Skip to main content
. 2022 Jun 7;7(24):21119–21130. doi: 10.1021/acsomega.2c01939

Table 5. Training and Testing Performances of Different Neural-Network Architectures for the Prediction of Oil Recovery and Cumulative Steam–Oil Ratio.

    training
testing
    oil rec. (%)
CSOR
oil rec. (%)
CSOR
no. of hidden layers no. of neurons R2 RMSE R2 RMSE R2 RMSE R2 RMSE
1 10 0.99 26.0 0.97 7.1 0.98 14.9 0.90 3.2
  20 0.99 18.6 0.97 6.3 0.99 13.0 0.93 2.7
  30 0.99 27.1 0.96 8.1 0.99 13.6 0.88 3.5
  40 0.99 20.3 0.98 5.1 0.99 13.8 0.95 2.3
2 20–10 0.99 17.8 0.98 6.2 0.99 13.8 0.92 2.9
  30–20 1.00 16.5 0.97 6.7 0.99 13.9 0.91 3.1
  40–25 0.99 26.1 0.97 6.4 0.98 16.8 0.89 3.3
  50–30 1.00 15.5 0.99 4.6 0.99 11.1 0.93 2.7
3 15–10–5 1.00 15.4 0.99 4.4 0.99 10.5 0.94 2.4
  30–20–10 0.99 17.9 0.98 5.3 0.99 11.4 0.94 2.5
  40–30–20a 1.00 16.9 0.98 5.2 0.99 11.2 0.95 2.3
  50–35–20 1.00 14.9 0.99 4.0 0.99 9.9 0.93 2.6
a

Selected model.