Table 5. Training and Testing Performances of Different Neural-Network Architectures for the Prediction of Oil Recovery and Cumulative Steam–Oil Ratio.
| training |
testing |
||||||||
|---|---|---|---|---|---|---|---|---|---|
| oil rec. (%) |
CSOR |
oil rec. (%) |
CSOR |
||||||
| no. of hidden layers | no. of neurons | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE |
| 1 | 10 | 0.99 | 26.0 | 0.97 | 7.1 | 0.98 | 14.9 | 0.90 | 3.2 |
| 20 | 0.99 | 18.6 | 0.97 | 6.3 | 0.99 | 13.0 | 0.93 | 2.7 | |
| 30 | 0.99 | 27.1 | 0.96 | 8.1 | 0.99 | 13.6 | 0.88 | 3.5 | |
| 40 | 0.99 | 20.3 | 0.98 | 5.1 | 0.99 | 13.8 | 0.95 | 2.3 | |
| 2 | 20–10 | 0.99 | 17.8 | 0.98 | 6.2 | 0.99 | 13.8 | 0.92 | 2.9 |
| 30–20 | 1.00 | 16.5 | 0.97 | 6.7 | 0.99 | 13.9 | 0.91 | 3.1 | |
| 40–25 | 0.99 | 26.1 | 0.97 | 6.4 | 0.98 | 16.8 | 0.89 | 3.3 | |
| 50–30 | 1.00 | 15.5 | 0.99 | 4.6 | 0.99 | 11.1 | 0.93 | 2.7 | |
| 3 | 15–10–5 | 1.00 | 15.4 | 0.99 | 4.4 | 0.99 | 10.5 | 0.94 | 2.4 |
| 30–20–10 | 0.99 | 17.9 | 0.98 | 5.3 | 0.99 | 11.4 | 0.94 | 2.5 | |
| 40–30–20a | 1.00 | 16.9 | 0.98 | 5.2 | 0.99 | 11.2 | 0.95 | 2.3 | |
| 50–35–20 | 1.00 | 14.9 | 0.99 | 4.0 | 0.99 | 9.9 | 0.93 | 2.6 | |
Selected model.