trans-
location of Nrf2 and subsequent target gene expression. Other sensitive
cysteines are Cys-226, Cys-434, and Cys-613. This “cysteine-code” con-
trols Keapl activity during the protective response mediated by Nrf2.
Examples of these Nrf2 activators include sulforaphane, bardoxolone,

101,102

Table 2
Nrf2 activators that can mimic exercise-induced cardiovascular benefits.

Compound Mechanism of Cardiovascular benefit Reference
action
Sulforaphane Electrophilic Increases mitochondrial 103
modification of mass and augments PGCla
Keapl-Cys-151 and PGC1p activity
Curcumin Electrophilic Protects against pathological 13, 104
modification of remodeling. Increases
Keap1-Cys-151 exercise capacity in heart
failure
Resveratrol Electrophilic Improves *NO availability 105, 106
modification of and decreases endothelial
Keapl-Cys-151 dysfunction.
Reduction in blood pressure.
Trimetazidine  Not determined yet  Prevents apoptosis 14

attenuates exhaustive
exercise-induced myocardial
injury
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curcumin, and resveratrol.

Exercise vs Nrf2 activators

Physical exercise provokes whole-body homeostatic responses char-
acterized by the increased metabolic activity of contracting skeletal
muscle, such as increased skeletal muscle energy and oxygen demand. To
meet this challenge, multiple integrated signaling pathways, including
those in skeletal muscle, cardiovascular, and endocrine systems, are
activated. Trying to mimic this process has led to the discovery of full and
specific exercise mimetics. The full mimetics mimic all aspects of exer-
cise, while specific mimetic only target particular organs. Activating Nrf2
signaling will be better described as a specific mimetic because it is
mainly involved with cytoprotection and most Nrf2 activators only
activate Nrf2 by electrophilic modification of Keapl, which is similar to
the action of ROS in exercise, and not by other mechanism employed by
exercise. Even though there is emerging evidence to support the concept
that aspects of the cardiovascular benefits of exercise can be replicated by
Nrf2 activators, the side effects of these activators should be also be taken
into consideration. One such activator is bardoxolone methyl, which has
been associated with endothelial toxicity along, as is the case for other
agents such as rofecoxib (COX-2 inhibitor) and torcetrapib (CETP-in-
hibitor).'%” This is counter-intuitive based on the ability of bardoxolone
to activate Nrf2 and confer endothelial benefits. But high doses of most
Nrf2 activators tend to inhibit Nrf2 stimulation. For example, sulfo-
raphane (at a concentration as low as 0.2 pM) doubles the activity of
NQO1 (index of Nrf2 activation).'?%10° Sulforaphane has time and
concentration-dependent inhibitory effects on hypoxia-induced mRNA
expression of vascular endothelial growth factor and HIF-1A and c-Myc,
two angiogenesis-associated transcription factors, at higher concentra-
tions (0.8-25mmol/L). Overall, doses of Nrf2 activators should be
tailored to reduce endothelial toxicity.

Conclusion

Nrf2 is activated by regular exercise and plays an important role in
exercise-induced cardiovascular benefits such as increased mitochondrial
biogenesis and capacity, physiologic remodeling of the heart muscle, and
reduced arteriosclerosis. Enhancing Nrf2 signaling with Nrf2 activators
can provide cardiovascular benefits because of the cytoprotective nature
of Nrf2 signaling. Caution should be taken in using these activators
because they can antagonize Nrf2 signaling at higher doses.
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