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Abstract
Introduction  Statistical signal detection is a crucial tool for rapidly identifying potential risks associated with pharmaceuti-
cal products. The unprecedented environment created by the coronavirus disease 2019 (COVID-19) pandemic for vaccine 
surveillance predisposes commonly applied signal detection methodologies to a statistical issue called the masking effect, 
in which signals for a vaccine of interest are hidden by the presence of other reported vaccines. This masking effect may in 
turn limit or delay our understanding of the risks associated with new and established vaccines.
Objective  The aim is to investigate the problem of masking in the context of COVID-19 vaccine signal detection, assessing 
its impact, extent, and root causes.
Methods  Based on data underlying the Vaccine Adverse Event Reporting System, three commonly applied statistical signal 
detection methodologies, and a more advanced regression-based methodology, we investigate the temporal evolution of 
signals corresponding to five largely recognized adverse events and two potentially new adverse events.
Results  The results demonstrate that signals of adverse events related to COVID-19 vaccines may be undetected or delayed 
due to masking when generated by methodologies currently utilized by pharmacovigilance organizations, and that a class 
of advanced methodologies can partially alleviate the problem. The results indicate that while masking is rare relative to all 
possible statistical associations, it is much more likely to occur in COVID-19 vaccine signaling, and that its extent, direction, 
impact, and roots are not static, but rather changing in accordance with the changing nature of data.
Conclusions  Masking is an addressable problem that merits careful consideration, especially in situations such as COVID-19 
vaccine safety surveillance and other emergency use authorization products.
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1  Introduction

As the world contends with ending the coronavirus disease 
2019 (COVID-19) pandemic, understanding the risks associ-
ated with COVID-19 vaccines is critically urgent. The Vac-
cine Adverse Event Reporting System (VAERS), co‐admin-
istered by the US Food and Drug Administration (FDA) and 
the Centers for Disease Control and Prevention (CDC), is 
one of several systems used to monitor adverse events (AEs) 
that occur after vaccination, including the COVID-19 vac-
cines. Like other safety surveillance systems, VAERS offers 

the opportunity to rapidly identify potential risks associated 
with vaccines—a process usually known as signal detection.

According to the World Health Organization (WHO), a 
safety signal is defined as reported information on a possible 
causal relationship between an AE and a product, of which 
the relationship is unknown or incompletely documented [1]. 
At a very high level, signal detection is the active pursuit of 
safety signals. The process of signal detection is multifaceted 
and interdisciplinary and can take many forms, be performed 
at different levels of evidence and data, and be accomplished 
in different ways. The specific application considered in this 
study has previously been termed data mining, screening, 
disproportionality analysis, and quantitative signal detec-
tion. It involves the use of statistical techniques that cast a 
wide net to rapidly explore large databases of reported AEs 
for statistical patterns or anomalies that may be indicative 
of new risks that warrant further attention. This approach 
to signal detection has been routinely applied to safety sur-
veillance systems for over 20 years and has become a de 
facto standard [2]. To distinguish this approach from other 
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Key Points 

The masking effect is a statistical issue associated with 
commonly applied signal detection methodologies in 
which signals for a product of interest are hidden by the 
presence of other reported products.

Due to vaccine novelty, and an unprecedented dynamic 
of reporting, statistical signals of adverse events related 
to coronavirus disease 2019 (COVID-19) vaccines are 
more prone to masking and, therefore, to being unde-
tected or delayed.

A more advanced class of signal detection methodolo-
gies, based on regression, can address masking and 
expose strong statistical associations that would other-
wise be deemed uninteresting.

The extent, direction, impact, and root causes of masking 
change in accordance with the changing nature of data.

there were no statistical association. To illustrate, we use the 
relative reporting ratio (RRR), which is a disproportional-
ity statistic underlying several methodologies. The RRR is 
defined as the ratio of the number of reports mentioning a 
specific (target) product–event combination to an expected 
number of reports for the same combination under the 
assumption that the product and AE occur independently. 
Based on the values displayed in Table 1, the RRR is for-
mally given by,

and a number of enhancements, such as Bayesian smoothing 
and stratification, lead to several signal detection methodolo-
gies currently utilized by safety surveillance organizations 
[5].

Given its impact on public health, signal detection is still 
an active area of research, and since its inception, multiple 
guidance documents [3, 6–8] have been published with prac-
tice recommendations as well as admonitions concerning 
data and methodological limitations.

Undetected or delayed signals and false alerts are the two 
primary concerns with signal detection and two objective 
measures with which the reliability of signal detection can 
be evaluated. Undetected or delayed signals are especially 
disconcerting given their direct impact on public health. This 
study is concerned with those signals undetected by statis-
tical signal detection, which we will refer to as statistical 
signals. Fortunately, multiple other surveillance and signal-
ing efforts are deployed to reduce the chance of undetected 
signals.

Undetected statistical signals can stem from several 
sources. Incomplete data and the voluntary nature of report-
ing to surveillance systems are the primary sources of unde-
tected signals. However, undetected statistical signals can 
also stem from methodological limitations and, in particular, 
a widely acknowledged problem called ‘masking’ [3, 9, 10].

Masking is an artifact of commonly applied dispropor-
tionality statistics that rely on the analysis of 2 × 2 contin-
gency tables in which signals of disproportionate reporting 
may be hidden (hence, masked) by the presence of other 
non-target products frequently reported with the target AE. 
As described above, disproportionality statistics based on 
2 × 2 contingency tables are defined as the ratio of the tar-
get AE rate for the target product to the background rate for 
target AE. However, defining the background rate can be 
problematic. We are prone to think of the background as 
being scattered randomly across all the non-target products, 
but this may not be the case. What if one non-target prod-
uct has half of the target AEs appearing with all non-target 
products? In that case, under certain conditions eliminating 
that particular non-target product from the reports database 
would roughly double our target disproportionality. It would 

(1)RRR =
(a + b + c + d) ⋅ a

(a + b) ⋅ (a + c)

approaches and activities related to signal detection, we will 
simply refer to it as statistical signal detection, highlight-
ing its statistical foundation. With that, it is important to 
emphasize that since statistical signal detection is ultimately 
based on reporting patterns that are influenced by reporting 
dynamics, it is characterized as hypothesis generating. The 
presence of a strong statistical signal does not automatically 
imply a causal relationship and must always be evaluated by 
other methods, including the clinical review of case-level 
reports, scientific literature, and relevant studies [2–4]. 
Likewise, the absence of a strong statistical signal does not 
automatically rule out the existence of a safety issue. It is 
also worth mentioning that statistical signal detection can 
be repurposed to inform suspicions originating from other 
sources, but that is not the focus of our investigation.

Methodologies for statistical signal detection are based 
on computing surrogate measures of statistical association 
between specific pharmaceutical products and AEs that are 
reported into safety surveillance systems [5]. The measures 
are typically interpreted as signal scores, with larger values 
representing stronger statistical associations, which may be 
more likely to represent true causal associations. In practice, 
a signal score threshold is often used to screen associations 
that warrant further attention.

Methodologies for statistical signal detection currently 
deployed by safety surveillance organizations are largely 
based on disproportionality statistics. These methodolo-
gies use frequency analysis of 2 × 2 contingency tables to 
quantify the degree to which a product–AE combination co-
occurs disproportionately as compared with that expected if 
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seem reasonable to do so, because otherwise, the non-target 
product would be masking the target’s true product dispro-
portionality by cutting its value in half. Therefore, a possible 
solution to address masking is to first identify the ‘offend-
ing’ products and then remove reports containing those 
products from the calculation of disproportionality statistics. 
This solution may work in a limited set of scenarios, but is 
practically infeasible in the general case as it may require 
examining a combinatorically prohibitive set of product–AE 
pairs. A more direct and computationally feasible approach 
to address masking necessitates the use of a more advanced 
class of methodologies, such as regression, which go beyond 
the analysis of 2 × 2 contingency tables and can compute 
statistical associations adjusted for the presence of other 
products. This investigation makes use of one such method-
ology called Regression-Adjusted Gamma Poisson Shrinker 
(RGPS) [11].

To illustrate masking with a simple numerical example, 
consider the values displayed in Tables 2 and 3, which build 
on the example provided in Table 1 and Eq. (1). Tables 2 and 
3 display values used for disproportionality analysis of 2 × 2 
contingency tables capturing a hypothetical target AE and a 
hypothetical target product labeled ‘A.’ Table 2 introduces a 
product labeled ‘B,’ which serves as the ‘offending’ product 
that masks the true relationship between the target product 
‘A’ and the target AE. To simplify our example, we assume 
that products ‘A’ and ‘B’ are not co-reported with other 
products and stress that what is being counted are the num-
ber of reports mentioning products/AEs and not co-occur-
rences. Table 2 shows that most of the reports (80/93) men-
tioning the target AE are associated with product ‘B,’ which 
leads to masking. Applying the RRR (Eq. 1) yields a masked 
RRR = (393 × 3)∕(93 × 13) = 0.98 , indicating that there is 
no statistical association. However, removing the reports that 
mention product ‘B’ yields the counts displayed in Table 3, 
and an unmasked RRR = (233 × 3)∕(13 × 13) = 4.14 that 
indicates a strong statistical association between the target 
AE and target product ‘A.’

Conditions that make signal detection especially vulner-
able to masking effects include smaller safety databases such 
as VAERS that may lack diversity, relationships involving 
rare events, and relationships involving newer products. 
As such, the novelty of COVID-19 vaccines, coupled with 
ongoing vaccination programs, and the relatively early 
stages of COVID-19 vaccine surveillance make signal detec-
tion especially susceptible to masking.

The aim of this study is to investigate the problem of 
masking in relation to signal detection of COVID-19 vac-
cines and to assess its impact, extent, and root causes. To 
this end, we evaluate the evolution of signals corresponding 
to seven distinct AEs with various degrees of evidence link-
ing them to the vaccines, and which demonstrate relatively 
strong masking effects. Five of these seven AEs are part of 
a list of AEs deemed to be of special interest for COVID-19 
vaccine surveillance by the CDC and the FDA [12, 13]. The 
remaining two AEs, herpes zoster and tinnitus, are yet to be 
fully recognized but have accumulated thousands of reports 
in VAERS and are supported by published studies and case 
reports. We supplement this temporal investigation of seven 
AEs with a wider evaluation of masking at the database 
level. In addition, we center the evaluation on the messenger 
RNA (mRNA) vaccines from Pfizer-BioNTech (BNT162b2) 
and Moderna (mRNA-1273), which account for the vast 
majority of COVID-19 vaccine reports in VAERS.

Table 1   2 × 2 contingency table used to compute disproportionality 
statistics for signal detection

AE adverse event

Reports with 
target AE

Reports without 
target AE

Reports with 
target prod-
uct

a b a + b

Reports with-
out target 
product

c d

a + c a + b + c + d

Table 2   Contingency table used to compute disproportionality statis-
tics with the inclusion of reports containing product ‘B’ that masks 
the association of product ‘A’ with the target AE

AE adverse event

Reports 
with target 
AE

Reports 
without target 
AE

Reports with target product A 3 10 13
Reports with product B 80 80 160
Reports without product A or B 10 210 220

93 300 393

Table 3   Contingency table used to compute disproportionality statis-
tics with the exclusion of reports containing product ‘B’ that would 
mask the association of product ‘A’ with the target AE

AE adverse event

Reports 
with target 
AE

Reports 
without 
target AE

Reports with target product A 3 10 13
Reports with product B (excluded)
Reports without product A or B 10 210 220

13 220 233
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2 � Materials and Methods

2.1 � Data

The investigation was performed using all VAERS reports 
available at the time of writing this article (1990 to Octo-
ber 1, 2021). These data represent a total of 1,599,958 
reports, including 39 weeks of COVID-19 vaccine reports, 
which are publicly released on a semi-monthly (every 2 
weeks) cadence from January 1, 2021 to October 1, 2021. 
Of those, 778,681 reports include the COVID-19 vaccine 
from three manufacturers: Pfizer-BioNTech (53%), Mod-
erna (39%), and Janssen (8%). The investigation was based 
on AEs in VAERS coded at the MedDRA Preferred Term 
(PT) level and products at the ‘manufacturer’ level, e.g., 
‘COVID19_PFIZER/BIONTECH.’

2.2 � Adverse Events of Interest

The seven AEs investigated in this study and their associated 
MedDRA PTs are listed below. The MedDRA PTs asso-
ciated with each of the seven AEs were used to identify 
VAERS reports mentioning a given AE.

1.	 Bell's palsy (PT = ‘Facial paralysis’ or ‘Bell's palsy’)
2.	 Myocarditis (PT = ‘Myocarditis’)
3.	 Pericarditis (PT = ‘Pericarditis’)
4.	 Appendicitis (PT = ‘Appendicitis’ or ‘Appendicitis per-

forated’ or ‘Complicated appendicitis’)
5.	 Pulmonary embolism (PT = ‘Pulmonary embolism’)
6.	 Herpes zoster (PT = ‘Herpes zoster’)
7.	 Tinnitus (PT = ‘Tinnitus’)

These AEs were selected for our investigation because 
they demonstrated strong masking effects and are supported 
by other sources. They were identified using an approach to 
screen and rank masked associations, which is described in 
Sect. 2.5 below. As noted in the Introduction, five of these 
AEs are partially recognized and are part of a list of AEs 
deemed to be of special interest for COVID-19 vaccine sur-
veillance by the CDC and the FDA [12, 13]. The last two 
AEs (herpes zoster and tinnitus) were discovered through 
this investigation but are yet to be fully characterized like 
the other five AEs. Nonetheless, they are accompanied by 
strong statistical as well as published support, which is why 
they are included. Although we discovered other associa-
tions that exhibit masking effects, they did not appear strong 
or serious enough for inclusion in our evaluation, such as 
injection site pain.

2.3 � Signal Detection Methodologies

We evaluated disproportionality statistics produced by 
four signal detection methodologies. A summary and short 
description of these methodologies as well as the statistics 
they compute is provided in Table 4, and further described 
in the following. Three of these methodologies—Multi-item 
Gamma Poisson Shrinker (MGPS) [14], Bayesian Con-
fidence Propagation Neural Network (BCPNN) [15], and 
proportional reporting ratio (PRR) [16]—are well-estab-
lished and are currently deployed by various organizations 
worldwide for routine safety surveillance. However, because 
these three methodologies are based on 2 × 2 disproportion-
ality analysis, they are unable to, and were not designed to, 
control masking and certain confounding effects. We use 
these three methodologies as our baseline to investigate and 
verify masking effects. The fourth methodology, RGPS [11], 
is a signal detection methodology based on logistic regres-
sion that is designed to produce disproportionality statistics 
with adjusted background rates that can control masking and 
more extensive confounding effects. It operates by fitting 
separate Bayesian logistic regression models to each target 
AE and by automatically selecting predictors to be included 
in each regression model. The automatically selected predic-
tors are products (vaccines in this case) that are statistically 
associated (based on unadjusted disproportionality statistics) 
with the target event and are represented as indicator vari-
ables. In addition, stratification categories are grouped by 
target AE rates and are represented as multiple regression 
intercepts. To address masking, RGPS adjusts a given tar-
get disproportionality statistic by adjusting its value for the 
presence of other products that also have large unadjusted 
disproportionalities (the regression predictors). This adjust-
ment of the target disproportionality can be either positive 
or negative. When a non-target product with a large dispro-
portionality never shows up in the same report as the target 
product, then the adjusted background AE rate will be lower 
and the target AE rate will be higher, in which case the asso-
ciation has been unmasked. Conversely, if that high-dispro-
portionality non-target product is often co-prescribed with 
the target product, then the AE rate of the two products will 
be confounded and the adjusted targeted event rate for the 
two products will each be shrunk to express the uncertainty 
of which is the true causal factor when all three items, the 
two products and the target event, occur in the same report.

Additional details on the RGPS methodology are pro-
vided in the Supporting Information (SI1) (see the electronic 
supplementary material), and complete details of the RGPS 
methodology in Ref. [11].

The stratification categories used for RGPS, MGPS, and 
BCPNN were age and gender. Stratification by ‘report year’ 
was not applied because the vast majority of COVID-19 
VAERS reports represent a single year of reporting (2021). 
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We applied the canonical version of PRR, which does not 
require stratification. For RGPS and MGPS, we generated 
both the point estimates, labeled Empirical-Bayes Regres-
sion-adjusted Arithmetic Mean (ERAM) and Empirical 
Bayes Geometric Mean (EBGM), respectively, and their 
associated credible intervals labeled ER05–ER95 and 
EB05–EB95, respectively. Unless specified otherwise, signal 
scores are represented by the point estimates. The generation 
of signal scores for the four methodologies considered in this 
study and analysis thereof was done using Oracle Empirica 
Signal 9.1 [17].

2.4 � Capturing the Evolution of Signals

The evolution of signal scores for each AE was captured by 
a time series of signal statistics. The time series runs from 
a period at which initial reports for an AE were available to 
the latest batch of reports available at the time of writing 
this article. Each time point corresponds to a semi-monthly 
public release of VAERS reports, starting from week 3 (W3) 
January 22, 2021 and ending in week 39 (W39) October 
1, 2021, for a total of 19 time points. The signal statistics 
computed for each time point include the signal score point 
estimate and its credible interval, e.g., ER05-ERAM-ER95 
for RGPS and EB05-EBGM-EB95 for MGPS. These were 
computed based on all data available in VAERS and not 
only the COVID 19 reports or data within the range of dates 
underlying the time series.

2.5 � Analysis and Evaluation

The comparison of signal detection methodologies for the 
time series centers on the RGPS and MGPS methodologies. 
These were chosen as representatives of the two classes of 
methodologies described in the ‘Introduction’ and above. 
That is, MGPS as a representative of the class of method-
ologies based on 2 × 2 disproportionality analysis that are 
unable to address masking, and RGPS as a representative of 
the more advanced class of methodologies based on regres-
sion that can address masking. The information component 
(IC) statistic [15] computed by the BCPNN methodology 
produces signal scores that are almost identical to those 
produced by MGPS and therefore redundant in many parts 
of our evaluation. The PRR signal statistic in its canoni-
cal application does not include smoothing or signal score 
adjustments for small counts as do the other methodologies 
and, therefore, does not protect against false alarms as well 
as the other methodologies. For this reason, a direct com-
parison against PRR (in its canonical form) would not have 
allowed us to isolate and explain sources of undetected sig-
nals. Nonetheless, both PRR and the IC statistic are used to 

confirm masking effects using the approach discussed in the 
following and presented in the ‘Results’ section.

Table 5 defines several concepts and conditions that we 
use to evaluate signals and to describe our findings in the 
‘Results’ section. These include the concept of a signaling 
threshold, criteria to decide if a signal is detected or not 
(signal present/absent), a condition we use to decide if the 
difference between signal scores produced by different meth-
odologies is statistically significant, a condition we use to 
screen candidate associations for masking, and the calcula-
tion we use to quantify the size of a masking effect.

Having generated the time series of signal scores for each 
AE of interest, we investigate and attempt to validate mask-
ing sources based on the following:

(1)	 We select two time periods: an earlier point in the evo-
lution of signals when masking starts to take effect, 
and the end period (W39). Doing so allows us to exam-
ine the origin of the masking sources and whether the 
sources change over time. The earlier time point cor-
responds to the earliest point in the time series (for both 
the Pfizer-BioNTech and Moderna vaccines) for which 
the RGPS and MGPS signals scores were significantly 
different, and RGPS’s signal score exceeded the signal-
ing threshold as defined above.

(2)	 For each time point, we evaluate the predictors that 
are automatically selected by RGPS to be included in 
the regression model for the target AE. Based on the 
regression coefficients, we then identify the strongest 
predictors (vaccines) as potential sources of masking.

(3)	 As mentioned in the ‘Introduction,’ once masking 
sources have been identified, the conventional approach 
to control masking is to remove all reports containing 
the maskers, and re-compute signal scores. We use this 
conventional approach to confirm our findings. That 
is, we remove reports containing the potential maskers 
(vaccines) identified by RGPS and re-compute signal 
scores for the signaling methodologies based on 2 × 2 
disproportionality analysis (MGPS, PRR, BCPNN). 
Substantial increases in these signal scores as well as 
their convergence toward the original RGPS signal 
score is a strong indication that the sources of masking 
have been correctly identified and a likely explanation 
for undetected or delayed statistical signals.

3 � Results

Figures 1 and 2 and Table 6 depict our findings for each of 
the seven AEs investigated in this study. The figures dis-
play the evolution of signal scores for each AE captured 
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as a time series of signal scores, whereas Table 6 provides 
signal scores for each AE averaged across the time series. 
As described in the ‘Materials and Methods’ (Sect. 2.4), the 
time series ranges from W3 to W39 of COVID-19 reports, 
for a total of 19 time points in 2-week intervals correspond-
ing to the semi-monthly public release of VAERS reports.

Rows in the figures correspond to AEs, and columns to 
vaccines (Pfizer/BioNTech vs Moderna). Figure 1 covers the 
AEs Bell's palsy, myocarditis, pericarditis, and appendicitis, 
whereas Fig. 2 covers the AEs pulmonary embolism, herpes 
zoster, and tinnitus. Each figure displays a time series of 
signal scores for the RGPS and MGPS methodologies. Each 
point corresponds to the signal score point estimate and its 
credible interval (shaded region), i.e., ER05-ERAM-ER95 
for RGPS and EB05-EBGM-EB95 for MGPS. Table 6 sum-
marizes and supplements the figures by providing average 
signal scores for RGPS and MGPS (ERAM and EBGM, 
respectively) across each time series, as well as the average 
masking effect size defined in Sect. 2.5/Table 5. Finally, sup-
porting information (SI2) (see the electronic supplementary 
material) provides signal statistics for all combinations of 
AE/vaccine/signaling methodology, including signal statis-
tics for the PRR and BCPNN methodologies.

The figures clearly show several trends:

(1)	 The time series curves of signal scores produced by 
RGPS are always above those of MGPS, i.e., the RGPS 

signal scores are always larger than those of MGPS. 
This is not an expected pattern and is indicative of 
masking effects for the AEs of interest. This also sug-
gests that the RGPS methodology would have been 
able to detect signals missed by MGPS or identify sig-
nals at an earlier time point than MGPS. According to 
Table 6, the average masking effect size ranges from 
around 40% for Bell’s palsy to around 230% for herpes 
zoster, and the average signal score corrected for mask-
ing (RGPS) exceeds the signaling threshold.

(2)	 For most AEs, RGPS and MGPS initially agree on their 
signal scores (statistically insignificant differences) and 
then diverge in their signal scores. The divergence is 
likely due to the influence of masking effects, the evo-
lution of VAERS data, and possibly changes in report-
ing practices.

(3)	 For several AEs, the time series exhibits an acute 
increase in signal score values at certain time points. 
These acute increases are likely explained or coincide 
with external events, such as the availability of a vac-
cine to certain age groups and the influence of publica-
tions.

(4)	 For certain AEs at certain time points, the signal scores 
fall below the signaling threshold. This indicates that 
at those time points statistical signals would have been 
undetected and that statistical signaling may be time 
sensitive.

Table 5   Concepts and conditions used to evaluate signals

AE adverse event, EBGM Empirical Bayes Geometric Mean, ERAM Empirical-Bayes Regression-Adjusted Arithmetic Mean, MGPS Multi-item 
Gamma Poisson Shrinker, RGPS Regression-Adjusted Gamma Poisson Shrinker

Concept Definition

Signaling threshold A cutoff value for a given signal score (association statistic) that is used to decide if a signal is present or absent. This 
investigation uses the value 1.0 (or 0.0 on the log scale), which for association statistics derived from ratios corresponds 
to the boundary of no statistical association

Signal present For a given AE and signal score, a signal is present (i.e., detected) if a positive statistical association for the AE is identi-
fied. This occurs when the signal score for the AE (or its lower interval limit) exceeds the signaling threshold. This 
investigation requires that the lower limit of the signal score’s credible interval exceeds the signaling threshold, e.g., 
ER05 > 1.0 for RGPS and EB05 > 1.0 for MGPS

Signal absent For a given AE and signal core, a signal is absent (not detected) if the signal score’s credible interval contains or falls 
below the signaling threshold, e.g., ER05 < 1.0 for RGPS and EB05 < 1.0 for MGPS

Statistically signifi-
cant signal score 
difference

For a given association, the difference between two signal scores computed by two different methodologies is statistically 
significant if their credible intervals do not overlap. Likewise, we say that there is no difference in signal scores if their 
credible intervals overlap, e.g., ER05 < EB95 < ER95

Candidate associa-
tion for masking

Candidate associations for masking are identified as those whose signal statistics satisfy the following condition:
ER05 > EB95 and ER05 > 1 and EB05 ≤ 1
That is, an association where RGPS and MGPS disagree by producing signal scores that are statistically significant (non-

overlapping credible intervals, ER05 > EB95) with RGPS’s interval above the signaling threshold (ER05 > 1) and that 
of MGPS below or including the threshold (EB05 ≤ 1)

Masking effect size The masking effect size is defined by the ratio of RGPS’s and MGPS’s signal scores, i.e.,
ERAM

EBGM
− 1

In this investigation, the masking effect size will be averaged across the time series to produce a summary statistic and 
represented as a percentage
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(5)	 As more data accumulates, signal scores expectedly 
stabilize. Larger fluctuations are seen for RGPS, indi-
cating that it is sensitive to masking and confounding 
effects and that the data may still be evolving.

The following describes our findings for each AE of 
interest.

3.1 � Bell’s Palsy

Bell's palsy is a form of acute facial paralysis with a weaken-
ing and a drooping appearance of the facial muscles usually 
on just one side of the face. In most cases, the paralysis 
resolves spontaneously within several weeks. Bell's palsy 
is due to swelling of the facial nerve, and type I interferons 

Fig. 1   The evolution of signal scores for Bell's palsy, myocarditis, pericarditis, and appendicitis. MGPS Multi-item Gamma Poisson Shrinker, 
RGPS Regression-Adjusted Gamma Poisson Shrinker, W week

Fig. 2   The evolution of signal scores for pulmonary embolism, herpes zoster, and tinnitus. MGPS Multi-item Gamma Poisson Shrinker, RGPS 
Regression-Adjusted Gamma Poisson Shrinker, W week
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have been proposed as the potential mechanism [18]. Inci-
dents of Bell’s palsy were reported in clinical trials for both 
the Pfizer-BioNTech and Moderna vaccines, and it has also 
been documented with the influenza vaccine [19, 20]. The 
FDA currently recommends its surveillance with larger 
populations globally. In addition, there have been multiple 
case reports of Bell's palsy associated with the mRNA vac-
cines [19, 21–23], and several studies that investigated the 
association [24–26].

As of W39, there are 7795 reports of Bell's palsy for the 
mRNA vaccines (5684 Pfizer-BioNTech, 2111 Moderna). 
The time series in Figure 1 shows that the signal scores 
produced by each methodology differ by a small amount, 
with RGPS and MGPS diverging (non-overlapping credible 
intervals) around W7–9. The figure also shows that a mild 
masking effect is present (40% averaged across the time 
series). Regardless of masking, all methods agree early 
on that the reported co-occurrence of the mRNA vaccines 
with Bell’s palsy is unlikely due to chance (signal scores 
exceeding the signaling threshold). However, towards the 
end period (W33) the MGPS signal scores fall below the 
signaling threshold for the Moderna vaccine.

3.2 � Myocarditis and Pericarditis

Myocarditis and pericarditis refer to inflammation of the 
heart muscle and outermost layer of the heart, respectively. 
Myocarditis and pericarditis are both thought to be caused 
by viral infections, and symptoms include chest pain, short-
ness of breath, and irregular heartbeat appearing within 
several days after the second dose of the mRNA vaccines. 
Several case reports of myocarditis and pericarditis devel-
oping rapidly after the first and second doses of the mRNA 

vaccines have been published [27–31], as well as several 
retrospective studies [13, 32–35] identifying it as a rare 
complication of the vaccines. One study in mice suggests 
that inadvertent intravenous injection of COVID-19 mRNA 
vaccines may induce myopericarditis [36].

The risk of myocarditis following vaccination has been 
observed to be highest among young males. The CDC has 
recognized the association with the COVID-19 mRNA vac-
cines [2], and both myocarditis and pericarditis now appear 
on the product labels (warning section) of the vaccines [37, 
38].

As of W39, there are 4690 reports of myocarditis for the 
mRNA vaccines (3515 Pfizer-BioNTech, 1175 Moderna) 
and 3079 reports of pericarditis for the mRNA vaccines 
(2408 Pfizer-BioNTech, 671 Moderna) in the VAERS sys-
tem. Relative to the total number of cases for these AEs, 
87% of myocarditis cases and 83% of pericarditis cases are 
associated with the mRNA COVID-19 vaccines.

The changing age distribution of COVID-19 vaccine 
recipients can be observed in the progression of the time 
series. Figure 1 shows that both the RGPS and MGPS signal 
scores for myocarditis were initially not indicative of a safety 
signal, but around W19–21 (week ending May 30, 2021), as 
the COVID-19 vaccines were made available in the US to 
people under 65 years, a substantial increase in both signal 
scores can be observed. At this point RGPS and MGPS start 
diverging, with MGPS remaining on point and RGPS show-
ing a gradual increase from a signal score of 2.3 to above 9.0 
(Pfizer-BioNTech) and 1.5 to above 5.0 (Moderna). Similar 
trends of signal score progression are observed for pericar-
ditis, with a slight decrease in RGPS signal scores around 
W31–33 onwards.

Table 6   Average signal score 
and average masking effect 
for Bell's palsy, myocarditis, 
pericarditis, appendicitis, 
pulmonary embolism, herpes 
zoster, and tinnitus

The average signal score for an AE is based on the individual signal scores underlying its time series dis-
played in Figs. 1 and 2. Average masking effect size is defined in Sect. 2.5 (not to be confused by the ratio 
of average signal scores for RGPS and MGPS in the table)
AE adverse event, MGPS Multi-item Gamma Poisson Shrinker, RGPS Regression-Adjusted Gamma Pois-
son Shrinker

Adverse event Pfizer-BioNTech Moderna

RGPS MGPS Masking 
effect size

RGPS MGPS Masking 
effect 
size

Bell's palsy 2.41 1.70 42% 1.69 1.22 39%
Myocarditis 5.40 1.66 190% 4.35 1.55 196%
Pericarditis 2.60 1.47 72% 2.02 1.17 71%
Appendicitis 7.61 3.94 110% 5.22 3.05 107%
Pulmonary embolism 7.18 2.88 178% 7.05 3.48 167%
Herpes zoster 1.23 0.44 229% 0.96 0.34 232%
Tinnitus 3.02 1.63 82% 2.31 1.27 80%
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The size of the masking effect for myocarditis is ranked 
second for the AEs of interest, with an average value around 
190%. For pericarditis, the effect size is 70%. The sources of 
masking for myocarditis were evaluated based on the process 
described in Sect. 2.5. The two time periods examined were 
W19 and W39. RGPS automatically selected 20 (W19) and 
39 (W39) vaccine predictors for the myocarditis regression 
model. The strongest predictors for both time points were a 
set of three smallpox vaccines (at the manufacturer level), 
which is consistent with published reports recognizing myo-
carditis as a rare AE of the smallpox vaccine [39–41].

Upon removal of all reports containing the smallpox vac-
cines on W19, the PRR, EBGM, and IC signal scores indeed 
reverted to larger signal scores close in magnitude to RGPS’s 
original signal score. The PRR signal score for the Pfizer-
BioNTech vaccine increased from 1.44 to 2.48 (72%), and 
for the Moderna vaccine, from 0.8 to 1.34 (67%). Similarly, 
the EBGM signal score for the Pfizer-BioNTech vaccine 
increased from 1.44 to 2.17 (51%), and from 0.94 to 1.42 
(51%) for the Moderna vaccine. As more data accumulated 
in VAERS, the Pfizer-BioNTech and Moderna COVID-19 
vaccines were also identified by RGPS as potential mask-
ers. In this case, they masked each other for the myocarditis 
AE. On W39, the Pfizer-BioNTech vaccine was identified 
by RGPS as the strongest masker. Removing all reports 
containing the Pfizer-BioNTech vaccine led to a substan-
tial increase in signal scores for the Moderna–myocarditis 
association. The PRR signal score increased from 1.2 to 
4.98 (315%), and the EBGM score increased from 1.32 to 
2.13 (61%). This demonstrates how the Pfizer-BioNTech 
vaccine is masking the Moderna vaccine, and how masking 
sources may evolve over time. In addition to the COVID-
19 vaccines, the smallpox vaccines were still identified by 
RGPS as strong sources of masking on W39. Removing both 
smallpox and Pfizer-BioNTech vaccines led to the follow-
ing additional increases for the Moderna association: PRR 
increased from 4.98 to 8.14 (63%) and EBGM increased 
from 2.13 to 2.4 (13%). Similarly, removing the smallpox 
and Moderna vaccines led to the following increases for the 
Pfizer-BioNTech-myocarditis association: PRR increased 
from 5.42 to 10.96 to 17.94 (230%) and EBGM increased 
from 1.94 to 2.02 to 2.12 (9%).

3.3 � Appendicitis

Appendicitis is an inflammation of the appendix usually 
caused by an obstruction of the appendiceal lumen; however, 
the exact etiology of acute appendicitis is often unknown. 
Appendicitis is the most common cause of acute abdominal 
pain requiring surgery. If left untreated, acute appendici-
tis can result in serious complications, such as peritonitis 
or abscess formation [42, 43]. According to the Pfizer-
BioNTech COVID-19 Vaccine Fact Sheet for Healthcare 

Providers, appendicitis was reported as a serious AE in a 
clinical trial for eight vaccine participants and four placebo 
participants (Pfizer-BioNTech COVID-19 vaccine = 10,841; 
placebo = 10,851), but not during post-authorization expe-
rience [37]. The Moderna COVID-19 Vaccine Fact Sheet 
for Healthcare Providers does not mention appendicitis as 
an AE in clinical trials or in post-authorization experience 
[38]. However, both the Pfizer-BioNTech and Moderna Fact 
Sheets for Healthcare Providers mention lymphadenopathy 
as a reported AE during clinical trials. Barda et al. dem-
onstrated an elevated risk ratio for appendicitis (risk ratio 
1.40; 95% confidence interval [CI] 1.02–2.01) with the 
Pfizer-BioNTech COVID-19 vaccine in a mass nationwide 
vaccination setting [44].

As of W39, there are 725 reports of appendicitis for the 
mRNA vaccines (537 Pfizer-BioNTech, 188 Moderna) in the 
VAERS system. As shown in Fig. 1, both MGPS and RGPS 
showed extremely large signal scores early on that attenu-
ated over time but remained high for RGPS, with values 
above 3.7 for Pfizer-BioNTech and above 1.7 for Moderna. 
This early signaling by W3 appeared even when the num-
ber of reports was small (15 Pfizer-BioNTech, 6 Moderna). 
RGPS and MGPS started diverging around W11, likely 
due to masking. The figure shows a relatively large mask-
ing effect. Averaged across the time series, the size of the 
masking effect was high and around the value of 100% for 
both vaccines.

3.4 � Pulmonary Embolism

Pulmonary embolism is a sudden blockage in a lung artery. 
It usually happens when a blood clot breaks loose and travels 
through the bloodstream to the lungs. Pulmonary embolism 
is a serious condition that can cause permanent damage to 
the lungs, low oxygen levels in the blood, and damage to 
other organs in the body from not getting enough oxygen. 
Pulmonary embolism can be life-threatening, especially if a 
clot is large, or if there are many clots [45].

Systematic reviews and meta-analyses showed high inci-
dences of pulmonary embolism in COVID-19 patients [46, 
47]. Barda et al. reported an elevated risk ratio for pulmo-
nary embolism (risk ratio 12.14; 95% CI 6.89–29.20) for 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2)-infected compared to uninfected persons [44].

Besides COVID-19 itself, it appears that COVID-19 
vaccines increase the risk for pulmonary embolism; several 
authors reported the occurrence of pulmonary embolism, 
often in combination with vaccine-induced thrombotic 
thrombocytopenia (VITT), following COVID-19 vacci-
nation, mainly for adenovirus-based COVID-19 vaccines 
[48–54]. Although no increased risk for pulmonary embo-
lism was found by Klein et al. for mRNA vaccines [12] and 
by Barda et al. for Pfizer-BioNTech [44], some case reports 
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described the occurrence of pulmonary embolism following 
vaccination with Pfizer-BioNTech [55–57]. As of this writ-
ing, pulmonary embolism is not mentioned in the vaccine 
labels of the Pfizer-BioNTech and the Moderna COVID-19 
vaccines.

As of W39, there are 5869 reports of pulmonary embo-
lism for the mRNA vaccines (4394 Pfizer-BioNTech, 1475 
Moderna) in the VAERS system. Figure 2 shows that both 
MGPS and RGPS exceed the signal threshold for pulmonary 
embolism already in W3 for both vaccines. In the follow-
ing weeks, starting on W9, RGPS departs from MGPS and 
stays on a value level about threefold that of MGPS. Aver-
aged across the time series, the size of the masking effect 
was high and around the value of 170% for both vaccines. 
The MGPS time series for Moderna decreases to below the 
signaling threshold in W39, whereas RGPS remains well 
above the threshold. For Pfizer-BioNTech, MGPS and RGPS 
remain above the signaling threshold, with RGPS at about 
three times the value of MGPS.

3.5 � Herpes Zoster

Herpes zoster (shingles) is a painful rash that develops on 
one side of the face or body. The rash consists of blisters that 
typically clear within 2–4 weeks [58]. Multiple reports of 
patients who developed herpes zoster shortly after COVID-
19 vaccination have been recently published [59–64], as well 
as observational studies and systematic reviews [44, 65–67], 
which suggest a potential link with the mRNA COVID-19 
vaccines. Possible mechanisms that explain the patho-
genic link are related to the stimulation of innate immunity 
through toll-like receptors 3, 7 by mRNA-based vaccines 
[65].

As of W39, there are 8228 reports of herpes zoster for the 
mRNA vaccines (5637 Pfizer-BioNTech, 2591 Moderna). 
Figure 2 shows a substantial difference between RGPS and 
MGPS, with MGPS indicating that there is no statistical 
association between herpes zoster and the vaccines (signal 
scores below the signaling threshold), versus RGPS indi-
cating the contrary (signal scores exceeding the signaling 
threshold) from W13 (Pfizer-BioNTech) and W17 (Mod-
erna) through the remaining time periods. Although the 
value of the RGPS signal score is not large relative to the 
other AEs, it indicates that the association is unlikely to be 
due to chance.

Interestingly, the size of the masking effect for herpes 
zoster was the largest among the AEs of interest. Averaged 
across the time series, the size of the masking effect was 
230% for both mRNA vaccines. The sources of masking 
were evaluated and validated based on the process described 
in Sect. 2.5. The two time periods examined were W17 and 
W39. RGPS automatically selected 67 (W17) and 44 (W39) 
vaccine predictors for the herpes zoster regression model. 

The strongest predictors were the varicella (chickenpox) and 
the VARZOS (a combination varicella and zoster) vaccines, 
for a total of six vaccine predictors at the manufacturer level. 
Although the risk is low, there are documented cases and 
studies of herpes zoster following varicella and VARZOS 
vaccination [68–70]. Upon removal of all reports containing 
the varicella and VARZOS vaccines, we found that the PRR, 
EBGM, and IC signal scores indeed reverted to larger signal 
scores close in magnitude to RGPS’s original signal score. 
For example, the PRR signal score for the Pfizer-BioNTech 
vaccine increased from 0.37 to 1.47 (297%) on W17 and 
from 0.76 to 2.3 (202%) on W39. Similarly, the EBGM sig-
nal score increased from 0.35 to 1.47 (320%) on W17 and 
from 0.66 to 1.48 (124%) on W39. In addition, we found 
that these masking sources (i.e., the varicella and VARZOS 
vaccines) did not change over time and remained consistent 
at both time periods that were evaluated.

3.6 � Tinnitus

Tinnitus is described as the sensation of hearing ringing, 
hissing, or other noises in one or both ears that is not caused 
by an external sound. Tinnitus can be intermittent or contin-
uous and can vary in pitch and intensity. Prolonged exposure 
to loud sounds and a variety of other conditions can lead to 
tinnitus; however, the mechanism responsible for tinnitus 
is unclear.

Tinnitus has been linked to other vaccines such as hepati-
tis, rabies, measles, and H1N1 vaccines [71]. In COVID-19 
vaccine trials prior to the release of the Pfizer-BioNTech 
and Moderna vaccines, no mention was made of the onset 
of tinnitus or worsening tinnitus for either vaccine. As early 
as March 2021, in a report from the United Kingdom Medi-
cines and Healthcare products Regulatory Agency (MHRA), 
196 tinnitus cases among 33,207 vaccinated persons were 
recorded for the Pfizer-BioNTech vaccine [72], and since 
then, several case reports linking tinnitus to the mRNA vac-
cines as well as to the Janssen and AstraZeneca vaccines 
have been published [72–75]. In addition, due to an appar-
ently increased number of individuals experiencing tinnitus 
during the pandemic period, the connection between the vac-
cines and tinnitus received special attention in various media 
outlets and professional associations dedicated to tinnitus 
[76, 77]. As of this writing, tinnitus is not mentioned in the 
vaccine labels. As mentioned in the ‘Introduction,’ tinnitus 
is not contained in the set of AEs of interest recognized by 
various health organizations. As of W39, there are 12,296 
reports of tinnitus for the mRNA vaccines (7649 Pfizer-
BioNTech, 4647 Moderna) in the VAERS system. Interest-
ingly, the number of reports for tinnitus is larger by a sub-
stantial amount than for any of the other AEs covered in this 
article. Figure 2 shows that both MGPS and RGPS exceed 
the signal threshold early on for both vaccines and remain 
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above the signaling threshold through the remaining time 
periods (excluding a brief crossing for MGPS and Moderna 
on W9–15). RGPS and MGPS start diverging on W15–17, 
with RGPS rapidly increasing to signal score values twice as 
large in a short amount of time. This appears correlated with 
the increase in the number of reports available throughout 
the period and likely the dynamics of masking effects.

Averaged across the time series, the size of the mask-
ing effect was high and around the value of 80% for both 
vaccines. Based on the process described in Sect. 2.5, we 
evaluated the sources of masking for tinnitus. The two time 
periods examined were W17 and W39. RGPS automati-
cally selected 21 (W17) and 25 (W39) vaccine predictors 
for the tinnitus regression model. For W17, the strongest 
predictors and potential maskers identified by RGPS were 
the HPV4 (papilloma virus) vaccine and the Janssen and 
Pfizer-BioNTech COVID-19 vaccines. Hence, on W17, two 
COVID-19 vaccines were already masking other associa-
tions; Janssen masking the Pfizer-BioNTech and Moderna 
COVID-19 vaccines, and the Janssen and Pfizer-BioNTech 
vaccines masking the Moderna vaccine. Removing all 
reports containing these three vaccines (HPV4, Janssen, 
and Pfizer-BioNTech) resulted in expected signal score 
increases for the Moderna-tinnitus association, with PRR 
increasing from 1.79 to 2.5 (40%) and EBGM increasing 
from 1.13 to 1.43 (27%). Expectedly, on W39, as more data 
accumulated in VAERS, the Pfizer-BioNTech and Moderna 
vaccines were identified by RGPS as the strongest mask-
ers (masking each other) in addition to the Janssen vaccine. 
On W39, the HPV4 vaccine was no longer identified as a 
strong masker. Removing reports containing the Janssen and 
Pfizer-BioNTech vaccines led to the following signal score 
changes for the Moderna-tinnitus association: PRR increas-
ing from 1.8 to 5.5 (205%) and EBGM increasing from 1.18 
to 1.69 (43%). Similarly, removing reports containing the 
Janssen and Moderna vaccines led to the following signal 
score changes for the Pfizer-BioNTech-tinnitus association: 
PRR increasing from 2.75 to 6.67 (143%) and EBGM mod-
estly increasing from 1.57 to 1.71 (9%). This demonstrates 
that the Pfizer-BioNTech and Moderna vaccines may mask 
each other to varying degrees, in this case, Pfizer-BioNTech 
having a larger effect on Moderna than vice versa.

3.7 � Masking Statistics at the Database Level

Table 7 displays counts for the number of potentially masked 
associations in VAERS categorized by vaccine type. The 
conditions that define a potentially masked association are 
provided in the ‘Materials and Methods’ (Sect. 2.5; Table 5, 
candidate association for masking). The table shows that 
the likelihood of a masked association for the COVID-19 
vaccines is 2.3%, which is roughly eight times larger than 
for non-COVID-19 vaccines (0.3%). This result clearly 

demonstrates the increased potential and susceptibility of 
VAERS COVID-19 vaccine surveillance to the problem of 
masking effects.

4 � Discussion

The unprecedented dynamic and extent of reporting into 
VAERS for the novel class of COVID-19 vaccines may have 
created conditions that predispose commonly applied signal 
detection methodologies to the statistical issue known as 
masking. This in turn may limit our understanding of the 
risks associated with COVID-19 vaccines, as well as other 
vaccines and delay their identification.

Signal detection can be approached and accomplished in 
many ways. In this article, we consider a specific approach 
and application that is routinely applied by pharmacovigi-
lance organizations, and whose purpose is to computation-
ally explore large databases of reported AEs for statistical 
patterns that are indicative of new safety issues that warrant 
further attention. We term this application statistical signal 
detection and further distinguish two classes of methodolo-
gies, one based on 2 × 2 disproportionality analysis that 
is prone to masking, and a more advanced class of meth-
ods that can cope with masking. Methodologies currently 
deployed by pharmacovigilance organizations are to a large 
extent based on the former class of methods and, thus, prone 
to masking, a motivating reason for this investigation. To 
abbreviate our discussion, we will refer to this class of meth-
ods as the ‘standard’ methods.

To demonstrate such masking effects, trace their origins, 
and assess their impact, we center our investigation on seven 
AEs with various degrees of reported and statistical evi-
dence that link them to the Pfizer-BioNTech and Moderna 
vaccines. Five of the AEs are largely recognized by various 
health authorities. The investigation enabled us to discover 
two potentially new AEs (herpes zoster and tinnitus), which 
are yet to be recognized by health authorities, but which 
have overwhelming statistical support in VAERS and are 
supported by published case reports and studies. These 
seven AEs were identified and selected for this investigation 

Table 7   VAERS counts of masked associations

COVID-19 coronavirus disease 2019

Number 
associa-
tions

Number 
masked asso-
ciations

% masked 
associations

All vaccines 265,987 1330 0.50%
Non-COVID-19 vaccines 241,016 753 0.31%
COVID-19 vaccines 24,971 577 2.31%
Pfizer-BioNTech/Moderna 18,588 458 2.46%
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based on criteria to screen and rank masked associations 
described in the ‘Methods.’ We do not extrapolate and claim 
that masking is often prevalent because it was identified for 
these seven AEs; neither do we suggest that masking is lim-
ited to just these AEs. Rather, we argue that masking is an 
issue that is important and addressable, and an issue that 
can be impactful in situations such as COVID-19 vaccine 
safety surveillance and other emergency use authorization 
products.

In the investigation, we traced the evolution of signals 
related to the seven AEs during the course of the initial year 
of COVID-19 vaccination and the accompanying availability 
of COVID-19 vaccine AE reports made public in VAERS. 
This temporal evaluation led to several findings. We surmise 
that these findings are important not only for the COVID-19 
vaccines currently approved and investigated in this article, 
but are also important for any new COVID-19 vaccines that 
might be approved in the future and, likewise, should also 
apply to any new vaccine (or drug) approved for use in the 
future.

The results show that statistical signals for AEs related to 
COVID-19, and possibly other vaccines, may go undetected 
or be delayed due to masking when generated by standard 
methodologies. The results also suggest that properly iden-
tifying and addressing the masking effect exposes strong 
statistical associations that would otherwise be deemed unin-
teresting. For example, the tinnitus and herpes zoster sig-
nals may have been overlooked partly due to the low signal 
scores produced for them by standard methodologies. Simi-
larly, signals for the other five AEs may have been delayed 
by the same standard methodologies. As mentioned, safety 
surveillance and signal detection are not limited to statisti-
cal approaches, and fortunately, these other five AEs had 
already been well characterized by the FDA, CDC, and other 
sources.

We found that although the masking effect is rare rela-
tive to the entire set of possible associations between vac-
cines and AEs (representing 0.5% of the total number of 
unique associations), it is roughly eight times more likely 
to occur with COVID-19 vaccines than with other vac-
cines. As mentioned, this may be explained by the unique 
dynamic and extent of reporting into VAERS for the class of 
COVID-19 vaccines. Furthermore, the volume of reporting 
for COVID-19 vaccines is likely to influence future statisti-
cal associations with other new vaccines. This suggests that 
masking may become more frequent and should be carefully 
considered.

The results also demonstrate that masking is not a static 
effect but rather a dynamically changing and evolving effect 
in terms of its origins, direction, and strength. Naturally, 
this is due to the evolving nature of data. For example, we 
found that in earlier time periods, non-COVID-19 vaccines 
could mask signals associated with COVID-19 vaccines, 

whereas in later time periods, as more COVID-19 reports 
accumulate, the Pfizer-BioNTech and Moderna vaccines can 
mask each other and likely other vaccines. This suggests that 
the assessment of masking should be done on a continuum 
rather than be a point-in-time exercise and, more generally, 
that statistical signal detection is time sensitive. Relatedly, 
it appears that the VAERS data for COVID-19 vaccine sur-
veillance are still evolving and susceptible to external influ-
ences, such as vaccination policies, publication influences, 
reporting practices, and updates to the MedDRA terminol-
ogy. This in turn could contribute to signal score fluctua-
tions, resulting in time-dependent signaling uncertainty.

Masking effects have been traditionally addressed by 
removing cases containing the ‘offending’ product, by using 
stratification, or by employing regression techniques. How-
ever, each of these approaches requires to some extent iden-
tifying masking sources prior to signaling, which may limit 
the utility of signal detection in scenarios where masking 
is present and where the goal is unconstrained hypothesis 
generation. This investigation was made possible by using 
a methodology that automatically identifies and adjusts 
masking effects. Its ability to correctly identify maskers was 
verified for three of the seven AEs we investigated (e.g., 
the smallpox vaccines masking COVID-19 for myocarditis) 
by using the traditional approach to address masking. That 
is, by re-applying standard signaling methodologies on data 
that excludes the maskers.

At a higher level, the results suggest that different signal-
ing approaches may lead to drastically different results—a 
conclusion that is especially disconcerting in the context of 
COVID-19 surveillance. Unfortunately, in the absence of 
an ultimate benchmark, the question of which methodology 
to rely on is still in debate. Nonetheless, the findings high-
light the utility of a more advanced class of signal detection 
methodologies based on regression. Given present-day com-
putational power and recognized analytic approaches such as 
regression, there are few reasons to avoid the utilization of 
these approaches, at the very least to address acknowledged 
problems such as masking.

The mRNA Pfizer-BioNTech and Moderna vaccines 
have been demonstrated to be highly effective in prevent-
ing infection and severe illness from COVID-19. They also 
appear to have acceptable safety profiles, suggesting that the 
benefits of COVID-19 vaccination outweigh the potential 
risk of AEs. Consequently, AEs such as those highlighted 
in this article, which are also rare as far as we know, cannot 
be used to argue against vaccination. Moreover, statistical 
signal detection is inherently an exploratory hypothesis-gen-
erating process. Therefore, associations flagged by signaling 
approaches do not imply causal relationships and always 
warrant further scrutiny, including those named in this arti-
cle. Notwithstanding, the strength of statistical signal detec-
tion (as an unconstrained hypothesis-generating process) lies 
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in being fast and performed in near ‘real time.’ Analyses can 
be easily ‘tailored’ to a specific age group or gender, time 
frame, and product type. The method also has the advantage 
of casting a much wider net for AE reporting from millions 
or hundreds of millions of people and may identify rare AEs 
not seen in clinical trials. These advantages are critical in the 
‘real time’ and the ‘real world’ environment of COVID-19 
vaccine surveillance.
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