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Abstract

Native mass spectrometry (MS), the analysis of proteins and protein complexes from solutions that 

stabilize the native solution structures, is a rapidly expanding area in mass spectrometry. There 

is strong evidence that supports proteins retain their native fold in the absence of solvent under 

the experimental timescales of MS experiments. Therefore, instrumentation has been developed 

to use gas-phase native-like protein ions to exploit the speed, sensitivity, and selectivity of 

mass spectrometry approaches to solve emerging problems in structural biology. This article 

reviews some of the recent advances and applications in gas-phase instrumentation for structural 

proteomics.
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1. Ion Mobility and Mass Analyzers

Native MS is a very active area of research, where the ion mobility (IM) and mass spectra 

(MS) of proteins electrosprayed (ESI) from solutions that stabilize the native state are 

studied to characterize proteins and protein complexes.1 Several IM and MS technologies 
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have been developed and made commercially available for more informative native MS and 

IM-MS studies. The mobility of an ion, the quotient of the average drift velocity divided 

by electric field, is proportional to the rotationally averaged collision cross section (CCS) 

of the ion and the bath gas and the ion’s effective temperature.2 The first commercially 

available IM-MS systems used a traveling wave IM (TWIMS) separator, where a short pulse 

of ions slowly traverses a device filled with an inert buffer gas via the forward motion of 

a traveling square wave propagating throughout the device, coupled to quadrupole/time-of-

flight (qTOF) mass analyzers. Ions having mobilities that result in velocities slower than the 

velocity of the wave “roll over” the back of the wave, and lower mobilities correspond with 

more “roll over” events, causing them to travel more slowly through the device, enabling 

the separation to occur.3 TWIMS instruments allowed for measurements of the topologies 

of protein complexes.4 An advantage of these instruments includes the comparatively high 

mass range of TOF MS (20 to 100,000 m/z for the Waters Synapt G2-Si TWIMS TOF, 

although this can be limited by upfront optics to 32,000)5 to allow for analysis of protein 

complexes. More recently, other commercial IM/TOF instruments have been introduced, 

including IM drift tubes (DTIMS) with static electric fields propelling ions slowly through 

an inert drift gas. 6 In DTIMS, unlike TWIMS, a pulse of ions is dragged along by a weak 

uniform electric field, with the use of the weak uniform field allowing for direct calculation 

of an ion/buffer gas collision cross-section (CCS), a measurement of the rotationally 

averaged overall size of the ion.7 The oscillating field used by TWIMS does not allow for 

direct measurement of CCS, and so calibration procedures are used.8 Trapped ion mobility 

(TIMS) has also been recently introduced, where ions are trapped against a trapping field, 

balanced by forward motion induced by drift gas flow, and released by ramping down the 

trapping field.9 TIMS offers resolving power over 250 by utilizing slow ramp rates for 

the trapping field.10 TIMS CCS values are also typically obtained by calibration.11 Recent 

advances in cyclic TWIMS technology have allowed for very long (tens to hundreds of 

meter) separation pathlengths, greatly extending resolution for separations.12–13

Although IM devices are traditionally coupled to qTOF MS due to its fast acquisition speed, 

several examples of Fourier and Hadamard transform DTIMS,14–15 and TIMS,16 coupled to 

Fourier transform mass spectrometry (FTMS), have been demonstrated to take advantage of 

the improved m/z resolution offered by FTMS. Recent developments in FTMS technology 

have increased the m/z range to make these platforms more suitable for native MS, including 

modifying voltages and voltage profiles to the Orbitrap FTMS platform to increase the m/z 
range from 350 to 80,000 m/z,17–18 and increasing FT-ion cyclotron resonance (FT-ICR) 

magnetic field strengths to 21 Tesla,12–13 allowing intact proteins to be measured with 

resolving powers greater than 2 million. For example, an Orbitrap was used to characterize 

intact G protein-coupled receptors, revealing differences in sodium binding to the adenosine 

2a receptor upon the addition of agonist or antagonist.19 This work illustrated changes 

in sodium-bound states between the active and inactive forms of the receptor, with the 

inactivated from (i.e., incubated with antagonist) showing binding of up to seven sodium 

ions, while the active state (i.e., incubated with agonist) showing only one or two bound 

sodium ions. A competition assay confirmed that the changes in sodium binding were due to 

conformational changes upon ligand binding.
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Charge detection mass spectrometry (CDMS) has enabled measurements of massive, 

charged particles, such as the hepatitis B virus capsid,20 and heterogeneous native proteins, 

including the trimeric SARS-CoV-2 spike protein.21 This exciting new technique detects 

ions with a conductive cylinder, placed inside an electrostatic linear ion trap. This allows 

the ions to oscillate through the cylinder, where charge is detected by the image current 

induced on the cylinder, and m/z is detected by a FT of the ion signal to obtain frequency 

(and thus, m/z).20 The independent detection of charge and m/z allows for the mass of 

ions to be directly measured. Orbitrap MS has been also used for charge detection MS; by 

injecting a very small number of ions such that only one ion is present at each observed 

m/z. This allows the amplitude of the ion signal to be used to determine the charge state of 

single ions (since the amplitude of the ion signal is proportional to charge) and the orbiting 

frequency used to determine m/z.22 As commercial vendors increase their support of native 

MS experiments through IM/MS and MS development, the application space of native MS 

methods will likely continue to increase.

2. Native Tandem MS.

The most straightforward fragmentation method to apply to MS structural determination 

is collision induced dissociation (CID). In CID, fragmentation is achieved using energetic 

collisions with a target gas, such as helium, nitrogen, and argon, increasing, stepwise, 

the internal temperature of the ion.23 However, since CID (at energies commonly 

used in analytical MS) is a slow heating method, isomerization often occurs prior to 

fragmentation.24 Therefore, the use of CID to obtain, indirectly, information about the 

tertiary of proteins in the gas phase is precluded. Additionally, when CID is performed 

on protein complexes, monomers are first unfolded, then ejected, from the complex, 

which makes quaternary structural characterization from CID data difficult.25 However, 

collisional activation has shown broad utility for the unfolding of gas-phase complexes. 

Collision induced unfolding (CIU) employs energetic collisions prior to IM, using IM 

arrival time distributions (ATDs) to characterize the extent of unfolding and number of 

gas-phase unfolding transitions.26 Structural properties of proteins, including their solution 

conformations, influence gas-phase stabilities, with structural effects such as membrane 

protein stabilization by lipids,27, mutations,28 and differences in biotherapeutics before and 

after stress29 yielding unique CIU fingerprints (plots of ATDs versus collision energies). 

Comparison of CIU fingerprints with solution unfolding can also reveal some of the intrinsic 

factors in protein stability and unfolding and the role of solvent30. Recently, CIU was 

applied to differentiate mutational variants of the voltage sensor domain of the KCNQ1 

voltage-gated potassium channel.28 CIU fingerprints showed distinct differences for gain 

and loss of function mutations of the voltage sensor domain, illustrating the ability of 

CIU to discriminate between various functional forms due to their effects on the overall 

gas-phase stability of the protein ions. Newly commercially available tandem TIMS31 

and cyclic TWIMS32 devices are allowing many users to not only perform traditional 

pre-mobility CIU experiments, but also to select specific conformer families in CCS space, 

activate them (or not) and further resolve these activated and/or selected conformers, giving 

high structural specificity to gas-phase protein characterization. For example, Figure 1 

shows CIU fingerprints that detail the evolution of native-like and collisionally activated 
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cytochrome c 7+ ion structures.32 Each of the observed subpopulations was isolated by 

mobility and activated at various collision energies, allowing for the gas-phase unfolding of 

each subpopulation to be monitored.

Surface induced dissociation (SID), where ions are accelerated into a surface, a much 

more massive target than a gas molecule, extensively fragments protein complexes before 

structural rearrangement can occur.33 Fragmentation by SID at various energies results 

in the formation of subcomplexes revealing connectivity by assignment of their m/z 

to specific stoichiometries and identities of subunits.34 Therefore, SID allows for the 

quaternary structure, including subunit connectivity, to be determined, a strategy that can be 

combined with cryo electron microscopy (cryo-EM). The work of Seffernick et al. illustrates 

the combination of SID with cryo-EM and protein docking predictions.35 Measurements 

and predictions of appearance energies (the energies at which certain protein complex 

interfaces dissociate) for complex dissociation from SID were combined with low-resolution 

density maps obtained by cryo-EM and computational docking predictions. The addition 

of experimental constraints significantly improved the accuracy of structure prediction. As 

SID devices have recently been simplified,36 SID is amenable to the MS platforms listed 

above, and is now commercially available on the Waters Select Series Cyclic IM/qTOF 

platform. The increasing availability of SID, along with its utility in quaternary structure 

characterization will likely result in its widespread adoption.

While SID has been primarily employed for quaternary structure determination, 

electron capture dissociation (ECD), electron transfer dissociation (ETD), and ultraviolet 

photodissocation (UVPD) are fragmentation techniques that can provide primary sequence 

information for proteoform analysis and ligand binding without extensive isomerization 

inherent in slow-heating methods such as CID. The two electron dissociation techniques 

result in fragmentation of the N-Cα bond of the polypeptide after either capture of a low 

energy electron (ECD)37 or transfer of an electron from a radical anion in an ion/ion reaction 

(ETD).38 ECD/ETD do not disrupt noncovalent structure or fragment post-translational 

modification, making them particular useful for characterizing native proteins in the gas 

phase.39 Recently, ECD performed in an electromagnetostatic cell has been coupled to IM 

instrumentation, as the ability to perform ECD in transmission mode (versus trapping) is 

compatible with IM40 and any kind of mass analyzer. Thus, several new applications of 

ECD have emerged. First, ECD was implemented after a CIU experiment in a commercially-

available DTIMS.41 A similar experiment was performed with a commercially-available 

TWIMS system, where the gas-phase unfolding of holo-hemoglobin was monitored with 

ECD and ETD.40 This technique holds promise for evaluating which specific regions of 

the protein are involved in gas-phase protein folding, giving greater specificity to CIU 

measurements. ECD has also recently been applied to determining metal binding sites to the 

amyloid β peptide,42 aggregation of human islet amyloid polypeptide (hIAPP),43 to studying 

the unfolding of apolipoprotein E,44 and to characterizing proteolysis-targeting chimera 

(PROTAC) complex topology45. ECD of dimers of hIAPP localized the aggregation sites of 

hIAPP from serine 28/serine 29 to asparagine 35 by the identification of sequence fragments 

that were linked to an intact monomer.43 This result shows the promise of ECD in detecting 

protein-protein binding and aggregation regions for pathologically relevant proteins.
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UVPD is performed by irradiating ions with UV (typically 193 nm) photons.46 UVPD 

cleaves all bonds in the polypeptide backbone. By examining the fragments produced by 

direct bond dissociation (i.e., not peptide amide bond cleavages that can be the result 

of slower intramolecular vibrational energy relaxation processes), UVPD can be used to 

characterize native protein structures in the gas phase with high sequence coverage.47 

UVPD has also been used to localize gas-phase protonation sites in different protein 

protomers,48 for example, with alpha synuclein, responsible for Parkinson’s disease, 

where UVPD fragmentation confirmed that different solution conditions led to different 

protomers for the protein, depending on the solution conformation and the preferences for 

different side chains to be protonated.49 Like ECD, UVPD has also been recently used to 

observe changes in structure upon CIU. CIU-UVPD of the alcohol dehydrogenase tetramer 

suggested that with increasing CIU energies, the N-terminus unfolds, with charges moving 

to the unfolded region, followed by the migration of charge away from the N-terminus 

through salt bridge formation, indicating refolding has occurred, monitored by the isotopic 

distributions of a and x-type ions produced by direct dissociation of C-C bonds in the 

polypeptide backbone (Figure 2).46 Recently, several other applications of UVPD to intact 

protein analysis have been demonstrated, including epitope mapping,50 characterization of 

ribonucleoprotein complexes and virus-like particles51, and characterization of membrane 

protein complexes52. For membrane protein complexes, proteins were solubilized in 

200 mM ammonium acetate with 0.5% tetraethylene glycol monooctyl ether detergent. 

Membrane protein complexes were released from the detergent micelles with in-source 

collisional activation, and UVPD was performed on the intact free complexes. UVPD 

resulted in sequence fragments across the complexes, giving sequence coverages of 45% 

and 53% for the membrane proteins aquaporin Z and the mechanosensitive channel of large 

conductance, respectively. These experiments illustrated the ability of UVPD coupled to 

native MS to sequence a native, intact, membrane protein complex.

3. Ion Chemistry.

Ion/ion reactions, reactions between two oppositely charged ions giving a net charged 

product,53 and ion molecule reactions, between an ion and a neutral, have allowed solution-

phase probes of structure to be used in the gas-phase. These reactions are orders of 

magnitude faster than their solution counterparts and can be applied to mass-to-charge 

or conformer-selected species, a distinct advantage over solution where measurements 

can only be made in bulk averages. Hydrogen deuterium exchange (HDX) in the gas 

phase is an important example of an ion molecule reaction that has its origins in the 

solution phase. By comparing several conditions, the dynamicity of various regions of 

the proteins can be determined by localizing which side chains have undergone exchange 

with deuterons by tandem MS techniques such as ECD.54 Ion/ion chemistry allows for 

nonvolatile compounds to be used as reagents via their introduction as ions by electrospray, 

including reagents that can perform electrostatic or covalent labeling.53 Recently, these 

reactions have been used to gain distance constraints on the small model protein ubiquitin55 

(Figure 3) between accessible lysine or other basic residues as well as determine the relative 

surface accessibilities56 of various nucleophilic sidechains, used as constraints for atomistic 

molecular models of the gas-phase protein structures. Cheung See Kit and coworkers used 
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the ion/ion reagent sulfobenzoyl−−1-hydroxy-azobenzotriazole (HOAt), (SBH), which is 

spaced 6.4 Å from the sulfonate oxygen to the carbonyl carbon (Figure 3 A). In the ion/ion 

reaction between SBH and ubiquitin 6+, electrostatic binding to a protonated side chain 

on one end of SBH facilitates the covalent reaction with a nitrogen lone pair on the other 

end. Through ECD, it was determined that, for ubiquitin 6+ electrosprayed from native-

like conditions (10 μM ubiquitin dissolved in 10 mM ammonium acetate), SBH linked 

protonated proline 19 to neutral lysine 29, and protonated lysine 63 to neutral arginine 54, 

and for ubiquitin 6+ electrosprayed from denaturing conditions (10 μM ubiquitin dissolved 

in 50/50/0.1 vol/vol/vol water/methanol/formic acid), SBH linked protonated lysine 11 to 

neutral lysine 48 and protonated lysine 63 to neutral arginine 54. Using ethylene glycol 

bis(sulfosuccinimidyl succinate), (BS3), (Figure 3 B) under conditions that do not promote 

covalent bond formation (i.e., minimal collision energy), the 26.9 Å sulfonate oxygen to 

sulfonate oxygen electrostatic cross-linker linked various charged residues for the native-like 

and denatured ubiquitin ions by forming a strong electrostatic bond on each side of the 

linker with a protonated residue. Using ECD, it was determined that sulfo-EGS linked 

protonated proline 19 to protonated arginine 42 for native-like ubiquitin 6+, and protonated 

lysine 33 to arginine 72 for denatured ubiquitin 6+. These cross-links agreed with clustered 

gas-phase trajectories of ubiquitin from molecular dynamics for 6+ ubiquitin from aqueous 

and denaturing conditions.55 The protonated sites used in assigning the electrostatic linking 

sites were determined by ECD of unreacted ubiquitin. Since the covalent and electrostatic 

reaction conditions do not measurably perturb the structures,57 the ion/ion reaction methods 

are promising for gaining higher structural resolution than is offered by other native mass 

spectrometry techniques.

4. Conclusion and Perspective.

Over the past few years, important technological developments in instrumentation, including 

IM, mass analyzers, fragmentation methods, and gas-phase chemistries, have expanded the 

utility and applications of gas-phase protein structural methods. Gas-phase methods will 

continue to be applied to proteins which resist crystallization, are structurally heterogenous, 

and where small sample consumption is desirable. Future applications will likely continue to 

target extremely large proteins (>MDa ) and dynamic proteins or proteins with intrinsically 

disordered regions, pushing the limits of current technology native MS.
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Highlights

• New instrument developments provide greater structural detail

• Higher resolution and more versatile ion mobility and mass analyzers allow 

analysis of large, heterogeneous systems

• Native mass spectrometric fragmentation provides structural information

• Gas-phase ion chemistry for increased structural resolution
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Figure 1. 
Arrival time distribution for (A) native (+0 V), (E) intermediate (+10 V), and (I) extended 

(an additional +35 V making +45 V total activation) CytC (+7) with subpopulation 

slices taken for CA denoted by dashed gray lines, filled with green (native), yellow 

(intermediate), and red (extended). Also shown are CA fingerprints for subpopulations 

of interest corresponding to native (B, F, J), intermediate (C, G, K), and extended (D, 

H, L) states, with interpopulation conformations joined by dotted gray lines. Identified 

conformations of interest are labeled as α, β, γ, δ, ε, ζ, η, θ, and ι. The * denotes 

the low intensity species mobility selected in plot (D). Reproduced with permission from 

ref32 https://pubs.acs.org/doi/10.1021/jasms.1c00018. Copyright 2021 American Chemical 

Society. Further permissions related to the material excerpted should be directed to the ACS. 

The identified conformations of interest have the same drift time regardless of the applied 

voltage.
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Figure 2. 
(a) a-ion percentage map for ADH 4mer. Horizontal axis shows the residue number from 

1 to 120. Vertical axis shows increasing in-source collision voltage. Color scales are at 

the right side of the map. (b) Crystal structure of the ADH 4mer. Residues 1–13 of 

one 1mer subunit are in pink, 14–43 are in yellow, and 44–90 are in green. N/C-termini 

of the 1mer are noted with “N” and “C”. (c) Proposed ADH unfolding and refolding 

mechanism based on the native TD data. Reproduced with permission from ref46 https://

pubs.acs.org/doi/abs/10.1021/acs.analchem.9b03469. Copyright 2019 American Chemical 

Society. Further permissions related to the material excerpted should be directed to the ACS.
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Figure 3. 
(A) The electrostatic to covalent cross-linker SBH and the (B) electrostatic to electrostatic 

cross-linker sulfo-EGS. (C, D) Modified residues represented using MD predicted structures 

of ubiquitin with protonated and covalent sites labeled in purple and blue respectively. (C) 

Aqueous 6+ is cross-linked by sulfo-EGS at Pro19 – Arg42 (solid line) and by sulfo-benzoyl 

HOAt at Lys29 – Pro19 and Arg54 – Lys63 (dashed lines). (D) Under denaturing condition, 

the pair linked by sulfo-EGS is Lys33 – Arg72 (solid line) and the pairs cross-linked by 

sulfo-benzoyl HOAt are Lys48 – Lys11 and Arg54 – Lys63 (dashed lines). (C) and (D) 

Reproduced with permission from ref55. f5552 Copyright 2021 Elsevier. Further permissions 

related to the material excerpted should be directed to Elsevier.
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