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Abstract

In the last two decades, numerous studies have conducted patient-specific computations

of blood flow dynamics in cerebral aneurysms and reported correlations between various
hemodynamic metrics and aneurysmal disease progression or treatment outcomes. Nevertheless,
intra-aneurysmal flow analysis has not been adopted in current clinical practice, and hemodynamic
factors usually are not considered in clinical decision making. This review presents the state of

the art in cerebral aneurysm imaging and image-based modeling, discussing the advantages and
limitations of each approach and focusing on the translational value of hemodynamic analysis.
Combining imaging and modeling data obtained from different flow modalities can improve the
accuracy and fidelity of resulting velocity fields and flow-derived factors that are thought to

affect aneurysmal disease progression. It is expected that predictive models utilizing hemodynamic
factors in combination with patient medical history and morphological data will outperform
current risk scores and treatment guidelines. Possible future directions include novel approaches
enabling data assimilation and multimodality analysis of cerebral aneurysm hemodynamics.
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1. CEREBRAL ANEURYSM PATHOPHYSIOLOGY, DIAGNOSTICS, AND
TREATMENT

Cerebral aneurysms are local dilations of cerebral arteries that are estimated to affect from
2% to 5% of the adult population worldwide (1, 2). Most aneurysms occur within the circle
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1.1.

of Willis (CoW) or the vessels immediately distal or proximal to it. Depending on their
shape, aneurysms can be described as either saccular or fusiform. A saccular aneurysm is
a bulge on one side of an artery, while a fusiform aneurysm incorporates the circumference
of the vessel. Saccular and fusiform aneurysms have distinctive pathogeneses; thus, their
clinical management is also different (3). Saccular aneurysms, also called berry aneurysms,
are more common than their fusiform counterparts (4) and occur predominantly in the
anterior circulation of the CoW (5). Common locations include the distal internal carotid
artery (ICA), anterior communicating artery, and bifurcations of the middle cerebral artery.
Posterior circulation aneurysms are commonly located at the basilar artery bifurcation or
on the basilar artery branches, namely the posterior inferior, anterior inferior, and superior
cerebellar arteries (5).

A number of hereditary and environmental factors are associated with a risk of cerebral
aneurysm formation, including hypertension and smoking history as well as genetic
predisposition, vessel wall degradation, inflammation, and hemodynamic conditions (6).
However, the exact mechanisms underlying aneurysm progression are still not completely
understood (7, 8). Cerebral aneurysms are three times more likely to occur in women

than in men (5, 8). Approximately 20-30% of patients have multiple aneurysms (9).
Aneurysm rupture leads to subarachnoid hemorrhage (SAH), with high rates of mortality
and a morbidity rate of 50% for survivors (10, 11). A growing aneurysm may cause a mass
effect due to impingement on brain tissue or cranial nerves; thrombotic aneurysms may also
cause distal thromboemboli. Cerebral aneurysms are often asymptomatic (12); moreover, the
majority of aneurysms remain stable, with longitudinal studies of large cohorts showing that
only 10-15% of aneurysms grow over a timeline of years (13, 14).

Diagnostics and Clinical Management

Aneurysms are often discovered incidentally, except when they are impinging on cranial
nerves, causing a mass effect or hemorrhage. Management of unruptured intracranial
aneurysms (UIAs) is challenging because the risk of rupture must be weighed against

the risk of intervention (8, 15, 16). Most patients are offered treatment due to the grave
consequences of a rupture (4). A number of risk factors are considered in making a clinical
decision, including the aneurysm’s size, location, and morphology and the patient’s medical
history. Aneurysm size is considered one of the most important risk factors; aneurysms
larger than 7 mm are likely to be treated, while giant aneurysms greater than 25 mm

have a particularly poor prognosis if left untreated (17-19). Aneurysms smaller than 3

mm typically do not cause symptoms and are managed conservatively (20). Aneurysms

in the so-called gray zone, between 3 and 7 mm, may still rupture, and treatment should

be individualized. The International Study of Unruptured Intracranial Aneurysms (ISUIA)
showed that the annual rupture risk for aneurysms less than 10 mm in diameter is 0.05% for
patients without a history of SAH and 0.5% for those with a previous SAH (21). Irregular
aneurysm shape (e.g., with multiple lobes or with blebs/daughter aneurysms) can indicate
an unstable lesion (22). Aneurysm growth is a critical factor in predicting rupture (13); a
growing UIA is associated with a >30-fold-higher risk of rupture than a stable one (23).
Risk stratification guidelines for UIAs that have been developed in large clinical studies
include those by ISUIA and UCAS (Unruptured Cerebral Aneurysm Study) as well as the
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PHASES (population, hypertension, age, size, earlier subarachnoid hemorrhage, site) score;
the UIATS (unruptured intracranial aneurysm treatment score); and the ELAPSS (earlier
subarachnoid hemorrhage, location of aneurysm, age, population, size, and shape) score

(7, 21, 24-26), resulting in risk calculators in which all clinical or morphological factors
are added to create a certain score. The accuracy of these scores in predicting unstable
aneurysms has been suboptimal (13), potentially due to the lack of quantitative factors
related to intra-aneurysmal blood flow dynamics and wall biomechanics.

The decision regarding which treatment and follow-up option are best for a patient can

be challenging. Surgical clipping is the original treatment method for cerebral aneurysms;
however, the number of aneurysms treated using endovascular options such as coiling or
stenting is increasing (15, 16, 27). At the same time, endovascular treatment does not
always result in complete aneurysm occlusion and may fail for wide-necked or thrombosed
aneurysms (28). Commonly, microsurgery results in ligation of the aneurysm neck and

is sometimes combined with a bypass for supplying distal vasculature or, in rare cases,
aneurysm resection and microsurgical vessel reconstruction (4). Microsurgical treatment
of aneurysms of the basilar artery is particularly challenging because it is critical to
preserve perforators supplying the brain stem and cerebellum as well as cranial nerves (28).
Advantages of endovascular treatment include minimal invasion, reduced interventional
and anesthesia time, and possible treatment of multiple aneurysm sites during the same
procedure (29). Endovascular aneurysm repair is commonly performed using detachable
platinum coils. The coils are deployed into the aneurysm from a catheter in order to
obstruct the flow and induce aneurysm embolization. Multiple coils of various lengths

and stiffnesses are subsequently deployed to completely pack the aneurysmal sac and
obliterate the flow. The International Subarachnoid Aneurysm Trial, involving 2,143
patients with ruptured intracranial aneurysms repaired by coiling or microsurgical clipping,
demonstrated significantly better outcomes for endovascular coiling (30). Nevertheless,
aneurysm recurrence or recanalization was reported for a significant percentage of coiled
aneurysms, ranging from single digits to more than 30% (31), particularly for complex and
large lesions. Stent-assisted coiling can be used for complex and wide-neck aneurysms to
ensure that the coils remain in the lesion while preserving the patency of the parent artery
(32-34).

Complex cerebral aneurysms not amenable to coiling or clipping, such as fusiform, wide-
neck, or dissecting aneurysms as well as aneurysms involving vital side branches, are
increasingly repaired by deploying flow diverter devices (FDs) (35-38). These devices are
also known as flow diverter stents, pipeline embolization devices, silk flow diverters, and
surpass flow diverters. In these procedures, aneurysm thrombosis is induced by reducing
the flow into the lesion while preserving the flow to side branches and distal vasculature.
The tightly woven mesh of the FD provides resistance to the flow across the surface of

the device, thus guiding the flow along the parent artery and away from the aneurysmal
sac. Importantly, the FD acts as a scaffold for the endothelium that will form a new blood
channel following the endovascular repair. A meta-analysis by Ye et al. (39) of multiple
clinical studies involving 2,508 patients with 2,826 aneurysm cases demonstrated that FDs
are safe and effective for cerebral aneurysm treatment, with an occlusion rate of 78.8% for
an average of 6.3 months of follow-up and neurological morbidity and mortality rates of
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9.8 and 3.8%, respectively, following the procedure. Given the range of available options
for cerebral aneurysm repair, treatment decisions are often based on a neurosurgeon’s
preference and intuition, without considering quantitative data regarding preoperative or
postoperative hemodynamic conditions.

Imaging Cerebral Aneurysms

In this section, we describe the imaging modalities used in diagnostics, evaluation, and
treatment of cerebral aneurysms and discuss the relative advantages and shortcomings of
each. We focus on imaging methods capable of providing functional data, such as flow
dynamics, in addition to the anatomical structure of the aneurysms and the surrounding
cerebral vasculature.

The imaging modality most commonly used in clinical practice for both diagnosis and
treatment of cerebral aneurysms is digital subtraction angiography (DSA; also called X-ray
angiography), which is based on X-ray imaging of the flow of an iodine-based contrast
agent injected into the vessel of interest from a catheter (40, 41). The images obtained prior
to contrast arrival are digitally subtracted from those with contrast-enhanced vessels, thus
removing all other background tissues from the image. The standard technique acquires a
planar, projection view of the imaged vasculature. A sequence of acquired X-ray images
shows the propagation of the injected contrast, enabling not only visualization of the
anatomy but also assessment of the regions with obstructed or stagnant flow. These dynamic
data also have high spatial resolution, allowing for the imaging of submillimeter blood
vessels. The acquisition traces the contrast flow through the arteries, capillary beds, and

the venous side of the circulation. These images identify distal vascular territory supplied
by the injected vessel, thus indicating feeding and draining blood vessels for a lesion and
allowing for surgical planning. By varying the position of the imaging C-arm, the operator
can obtain projection images from different perspectives. Rotating the C-arm during the
acquisition allows for the combination of multiple projections to form volume-rendered
three-dimensional (3D) images of blood vessels, termed 3D rotational angiography (3DRA).
Most importantly, DSA is the modality used for image-guided interventions, as it allows
the operator to visualize the placement of endovascular devices such as stents and coils

and assess their efficiency in altering blood flow dynamics during the procedure. While
invaluable for endovascular procedures, DSA has limitations as a diagnostic modality,

as it requires patient catheterization and radiation exposure. Even though DSA provides
time-resolved data with excellent spatial resolution, obtaining quantitative measurements
of the underlying flow fields is quite challenging, as the standard two-dimensional (2D)
projections of the vasculature result in intersection of blood vessels located in different
planes as well as foreshortening of vessels crossing the field of view at oblique angles (42).
Injection of the contrast agent mixture may alter the flow in distal vessels and even cause a
retrograde flow through the collateral arteries. Also, a steady injection is superimposed on
the pulsatile blood flow, further altering the native hemodynamic conditions. Strother et al.
(43) proposed the use of color-coded DSA to visualize flow patterns and quantify contrast
arrival times. While the time interval between contrast arrival and departure calculated from
the images may not objectively measure flow residence time, color-coded DSA may detect
intra-aneurysmal regions prone to thrombus deposition.
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Computed tomography angiography (CTA) is also a clinical standard of care, providing
tomographic images of the cerebral vessels. A large field of view covering the entire cerebral
circulation, starting from the aortic arch, can be obtained in seconds, which is an important
advantage in detecting a bleeding aneurysm relative to other modalities. The images of the
vascular anatomy can be enhanced by contrast injection. Previous studies suggested that the
sensitivity and specificity of CTA in cerebral aneurysm diagnostics are comparable to those
of DSA (44, 45); however, a recent report by Philipp et al. (46) showed that CTA has lower
sensitivity for detecting aneurysms less than 5 mm in size. Although it delivers 3D images
with submillimeter spatial resolution, CTA is not resolved in time, thus providing no data on
flow conditions. This modality also requires radiation exposure, making it less than ideal for
longitudinal studies monitoring aneurysm progression over time.

Magnetic resonance angiography (MRA) allows for noninvasive 3D imaging of vascular
anatomy without ionizing radiation. Time-of-flight (TOF) MRA is a technique based on
saturating a region of interest with repeated radio-frequency pulses, thus obtaining a signal
from unsaturated blood flowing into this region from the proximal arteries (47, 48). TOF
does not require a contrast agent; thus, it is entirely noninvasive. It provides submillimeter
resolution sufficient to image the CoW and its distal arteries. The drawback of TOF MRA
is that it can be affected by signal loss due to saturation in regions of slow flow. This

may cause artifacts in imaging of large aneurysms with regions of flow recirculation, which
appear as low-intensity regions. This issue can be resolved by an intravenous injection of
gadolinium to increase the T1 contrast within the arteries relative to surrounding tissues
(49, 50). Gadolinium-enhanced or contrast-enhanced MRA (CE-MRA) is well suited for
monitoring aneurysms with longitudinal studies in order to detect growth (Figure 1c). In
such studies, aneurysmal geometries imaged at the baseline are coregistered with those
imaged at the follow-up study, thus enabling visualization of aneurysm progression as well
as calculation of volumetric change that occurred between the studies (51).

In addition to imaging the lumen, magnetic resonance imaging (MRI) is capable of
visualizing and characterizing the arterial wall with associated pathologies. Vessel wall
imaging protocol includes a black-blood MR sequence, suppressing the signal from adjacent
tissue and blood to enhance the wall. This MRI technique is invaluable for imaging various
wall components, visualizing intra-aneurysmal thrombus, and detecting wall inflammation,
thus providing insight into aneurysm stability (52, 53). Imaging the arterial walls of
intracranial vessels is challenging due to their tortuosity and low wall thickness, thus
requiring spatial resolution delivered by high-field-strength MR scanners. Recent imaging
studies revealed that unstable cerebral aneurysms are frequently characterized by vessel
wall enhancement (54). Zhu et al. (55) conducted high-resolution MRI in 88 asymptomatic
aneurysms and showed that the degree of arterial enhancement is associated with traditional
aneurysm rupture risk factors calculated by UCAS and PHASES scores.

Blood flow velocities are commonly measured with Doppler ultrasound; however, the skull
prevents the use of this modality for quantifying flow in most intracranial blood vessels. The
only imaging modality that can provide time-resolved measurements of intracranial flow
velocities is phase-contrast MRI (PC-MRI) (56, 57). The phase of the magnetization vector
is proportional to flow velocity, allowing velocity encoding with appropriate gradients of the
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magnetic field (58). 2D PC-MRI acquisition is based on encoding velocities in one direction,
thus obtaining either through-plane or in-plane measurements. Three-directional velocity
encoding synchronized with an electrocardiogram signal, named four-dimensional (4D) flow
MRI, provides time-resolved, 3D velocity fields (59-61). Recent studies demonstrated the
capabilities of 4D flow MRI for capturing complex flow patterns in the major vessels of

the CoW (62-64). The accuracy of 4D flow MRI is affected by limited spatiotemporal
resolution and velocity dynamic range, as well as by image artifacts and noise. 4D flow

MRI in cerebral aneurysms is particularly challenging, since their relatively small size and
complex flow patterns may result in underresolved or erroneous velocity measurements.
These errors are further amplified in calculations of velocity-derived hemodynamic forces
(62, 65-67). Enhancing 4D flow imaging of cerebral circulation and reducing imaging time
are currently an active area of research (68).

In order to obtain comprehensive information about a cerebral aneurysm, it is often
necessary to use different imaging modalities (Figure 1) to combine angiographic images
showing vascular anatomy with dynamic data that characterize the flow of a contrast agent
or, ideally, measure intra-aneurysmal velocities. In addition, vessel wall imaging is crucial
for detecting intra-aneurysmal thrombus, atherosclerotic deposits, and local inflammation of
the arterial wall.

IMAGE-BASED MODELS OF CEREBRAL ANEURYSM HEMODYNAMICS

Local hemodynamics is key in the initiation, progression, and rupture of cerebral aneurysms
(69-74); however, multiple studies investigating the exact relationship between the flow
factors and aneurysmal disease have provided controversial results (75-77). In the last two
decades, numerous research groups have developed modeling pipelines generating patient-
specific models of the flow in cerebral aneurysms based on medical imaging data. Steinman
& Pereira (78) recently investigated the sources of error and variability of state-of-the-art
computational fluid dynamics (CFD) models of the flow in cerebral aneurysms. Several
CFD challenge studies were conducted in which the same aneurysms were modeled by
multiple research teams (79-83). The results were highly variable, showing that computed
flow fields and hemodynamic forces depend on the modeling methods and assumptions used
by the modelers. In this section, we describe the key steps in conducting image-based flow
simulations for cerebral aneurysms, discuss modeling assumptions and sources of error, and
demonstrate clinical applications of CFD models.

Patient-Specific Modeling Pipeline

In order to simulate flow and determine hemodynamic metrics related to aneurysm
progression, patient-specific models are generated from medical imaging data. While a
variety of modeling methods and tools can be used for this purpose, the modeling pipeline
typically starts from segmentation of medical image data and construction of 3D vascular
geometries. The flow is then either simulated by solving the governing Navier—Stokes
equations or measured in experiments conducted in patient-specific flow phantoms. For both
approaches, it is essential to ensure that the flow conditions at the inlets and outlets of
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the model represent the flow in an actual patient. Once the velocity distribution is either
computed or measured, various flow-derived metrics can be calculated and analyzed.

2.1.1. Image segmentation.—The first step in generating an aneurysm model is to
segment image data in order to obtain a 3D geometry of the aneurysm with its proximal

and distal vessels. The segmentation process depends on the imaging modality, with

3DRA typically considered the gold standard due to its high spatial resolution (78, 84).
Importantly, because 3DRA is a standard of care, 3DRA data are available for large cohorts
of patients, thus allowing CFD studies to be conducted for a statistically significant number
of aneurysms (69, 85). Alternatively, aneurysmal geometries can be obtained from CTA or
MRA data. Geers et al. (86) reported significant differences in aneurysm necks reconstructed
from CTA versus those obtained from 3DRA, which were explained by the difference

in imaging resolution. Ramachandran et al. (87) assessed the sensitivity of resulting
geometries to imaging modality by using imaging data with comparable spatial resolutions.
A comparison of morphological metrics for models generated from in vitro and in vivo
imaging with 3DRA, CTA, TOF-MRA, and CE-MRA found consistency across the resulting
geometries. As described above, while 3DRA and CTA provide only vascular anatomy, MRI
studies can incorporate PC-MRI velocity measurements, thus providing patient-specific flow
conditions (88, 89). Image resolution and quality, as well as segmentation approaches, are
considered to be major sources of variability for patient-specific modeling (78, 82). The
finite size of image voxels results in a partial volume effect, that is, an approximation of a
continuous smooth vessel wall by rectangular voxels. Image artifacts and noise often require
manual adjustment of the segmented surfaces, thus making modeling results dependent on
operator experience and intuition. Once the 3D vascular geometries are obtained, the region
to be modeled, typically involving the aneurysm with the vessels immediately proximal and
distal to it, has to be selected.

The CFD challenges demonstrated variability in segmenting the same image data sets among
participating research groups (79, 82). Several studies investigated the effect of the proximal
vessel geometry on the flow in cerebral aneurysms, demonstrating that maintaining long
segments of the arteries feeding the aneurysm is crucial for matching patient-specific flow
conditions (90-92). Finally, some degree of smoothing is usually applied to ensure that there
are no discontinuities or sharp edges in the resulting surface of the model, which could affect
the quality of the computational mesh. It is important to ensure that surface smoothing does
not alter the size of modeled vessels, which would affect the computed velocity fields.

2.1.2. Numerical solution of the Navier—Stokes equations.—The flow in major
cerebral arteries is highly three dimensional and is characterized by intermediate Reynolds
and Womersley numbers, thus requiring a numerical solution of the unsteady Navier—
Stokes equations. Various solvers, using a finite-volume, finite-difference, or finite-element
approach, are used to obtain a numerical solution for velocity and pressure fields. Botti et
al. (93) compared the accuracy of finite-volume and finite-element CFD solvers in modeling
intracranial aneurysm flow and concluded that both solvers converge to the same numerical
solution provided sufficient refinement of the computational mesh. The CFD challenges
showed the variety of numerical solvers used by different research groups, with some
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teams combining commercial modeling packages with in-house scripts and other groups
relying on software they developed specifically for modeling hemodynamics. There are

a couple of open-source platforms providing tools for the entire modeling pipeline, from
image processing to flow visualization and analysis (94, 95). These platforms, based on

a finite-element flow solver, provide unique capabilities for specifying inlet and outlet
boundary conditions, as described below. A computational mesh is generated on the domain
in order to discretize the governing flow equations. An unstructured mesh is commonly used
due to the complexity of the vascular geometries. It is crucial to ensure mesh independence
of the numerical solution, that is, to establish that the spatial resolution of the computational
mesh is adequate for resolving flow features in the region of interest. An important paper
by Valen-Sendstad & Steinman (96) considered the effect of increased spatial and temporal
resolution of CFD simulations on various hemodynamic parameters. Both high- and normal-
resolution simulations were carried out for the same group of aneurysms by using quadratic
versus linear mesh elements in the numerical discretization and increasing the number of
time steps per cardiac cycle by an order of magnitude. The results showed that numerical
discretization used in state-of-the-art simulations may underresolve flow fields in cerebral
aneurysms, thus not detecting unstable or turbulent flow and dynamic changes of wall

shear stress (WSS) over the cardiac cycle. Nevertheless, time-averaged WSS distributions
were similar for both normal- and high-resolution computations. The time steps used in a
numerical simulation should be sufficiently small to resolve temporal changes of the flow.
Recent high-resolution CFD studies revealed flow instabilities and intermittent structures in
cerebral aneurysms that were not detected in simulations with default solving settings and
underresolved meshes (97-99).

2.1.3. Modeling assumptions and flow boundary conditions.—CFD modeling of
flow in cerebral aneurysms requires assumptions regarding the flow regime, blood rheology,
arterial wall compliance, and, most importantly, flow boundary conditions at the inlets and
outlets of the model. We address each of these assumptions, as they contribute to variability
of patient-specific CFD modeling.

Flow in cerebral arteries is commonly assumed to be laminar, as the Reynolds numbers are
in the range of several hundred; however, pulsatile flow in stenotic or aneurysmal vessels
may have unsteady shear layers, which lead to transitional flow, as described in the previous
section (97-99). Appropriate flow regime remains an open question, particularly since state-
of-the-art in vivo flow measurements in cerebral aneurysms lack the temporal resolution
required to detect transitional flow. Several studies have addressed non-Newtonian blood
behavior and its effect on intra-aneurysmal flow (100, 101). The shear thinning and yield
stress properties of blood caused by the interaction among red blood cells (RBCs) can be
accounted for by various non-Newtonian viscosity models. Several reports suggested that
non-Newtonian viscosity can influence WSS and intra-aneurysmal thrombus deposition in
cerebral aneurysms; however, the non-Newtonian blood behavior is currently thought to
have a secondary effect on the flow (78). The non-Newtonian blood behavior is significant
in flow with shear rates below 100 per second, which is usually below the range observed in
cerebral aneurysms. Moreover, while RBC aggregation may take several cardiac cycles, such
aggregations break apart in higher-shear-rate regions practically instantaneously.
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Accounting for arterial wall compliance requires conducting fluid-structure interaction
simulations in which the flow dynamics equations are coupled with solid mechanics
equations. In addition to increased computational cost and complexity, this approach is
challenging due to the lack of information on vessel wall geometry and material properties
available from imaging data. A nonuniform wall thickness and the variability of the
structural components that constitute the aneurysmal wall may cause drastic differences in
stress distribution. While advanced MRI techniques such as black blood (52) may eventually
be able to provide such data, incorrect assumptions may lead to numerical results that would
be inferior to those obtained assuming a rigid wall (84). In addition, aneurysmal disease is
characterized by loss of elastic lamina and overextension of the collagen fibers, resulting in
reduced wall compliance (102).

The remaining assumption, inflow and outflow conditions, is perhaps the most disputed

part of image-based CFD modeling. A computational model represents only a small part

of the circulation and therefore requires information on the flow in the vessels proximal

and distal to the modeled region. The only modality capable of in vivo flow measurements

is 4D flow MRI; however, at present it is used for imaging cerebral aneurysms at only a

few research centers. Moreover, as discussed above, the limited spatiotemporal resolution
and image noise may affect the accuracy of 4D flow data, often resulting in a discrepancy
between the inlet and outlet flow rates, thus contradicting the principle of mass conservation.
Regardless of these shortcomings, obtaining at least 2D PC-MRI measurements can improve
the fidelity of CFD simulations (78, 84). In the absence of patient-specific flow data,

the velocity and pressure values at the inlets and outlets must be either prescribed from
published data or calculated from reduced-order models. The inlet flow waveforms obtained
from the literature can be scaled for a patient-specific vessel size on the basis of the optimal
WSS values observed in healthy arteries.

There is a general consensus that assigning zero pressure at all outlets should be avoided,
as it is not based on physiology (84). Outflow boundary conditions can be prescribed

using Murray’s law. This law, based on kinetic energy minimization, assumes that the flow
division is proportional to the cube of the vessel radius. While this assumption is based
solely on the geometry of the branches immediately distal to the model, it may be fairly
accurate, as blood vessels remodel according to their flow rate in order to maintain an
optimal WSS (103). The state-of-the-art approach is based on coupling the 3D CFD domain
with reduced-order models of the surrounding vasculature (104, 105). In the open-source
modeling platforms developed for patient-specific hemodynamic simulations, distal and
proximal vascular territories are modeled using lumped parameter networks coupled with a
finite-element solver (94, 95, 104). Alternatively, one-dimensional Navier—Stokes solutions
based on flow variables averaged over vessel cross sections can be coupled to full 3D
equations (106, 107). An important advantage of the reduced-order models is their ability
to simulate flow alterations caused by vascular interventions. Surgical clipping of a vessel
or adding a bypass can be modeled by adjusting the resistance and capacitance of the
corresponding segments of the equivalent network model.

2.1.4. Computing clinically relevant metrics.—The numerical solution of the
Navier—Stokes equations provides velocity and pressure distributions that can be used to
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calculate flow-derived variables thought to be related to arterial wall remodeling. Multiple
flow metrics based on intra-aneurysmal flow characteristics (e.g., velocity, vorticity, flow
rates, and residence time), WSS (e.g., time-averaged WSS, oscillatory shear index, WSS
spatial gradient, and area of low or high WSS), pressure difference (temporal and spatial),
and energy (e.g., kinetic energy and viscous dissipation) are used to find correlations
between hemodynamic forces and aneurysm progression. A couple of papers provide
comprehensive lists of hemodynamic variables correlated to aneurysm rupture (108, 109).
While intra-aneurysmal flow fields can markedly vary over cardiac cycle, there is evidence
that time-averaged flow metrics are equally effective in aneurysm risk stratification (109).
CFD challenge studies (79, 83) showed that normalizing flow metrics computed in the
aneurysm to some reference values, such as those computed at the parent vessel, improved
the agreement and consistency of CFD results obtained by different modeling teams. This
finding suggests that patient-specific CFD results should be considered not as absolute
and fixed values but rather as relative distributions that could be affected by changes

in physiological activity or stress level. CFD data allow for colorful visualization of the
flow fields and corresponding distributions of the flow-derived parameters (Figure 2),
with some critics referring to CFD as “colors for doctors.” It is challenging, however,

to distill this abundant information into a few specific indices that clinicians can use for
therapeutic decision making. Establishing relevant hemodynamic factors and determining
their uncertainty are the focus of current research in cerebral aneurysm modeling.

2.2. Experimental Flow Models

While the vast majority of patient-specific models of cerebral aneurysms use the
computational approach, in vitro flow measurements provide valuable insights into intra-
aneurysmal hemodynamics and can serve as benchmark data for CFD validation. Vascular
geometries obtained from imaging data, as described in Section 2.1.1, are used to fabricate
flow phantoms with 3D printing (110, 111). The phantoms are then connected to a flow
loop with a blood-mimicking fluid, typically a mixture of glycerol and water. Two primary
methods used for experimental flow measurements in cerebral aneurysm models are particle
image velocimetry (PIV) and in vitro 4D flow MRI. In order to conduct PIV measurements,
the flow is seeded with fluorescent particles, a 2D plane or a volume is illuminated by a
flashing laser, and particle motion is recorded with high-speed cameras. This approach can
provide spatiotemporal resolution comparable to that of CFD models. Most PIV studies in
cerebral aneurysms have measured the flow in a cross-sectional plane due to challenges in
obtaining volumetric data in complex and tortuous geometries. The Lieber group (112, 113)
carried out pioneering studies on flow diverters placed in aneurysm models and found a
strong correlation between PIV measurements and X-ray angiography data. A comparison
of CFD simulations and PIV measurements conducted by Ford et al. (114) in replicas

of two cerebral aneurysms with matching boundary conditions demonstrated good overall
agreement of the velocity fields. Raschi et al. (115) compared PIV and CFD results in
models of a growing aneurysm constructed from imaging data acquired at three time points
during the aneurysm evolution. The measured and computed velocities were found to be in
good qualitative and quantitative agreement, except for some discrepancies in the near-wall
regions.
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High-resolution data obtained in CFD and PIV models can be used to assess the accuracy

of 4D flow MRI. van Ooij et al. (66) compared CFD and 2D PIV results with in vitro 4D
flow MRI measurements in a cerebral aneurysm phantom, showing reasonable qualitative
and quantitative agreement of both modeling modalities with MRI data under steady and
pulsatile flow conditions. The root-mean-square errors of the velocity magnitude in the CFD
and MRI comparison (4-5% of the maximum PC-MRI velocity) were smaller than those for
the PIV and PC-MRI comparison (10-12% of the maximum PC-MRI velocity), which could
be explained by the experimental setup. An instructive study by Roloff et al. (116) compared
several flow quantification techniques, including CFD; in vitro PC-MRI; and standard,
stereoscopic, and tomographic PI1V. Steady flow fields acquired with multiple modalities in a
silicone model of an ICA aneurysm were compared using a similarity index that accounted
for velocity vector direction and magnitude. The quantitative agreement between CFD and
all PIV methods was high; however, PC-MRI data had inferior agreement with the other
modalities due to this technique’s lower resolution.

The resolution of imaged velocity fields can be increased by scaling flow phantoms, as

long as the Reynolds and Womersley numbers of the experimental and in vivo flow fields
are maintained the same. In a comprehensive analysis, Amili et al. (117) investigated
various flow metrics measured with 4D flow MRI in a scaled aneurysm phantom and
compared the results with numerical simulations reported for the same aneurysm in the 2012
CFD challenge (81). Good agreement was found for cycle-averaged quantities; however,
significant discrepancies between MRI and CFD were present at peak systole. Increased
spatial and temporal resolution of in vitro measurements allowed for meaningful comparison
of the main flow statistics and demonstrated the potential of 4D flow MRI in capturing
intra-aneurysmal hemodynamics, which may eventually be attainable in vivo. Although they
provided cross-validation for both numerical and experimental approaches, these studies did
not compare modeling results with in vivo velocity data. A comparison of in vivo 4D flow
MRI measurements with both CFD and PIV models was recently conducted by Brindise et
al. (118). While the general velocity features acquired with different modalities were similar,
substantial discrepancies were found in distributions of WSS, oscillatory shear index (OSI),
and relative residence time (RRT). Since the same algorithms were used to compute these
flow-derived variables from velocities obtained with all modalities, the observed differences
should be attributed to the specific assumptions and uncertainty of each flow quantification
approach.

2.3. Image-Based Computational Fluid Dynamics Models in Unruptured Intracranial
Aneurysm Risk Stratification and Interventional Planning

As patient-specific modeling tools became more sophisticated and the time required to

carry out flow analysis decreases, a few research teams collaborated with clinicians to
conduct modeling studies for relatively large cohorts of cerebral aneurysm patients. These
studies aimed to provide guidance either in risk stratification of UIAs or in planning

surgical or endovascular interventions. Below, we discuss some of the successful studies
that demonstrated the potential value of hemodynamic modeling for assessment of aneurysm
stability or for predicting interventional outcomes. Note that while these models provided
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valuable results, they have not necessarily affected clinical decisions regarding treatment
options for these patients.

2.3.1. Predicting cerebral aneurysm growth and rupture.—Despite numerous
studies on the subject, assessing the risk of aneurysm rupture remains a clinical challenge.
As discussed in Section 1.1, most UIAs remain stable, with approximately 10-15% showing
growth in longitudinal studies (13, 14), but since an aneurysm rupture leads to high mortality
and morbidity rates (10, 11), most UIAs are currently treated even if the probability of
rupture may be negligible. Risk stratification scores such as those from the ISUIA and
UCAS and PHASES, UIATS, and ELAPSS, mentioned above (7, 21, 24-26), are based

on a combination of aneurysm location (e.g., posterior or anterior), morphology (e.g.,

size, shape), and clinical factors (e.g., comorbidities, age, gender, smoking status, family
history). These scores do not account for local hemodynamic factors, which require either
patient-specific modeling or in vivo imaging of the flow. At the same time, deterministic
CFD models in which aneurysm stability is predicted solely by hemodynamic factors

are oblivious to clinical data. There is a general consensus that a comprehensive clinical
tool predicting a risk of aneurysm rupture has to incorporate clinical, morphological, and
biomechanical factors and deliver a probabilistic risk assessment rather than a deterministic
answer on a patient-specific basis. A small number of studies performed statistical analyses
that combined hemodynamic indices with aneurysm location and morphology (14, 62, 69,
70, 108, 119). In a prospective longitudinal study of almost 200 UIAs, Ramachandran et
al. (14) compared aneurysm geometry (size and shape), multiple hemodynamic metrics, and
pressure-induced wall tension computed from image-based models and found that image-
derived biomechanical factors were not significant in differentiating stable and unstable
aneurysm populations. In a couple of studies featuring sufficiently large cohorts of stable
and unstable aneurysms, statistical methods ranging from regression analysis to deep
learning algorithms were trained on these comprehensive data sets (69, 108). The largest

of these studies, by Detmer et al. (108), considered 1,631 aneurysms in 1,061 patients with
492 aneurysms ruptured. Following an evaluation of the contributions of 22 hemodynamic
and 25 morphological parameters, the final statistical model retained 11 hemodynamic and
12 morphological variables as well as aneurysm location and patient age and gender. This
model was then tested on a subset of aneurysms excluded from the training data and was
shown to discriminate between ruptured and unruptured aneurysms with an AUC (area
under the curve) of 86%. These impressive results illustrate the potential of image-based
CFD maodels in risk stratification of cerebral aneurysms; however, a limitation of this study
is that it was based on single-time-point data rather than longitudinal studies of cerebral
aneurysms. The aneurysms considered stable at the time of the study may have ruptured
later on, potentially affecting the predictive capabilities of the statistical model. Note that

a longitudinal study of UIAs has an intrinsic selection bias since high-risk aneurysms are
always treated rather than monitored, with the exception of cases when intervention is not
feasible or is rejected by the patient.

2.3.2. Modeling postoperative flow dynamics in cerebral aneurysms.—In
addition to elucidating the role of biomechanical factors in aneurysmal disease initiation
and progression, patient-specific modeling provides a unique framework for analysis of
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postoperative hemodynamic conditions, which cannot be imaged a priori. A few studies
have modeled the postoperative flow fields that would result from surgical treatment of
complex cerebral aneurysms (42, 89, 120, 121). In this framework, preoperative image
data are used to construct a patient-specific CFD model that is then modified according

to the proposed intervention. Some of these studies considered indirect surgical clipping

of fusiform aneurysms of the basilar artery, which are not amenable to direct clipping

or coiling due to possible occlusion of pontine perforators or distal branches (28). The
surgeries aimed to reduce the flow through the basilar trunk, thus decreasing hemodynamic
forces acting on the aneurysmal wall and inducing intra-aneurysmal thrombus layering,

in the hope that this may prevent aneurysm rupture. The flow was reduced by surgical
clipping of a supplying vertebral artery or proximal basilar trunk, accompanied by a middle
cerebral to posterior cerebral artery bypass to ensure retrograde filling of the distal basilar
territory (122). Alternative surgical scenarios were simulated for a small group of patients
in order to predict intra-aneurysmal regions prone to postoperative thrombus deposition,
thereby indicating interventional options likely to cause complications (42, 89, 120, 121).
Even though only one of the simulated surgical scenarios could be implemented, in most
cases CFD-predicted regions of thrombus deposition matched those observed following the
procedure. The limitation of this modeling approach was the inability to account for altered
cerebral flow distribution following the intervention.

Image-based CFD models have been demonstrated to predict flow fields resulting from
endovascular interventions such as aneurysm coiling and deployment of FDs. CFD modeling
of the flow following coiling or FD placement involves modeling these devices in addition
to the flow. A realistic finite-element model of embolic coils developed by Babiker et al.
(123) showed that posttreatment flow conditions depend on variations in packing density
and the shape of the coils. In addition to drastically increased computational cost due

to resolving endovascular device geometries and surrounding boundary layers, numerical
simulations depend on reliable prediction of the device position and orientation relative

to the vascular geometries. A virtual deployment of coils and FDs can be simulated prior

to flow modeling (124-129); alternatively, these devices could be modeled using a porous
medium approach (130, 131). In the virtual stenting approach, a generic FD mesh generated
along a vessel centerline is computationally expanded until it reaches the luminal surface;
the wires of an FD are then constructed on the resulting surfaces (126). The porous medium
approach reduces computational cost and generally agrees with simulations resolving device
geometries, as well as with postoperative clinical data; however, the key limitation is that
permeability variations caused by bending and interaction with arterial walls cannot be
inferred without modeling or imaging patient-specific device orientation (131).

In order to assess the efficacy of the FD treatment, intra-aneurysmal hemodynamic
conditions prior to and following the procedure must be compared. Changes in the intra-
aneurysmal velocities, flow rates, and viscous energy dissipation, as well as a decrease in
WSS and an increase in flow residence time, provide quantitative measures that predict
the likelihood of successful aneurysm embolization following FD placement. Cebral et

al. (132) indicated that an increase in intra-aneurysmal pressure following FD treatment
may cause aneurysm rupture. Paliwal et al. (133) simulated preoperative and postoperative
flow fields in 15 cerebral aneurysms and compared the hemodynamic changes resulting
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from FD treatment with observed clinical outcomes. The results computed for successful
and unsuccessful embolization cases (Figure 3) showed a similar 50% reduction in
intra-aneurysmal velocities; however, the reduction in vortex core lines and the energy

loss were 38.2% and 42.9%, respectively, for successful cases and approximately 10%

each for unsuccessful cases. A detailed CFD study by Mut et al. (134) investigated the
relation between flow changes and posttreatment occlusion time in 23 aneurysms. A
statistical analysis of multiple flow metrics found significant differences in postoperative
velocities, inflow rates, and shear rates between aneurysms that were completely occluded

3 months after treatment and those that remained partially patent 6 months after treatment.
Interestingly, this study showed that aneurysm occlusion time is determined by postoperative
flow conditions immediately after FD placement, rather than by the difference between the
pre- and posttreatment flows in the same lesion. Modeling flow alterations resulting from
FD deployment can assist surgical planning by providing information on the appropriate
length and positioning of the device, evaluating whether a nested FD construct is needed to
increase resistance to the flow, and predicting the outcome of the procedure. Moreover, CFD
simulations enable evaluation and optimization of the design of novel FDs (128, 135).

3. BRIDGING THE GAP BETWEEN CLINICAL PRACTICE AND PATIENT-
SPECIFIC MODELS

Although image-based models are capable of providing expansive data quantifying patient-
specific hemodynamic conditions and forces, cerebral aneurysm modeling remains a
research approach rather than a clinical tool for evaluation and treatment of these lesions.
While numerous reports on CFD modeling conducted for large cohorts of patients have been
published in biomedical, imaging, and clinical journals and presented at scientific meetings,
the translational value of these studies remains controversial. Among the various reasons
why the quantitative approach is not readily adopted by clinical community, the following
are the most important in our opinion: the challenges in conducting state-of-the-art modeling
in clinical settings, the quantification of uncertainty of the modeling results, the controversy
regarding exact mechanisms linking local hemodynamics and aneurysm vascular biology,
and, finally, the lack of clearly defined indices that could be used for making clinical
decisions. We address each of these shortcomings in the subsections below.

3.1. Conducting Modeling Studies in a Clinical Setting

The first challenge is that patient-specific modeling requires highly specialized software
tools for medical image processing, 3D modeling of vascular anatomy, humerical solutions
of the governing equations, and postprocessing of the results. As described above, few
open-source platforms have been designed specifically for comprehensive image-based
flow analysis (94, 95); thus, many research teams are either developing their own

modeling tools or using various combinations of in-house scripts and commercial software
packages. Regardless of the modeling approach, generating image-based CFD models

and analyzing the resulting data require highly proficient researchers specifically trained

in this interdisciplinary field. We note that it typically takes a couple of years for
biomedical graduate students to reach the level of expertise required to conduct reliable CFD
simulations of cerebral aneurysm hemodynamics. While rapid progress in machine learning
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algorithms is posed to automate image segmentation (136, 137) and dramatically reduce
modeling time and cost, knowledge of flow physics and cardiovascular mechanics will
likely remain necessary for patient-specific hemodynamic analysis. Since it is impractical
to train medical practitioners in advanced CFD modeling and implausible that each medical
center will keep on staff a modeling expert, the remaining alternative is to use cloud-based
computing to conduct flow analysis at dedicated centers. In this paradigm, implemented by
HeartFlow, Inc. (138), medical imaging data acquired for a patient are securely transferred
to a dedicated server, at which point a team of modeling experts carries out numerical
simulations. A report summarizing the computational results is then returned to the clinic. In
order to conduct studies on large cohorts of patients, it is crucial to develop fully automated
methods for converting imaging data to geometric models for CFD simulations. Seo et al.
(139) developed a highly automated modeling framework based on a level-set segmentation
of 3D angiograms and an immersed boundary CFD solver and used it to compute the

flow in several cerebral aneurysms. Cartesian grids allowed these authors to avoid meshing
luminal surfaces and could be easily refined to improve the resolution in smaller vessels.
Adopting deep learning algorithms for image segmentation will allow further reduction of
the modeling time and automated elimination of image artifacts, as evidenced by innovative
studies applying neural networks to CTA data and 3D angiograms of cerebral arteries (136,
137, 140).

3.2. Uncertainty Quantification of Image-Based Computational Fluid Dynamics

The second challenge is quantifying the uncertainty of the hemodynamic metrics predicted
by numerical simulations. The sources of error are described above in Section 2.1; here,

we reiterate that even though typical CFD data contain specific values, it is crucial to
determine the uncertainty of these results and treat them as a sample taken from a range of
possible values. Uncertainty quantification (UQ) for patient-specific flow simulations is at
the cutting edge of cardiovascular modeling research, with recent studies considering UQ for
CFD models of different vascular territories (141-144). As mentioned above, several CFD
challenge studies have investigated the variability of image-based CFD models in cerebral
aneurysms and provided the groundwork for developing future modeling guidelines (79, 81—
83). Two comprehensive recent reviews specifically evaluated state-of-the-art CFD modeling
practices applied to cerebral aneurysms and provided recommendations for reliable
simulations of intra-aneurysmal hemodynamics (78, 84). In addition to uncertainty due to
medical image resolution and noise, modeling assumptions, and numerical approximations,
there are confounding factors such as patient genetics and clinical history that are typically
not accounted for in the computational analysis but could affect an outcome predicted by

a model. Another important consideration is the variability of cardiovascular pressure and
flow rates, which depends on the patient’s physical activity, level of stress, and even position
during imaging. Flow measured while the patient is resting in a supine position in an MRI
scanner can differ substantially from flow measured during exercise or emotional stress.

3.3. Arterial Wall Mechanics and Structure: The Missing Link

A key consideration in the assessment of cerebral aneurysm stability is that while
hemodynamic forces can cause arterial wall remodeling, it is ultimately the wall itself that
bulges and eventually ruptures due to adverse biomechanical or physiological factors. It
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is known that blood vessels adjust to flow rate by maintaining an optimal value of WSS
(103, 145). Nevertheless, prediction of disease progression based solely on flow factors is
an indirect approach to cerebral aneurysm risk assessment. As stated above, very limited
information on arterial wall structure and properties can be obtained from noninvasive in
vivo studies, inhibiting patient-specific arterial wall analysis. Even so, computational studies
based on ex vivo data provide invaluable information on aneurysmal wall structure and
function, which may be the missing link in understanding the mechanisms of cerebral
aneurysm growth and rupture. Pioneering research by Robertson and colleagues (71, 102)
elucidated the complex interplay among hemodynamics, inflammation, and wall remodeling
in aneurysmal disease. The mechanical strength of the arterial wall is due to elastic laminae
and collagen fibers of the medial and adventitial layers (71). The aneurysmal wall does

not passively bulge out under stress, since the distensibility of collagen fibers is limited,;
rather, it actively grows through collagen remodeling and muscle cell proliferation. This
pathological growth and remodeling process is affected by blood flow and inflammation.
The aneurysmal wall is characterized by a loss of elastic laminae, resulting in excessive
loading of the collagen fibers and increased wall stiffness (102). The remodeling of collagen
fibers during the aneurysm enlargement process alters their orientation and, subsequently,
the wall strength, and thus is a key factor in the aneurysm’s vulnerability to rupture

under intramural pressure (71). By testing the mechanical integrity of wall tissue harvested
from UIAs and normal cerebral arteries and analyzing the corresponding collagen fiber
architecture with multiphoton microscopy, Robertson et al. (102) discovered that aneurysms
with reduced wall strength are characterized by impaired architecture of the fiber layers.
This measure can identify UIAs with increased risk of rupture; however, at present there are
no imaging tools that can noninvasively assess wall integrity in vivo.

Due to the variability in intra-aneurysmal hemodynamics and the mechanical properties of
the aneurysm wall, a meaningful correlation requires precise mapping of the local flow
variables and wall characteristics. Cebral et al. (146) developed a unique methodology for
coregistration of image-based CFD data with resected aneurysm specimens using in vivo
marking of the tissue with a surgical pen and subsequent alignment with 3D-printed models.
This framework allowed integration of multiple imaging and modeling modalities, including
the mapping of computed WSS distribution to intraoperative video and multiphoton
microscopy data showing local collagen fiber architecture (147). The most recent research
by Cebral et al. (73, 147) reports on the relationship between several hemodynamic metrics
and focal wall characteristics observed intraoperatively in 65 cerebral aneurysms. The
regions exposed to recirculating flow with low WSS and increased flow residence time were
characterized by atherosclerotic and hyperplastic changes, while inflow jets and high WSS
corresponded to local thinning of the wall (73, 147). These findings provide evidence for the
theory linking both abnormally low and high WSS to aneurysmal disease progression.

Recent aneurysm models in rodents elucidated the role of transmural macrophage infiltration
in disruption of wall elastic lamina and collagen, causing aneurysm formation (71).
Subsequent aneurysm growth is also influenced by a combination of abnormal WSS

and continuous inflammation. These results suggest that anti-inflammatory drugs may

be capable of inhibiting aneurysm progression. Once the exact relationship between
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hemodynamic forces and aneurysmal wall remodeling is understood, patient-specific CFD
models can be used to predict the risk of aneurysm growth and rupture (71).

3.4. Translational Value of Hemodynamic Data

Finally, we consider the challenge of establishing clinically relevant hemodynamic indices
and their specific thresholds that could be used for cerebral aneurysm management in a
clinical setting. A well-known controversy in cerebral aneurysm modeling resulted from
two competing theories stating that aneurysm growth and rupture are caused by either a
high or low WSS. Flow simulations conducted for large cohorts of ruptured and unruptured
aneurysms determined a correlation between regions of elevated WSS and aneurysm rupture
(72, 85, 148). The prevalence of aneurysms in patients with arteriovenous malformations
that cause abnormally high flow rates, as well as aneurysm formation in animals following
carotid ligation, confirms that elevated WSS is the culprit in aneurysm initiation (71). At
the same time, several studies have indicated that aneurysm progression was observed in
regions where the aneurysmal wall was exposed to abnormally low WSS (70, 149-152).
The correlation detected between averaged WSS and the rupture or growth status determined
in these studies did not explain the underlying mechanisms causing disease progression

in regions characterized by abnormal WSS values. These confusing reports triggered a
publication (153) questioning the potential clinical value of CFD, which it spelled out as
“confounding factor dissemination,” due to modeling simplifications, a growing number

of confusing hemodynamic indices proposed as risk indicators, and the small number of
cases considered in different studies. There is a consensus that bridging the gap between
numerical analysis and clinical practice will require multicenter studies of large patient
cohorts using standardized modeling framework and multivariate statistical analyses (76,
154). It is crucial to recognize biological processes driving aneurysm growth and repair that
can confound biomechanical analysis. Meng et al. (77) proposed a unifying theory, noting
that high WSS combined with a positive WSS gradient leads to growth and rupture of small
or secondary bleb aneurysms, while low WSS and high OSI lead to growth and rupture

of large atherosclerotic aneurysms. Current studies involving hundreds of patients in which
CFD results are combined with morphological data and medical history are leading to the
development of clinical tools for aneurysm risk stratification (69, 108, 155).

4. FUTURE DIRECTIONS

Enhancing the resolution of medical imaging while reducing the acquisition time will allow
quantification of aneurysmal flow and wall mechanics in a clinical setting (67, 68). At the
same time, patient-specific models will continue to deliver superior accuracy and, most
importantly, capabilities to predict postinterventional conditions on a patient basis. Recent
developments in data science provide an opportunity to combine imaging and modeling
approaches in order to attain superior fidelity and accuracy of the resulting quantitative
data. In this framework, computational results would complement clinical measurements by
eliminating noise and image artifacts and increasing the spatiotemporal resolution of the
acquired data. Results predicted by computational models would be corrected by in vivo
measurements, thereby ensuring that the combined output data represent the actual patient-
specific conditions with high fidelity. When applied to cerebral aneurysm hemodynamics,
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this data fusion approach could enable merging of 4D flow MRI and CFD data in order

to improve flow quantification. As discussed in the previous sections, the accuracy of 4D
flow MRI measurements in cerebral vessels is affected by limited spatiotemporal resolution,
the dynamic range of measured velocities, and image noise. Concurrently, CFD results can
be affected by image quality and segmentation, assumptions about the proximal/distal flow
conditions, wall compliance and blood viscosity, and numerical schemes used to solve the
governing equations (78). The main challenge in eliminating the errors of either modality
is in that there is no gold standard or true velocity distribution that can be used to correct
the imaging or modeling results. However, these modalities have different sources of error,
so it should be possible to reconstruct the underlying velocity field by maintaining the flow
features that are common to both data sets.

Data assimilation algorithms and methods are an active area of research. Rispoli et al. (156)
proposed using 4D flow MRI data as a regularization step in a CFD solver to correct the
numerical solution. An established method of blending modeling predictions and actual
measurements for a process evolving in time is the Kalman filter. Ensemble Kalman filtering
has been demonstrated to improve patient-specific CFD simulations by calibrating outflow
conditions prescribed to numerical solvers (157, 158). Alternatively, modal flow analysis can
be used to eliminate image noise and increase the spatial resolution of measured velocities
(159). An approach based on common mode decomposition can be applied to combine
velocity fields obtained from multiple modalities, such as 4D flow MRI, CFD, and PIV.

The modes that are common across these modalities are used for flow reconstruction,

while the mismatched modes are assumed to represent errors due to assigned boundary
conditions or image noise. Alternatively, the flow fields obtained from different modalities
can be combined on the basis of estimates of the local uncertainty of each data set, yielding
improved velocity distributions that can then be used to calculate relevant hemodynamic
metrics.

A fashionable wave of deep learning approaches is not likely to entirely replace
computational modeling; however, in addition to recognized capabilities in automatic
generation of image-based geometries, deep learning has the potential to optimize patient-
specific input parameters required for flow solvers. In such an approach, neural networks
would process a large set of parameters in order to minimize the discrepancy between the
numerical solution and available imaging data. Moreover, underresolved flow measurements
obtained in vivo could be enhanced with Navier—Stokes-informed deep learning algorithms.
Prior knowledge of the underlying principles of flow physics, such as the conservation

of mass, momentum, and energy, can be used as a regularization in the training of deep
learning networks, allowing them to be applied even if the quantity of training data is
limited (160, 161). This novel approach may enable accurate flow reconstruction based on in
vivo imaging, thus providing tools for reliable assessment of patient-specific hemodynamic
metrics.

5. CONCLUSIONS

State-of-the-art medical imaging and modeling methods enable patient-specific flow
quantification in cerebral aneurysms; however, the translational value of acquired
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hemodynamic data remains limited. Data assimilation techniques offer capabilities for
merging in vivo imaging and numerical modeling data or reconstructing imaging data to
enhance the resulting flow fields and ensure their adherence to underlying flow physics.
Developing image-based models accounting for complex interplay of hemodynamics,
arterial wall mechanics, and vascular biology and distilling modeling data into clinically
relevant indices will facilitate the application of quantitative analysis to diagnostics and
treatment of cerebral aneurysms. Multicenter longitudinal studies in which multivariate
statistical analyses are based on aneurysm location and morphology, hemodynamic
factors, imaged wall inflammation, and patient medical history are required to develop
comprehensive predictive models for UIA risk assessment.

ACKNOWLEDGMENTS

The authors thank Drs. Hui Meng, David Saloner, and Susanne Schnell for permission to use their images and
Dr. Kimberly Stevens and Mr. Sean Rothenberger for helping with editing the manuscript. V.L.R. acknowledges
support from National Institutes of Health award R21 NS 106696.

LITERATURE CITED

1. Vlak MH, Algra A, Brandenburg R, Rinkel GJ. 2011. Prevalence of unruptured intracranial
aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review
and meta-analysis. Lancet Neurol 10:626-36 [PubMed: 21641282]

2. Thompson BG, Brown RD Jr., Amin-Hanjani S, Broderick JP, Cockroft KM, et al. 2015. Guidelines
for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare
professionals from the American Heart Association/American Stroke Association. Stroke 46:2368—
400 [PubMed: 26089327]

3. Krings T, Mandell DM, Kiehl TR, Geibprasert S, Tymianski M, et al. 2011. Intracranial aneurysms:
from vessel wall pathology to therapeutic approach. Nat. Rev. Neurol 7:547-59 [PubMed:
21931350]

4. Frosen J, Tulamo R, Paetau A, Laaksamo E, Korja M, et al. 2012. Saccular intracranial aneurysm:
pathology and mechanisms. Acta Neuropathol 123:773-86 [PubMed: 22249619]

5. Brown RD Jr., Broderick JP. 2014. Unruptured intracranial aneurysms: epidemiology, natural
history, management options, and familial screening. Lancet Neurol 13:393-404 [PubMed:
24646873]

6. Etminan N, Rinkel GJ. 2017. Unruptured intracranial aneurysms: development, rupture and
preventive management. Erratum. Nat. Rev. Neurol 13:126 [PubMed: 28145447]

7. Etminan N, Brown RD Jr., Beseoglu K, Juvela S, Raymond J, et al. 2015. The unruptured
intracranial aneurysm treatment score: a multidisciplinary consensus. Neurology 85:881-89
[PubMed: 26276380]

8. Etminan N, Rinkel GJ. 2016. Unruptured intracranial aneurysms: development, rupture and
preventive management. Nat. Rev. Neurol 12:699-713 [PubMed: 27808265]

9. Weir B 2002. Unruptured intracranial aneurysms: a review. J. Neurosurg 96:3-42 [PubMed:
11794601]

10. Schievink WI. 1997. Intracranial aneurysms. N. Engl. J. Med 336:28-40 [PubMed: 8970938]

11. Ma B, Harbaugh RE, Raghavan ML. 2004. Three-dimensional geometrical characterization of
cerebral aneurysms. Ann. Biomed. Eng 32:264-73 [PubMed: 15008374]

12. Ho H, Suresh V, Kang W, Cooling MT, Watton PN, Hunter PJ. 2011. Multiscale modeling of
intracranial aneurysms: cell signaling, hemodynamics, and remodeling. IEEE Trans. Biomed. Eng
58:2974-77 [PubMed: 21712155]

13. Bjoérkman J, Frésen J, Téhtinen O, Huttunen T, Huttunen J, et al. 2018. Aneurysm size is
the strongest risk factor for intracranial aneurysm growth in the eastern Finnish population.
Neurosurgery 84:1098-103

Annu Rev Biomed Eng. Author manuscript; available in PMC 2022 June 23.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Rayz and Cohen-Gadol

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Page 20

Ramachandran M, Retarekar R, Raghavan ML, Berkowitz B, Dickerhoff B, et al. 2016.
Assessment of image-derived risk factors for natural course of unruptured cerebral aneurysms.
J. Neurosurg 124:288-95 [PubMed: 26381246]

Naggara ON, Lecler A, Oppenheim C, Meder JF, Raymond J. 2012. Endovascular treatment of
intracranial unruptured aneurysms: a systematic review of the literature on safety with emphasis on
subgroup analyses. Radiology 263:828-35 [PubMed: 22623696]

Kotowski M, Naggara O, Darsaut TE, Nolet S, Gevry G, et al. 2013. Safety and occlusion rates of
surgical treatment of unruptured intracranial aneurysms: a systematic review and meta-analysis of
the literature from 1990 to 2011. J. Neurol. Neurosurg. Psychiatry 84:42-48 [PubMed: 23012447]

Kodama N, Suzuki J. 1982. Surgical treatment of giant aneurysms. Neurosurg. Rev 5:155-60
[PubMed: 7167224]

Lawton MT, Spetzler RF. 1999. Surgical strategies for giant intracranial aneurysms. Acta
Neurochir. Suppl 72:141-56 [PubMed: 10337420]

Pia HW, Zierski J. 1982. Giant cerebral aneurysms. Neurosurg. Rev 5:117-48 [PubMed: 6762507]

Malhotra A, Wu X, Forman HP, Grossetta Nardini HK, Matouk CC, et al. 2017. Growth and
rupture risk of small unruptured intracranial aneurysms: a systematic review. Ann. Intern. Med
167:26-33 [PubMed: 28586893]

Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, Brown RD Jr., et al. 2003. Unruptured
intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular
treatment. Lancet 362:103-10 [PubMed: 12867109]

Lindgren AE, Koivisto T, Bjorkman J, von und zu Fraunberg M, Helin K, et al. 2016. Irregular
shape of intracranial aneurysm indicates rupture risk irrespective of size in a population-based
cohort. Stroke 47:1219-26 [PubMed: 27073241]

Brinjikji W, Zhu YQ, Lanzino G, Cloft HJ, Murad MH, et al. 2016. Risk factors for growth of
intracranial aneurysms: a systematic review and meta-analysis. Am. J. Neuroradiol 37:615-20
[PubMed: 26611992]

Backes D, Rinkel GJE, Greving JP, Velthuis BK, Murayama Y, et al. 2017. ELAPSS score for
prediction of risk of growth of unruptured intracranial aneurysms. Neurology 88:1600-6 [PubMed:
28363976]

Greving JP, Wermer MJ, Brown RD Jr., Morita A, Juvela S, et al. 2014. Development of the
PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six
prospective cohort studies. Lancet Neurol 13:59-66 [PubMed: 24290159]

Investigators UJ, Morita A, Kirino T, Hashi K, Aoki N, et al. 2012. The natural course of
unruptured cerebral aneurysms in a Japanese cohort. N. Engl. J. Med 366:2474-82 [PubMed:
22738097]

Lin N, Cahill KS, Frerichs KU, Friedlander RM, Claus EB. 2012. Treatment of ruptured and
unruptured cerebral aneurysms in the USA: a paradigm shift. J. Neurointerv. Surg 4:182-89
[PubMed: 21990481]

Rutledge WC, Lawton MT. 2016. Basilar artery aneurysm: role for open surgery. In Controversies
in Vascular Neurosurgery, ed. Veznedaroglu E, pp. 83-92. Berlin: Springer

Smith TR, Cote DJ, Dasenbrock HH, Hamade YJ, Zammar SG, et al. 2015. Comparison of the
efficacy and safety of endovascular coiling versus microsurgical clipping for unruptured middle
cerebral artery aneurysms: a systematic review and meta-analysis. World Neurosurg 84:942-53
[PubMed: 26093360]

Molyneux AJ, Kerr RS, Yu LM, Clarke M, Sneade M, et al. 2005. International Subarachnoid
Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with
ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency,
seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet 366:809-17 [PubMed:
16139655]

Ries T, Siemonsen S, Thomalla G, Grzyska U, Zeumer H, Fiehler J. 2007. Long-term follow-up

of cerebral aneurysms after endovascular therapy prediction and outcome of retreatment. Am. J.
Neuroradiol 28:1755-61 [PubMed: 17885238]

Shapiro M, Becske T, Sahlein D, Babb J, Nelson PK. 2012. Stent-supported aneurysm coiling: a
literature survey of treatment and follow-up. Am. J. Neuroradiol 33:159-63 [PubMed: 22033717]

Annu Rev Biomed Eng. Author manuscript; available in PMC 2022 June 23.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Rayz and Cohen-Gadol

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

Page 21

. Benitez RP, Silva MT, Klem J, Veznedaroglu E, Rosenwasser RH. 2004. Endovascular occlusion
of wide-necked aneurysms with a new intracranial microstent (Neuroform) and detachable coils.
Neurosurgery 54:1359-68 [PubMed: 15157292]

Nishido H, Piotin M, Bartolini B, Pistocchi S, Redjem H, Blanc R. 2014. Analysis of
complications and recurrences of aneurysm coiling with special emphasis on the stent-assisted
technique. Am. J. Neuroradiol 35:339-44 [PubMed: 23907240]

Arrese |, Sarabia R, Pintado R, Delgado-Rodriguez M. 2013. Flow-diverter devices for intracranial
aneurysms: systematic review and meta-analysis. Neurosurgery 73:193-200 [PubMed: 23624409]

Brinjikji W, Lanzino G, Cloft HJ, Kallmes DF. 2014. Patency of the posterior communicating
artery after flow diversion treatment of internal carotid artery aneurysms. Clin. Neurol. Neurosurg
120:84-88 [PubMed: 24731582]

Kallmes DF, Hanel R, Lopes D, Boccardi E, Bonafe A, et al. 2015. International retrospective
study of the Pipeline embolization device: a multicenter aneurysm treatment study. Am. J.
Neuroradiol 36:108-15 [PubMed: 25355814]

Kallmes DF, Brinjikji W, Cekirge S, Fiorella D, Hanel RA, et al. 2017. Safety and efficacy of the
Pipeline embolization device for treatment of intracranial aneurysms: a pooled analysis of 3 large
studies. J. Neurosurg 127:775-80 [PubMed: 27791519]

Ye G, Zhang M, Deng L, Chen X, Wang Y. 2016. Meta-analysis of the efficiency and prognosis
of intracranial aneurysm treated with flow diverter devices. J. Mol. Neurosci 59:158-67 [PubMed:
26816083]

Jalali A, Srinivasan VM, Chinnadurai P, Kan P, Arthur A, Duckworth EA. 2016. Two-color 3D-3D
fusion of selective rotational cerebral angiograms: a novel approach to imaging in cerebrovascular
neurosurgery. J. Neurointerv. Surg 8:1056-60 [PubMed: 26574481]

Green NE, Chen SY, Messenger JC, Groves BM, Carroll JD. 2004. Three-dimensional vascular
angiography. Curr. Probl. Cardiol 29:104-42 [PubMed: 15048057]

Vali A, Abla AA, Lawton MT, Saloner D, Rayz VL. 2017. Computational fluid dynamics modeling
of contrast transport in basilar aneurysms following flow-altering surgeries. J. Biomech 50:195-
201 [PubMed: 27890537]

Strother CM, Bender F, Deuerling-Zheng Y, Royalty K, Pulfer KA, et al. 2010. Parametric color
coding of digital subtraction angiography. Am. J. Neuroradiol 31:919-24 [PubMed: 20167651]

Westerlaan HE, van Dijk JM, Jansen-van der Weide MC, de Groot JC, Groen RJ, et al. 2011.
Intracranial aneurysms in patients with subarachnoid hemorrhage: CT angiography as a primary
examination tool for diagnosis—systematic review and meta-analysis. Radiology 258:134-45
[PubMed: 20935079]

Lu L, Zhang LJ, Poon CS, Wu SY, Zhou CS, et al. 2012. Digital subtraction CT angiography

for detection of intracranial aneurysms: comparison with three-dimensional digital subtraction
angiography. Radiology 262:605-12 [PubMed: 22143927]

Philipp LR, McCracken DJ, McCracken CE, Halani SH, Lovasik BP, et al. 2017. Comparison
between CTA and digital subtraction angiography in the diagnosis of ruptured aneurysms.
Neurosurgery 80:769-77 [PubMed: 28201559]

Edelman RR. 1992. Basic principles of magnetic resonance angiography. Cardiovasc. Interv.
Radiol 15:3-13

Laub GA. 1995. Time-of-flight method of MR angiography. Magn. Reson. Imaging Clin. N. Am
3:391-98 [PubMed: 7584245]

Prince MR. 1998. Contrast-enhanced MR angiography: theory and optimization. Magn. Reson.
Imaging Clin. N. Am 6:257-67 [PubMed: 9560485]

Maki JH, Chenevert TL, Prince MR. 1996. Three-dimensional contrast-enhanced MR angiography.
Top. Magn. Reson. Imaging 8:322—44 [PubMed: 9402676]

Saloner D, Martin A, Hurwit D, Sohrabi S, Lee A, et al. 2013. MRI/A in the evaluation of changes
over time in untreated aneurysms. In Proceedings of the 21st Annual Meeting of the International
Society for Magnetic Resonance in Medicine, p. 2995. Concord, CA: Int. Soc. Magn. Reson. Med.
Tian B, Toossi S, Eisenmenger L, Faraji F, Ballweber MK, et al. 2019. Visualizing wall
enhancement over time in unruptured intracranial aneurysms using 3D vessel wall imaging. J.
Magn. Reson. Imaging 50:193-200 [PubMed: 30390363]

Annu Rev Biomed Eng. Author manuscript; available in PMC 2022 June 23.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Rayz and Cohen-Gadol

53

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Page 22

. Portanova A, Hakakian N, Mikulis DJ, Virmani R, Abdalla WM, Wasserman BA. 2013.
Intracranial vasa vasorum: insights and implications for imaging. Radiology 267:667—-79
[PubMed: 23704290]

Edjlali M, Gentric JC, Regent-Rodriguez C, Trystram D, Hassen WB, et al. 2014. Does aneurysmal
wall enhancement on vessel wall MRI help to distinguish stable from unstable intracranial
aneurysms? Stroke 45:3704—6 [PubMed: 25325912]

Zhu C, Wang X, Degnan AJ, Shi Z, Tian B, et al. 2018. Wall enhancement of intracranial
unruptured aneurysm is associated with increased rupture risk and traditional risk factors. Eur.
Radiol 28:5019-26 [PubMed: 29872913]

Polzin JA, Alley MT, Korosec FR, Grist TM, Wang Y, Mistretta CA. 1995. A complex-difference
phase-contrast technique for measurement of volume flow rates. J. Magn. Reson. Imaging 5:129—
37 [PubMed: 7766973]

Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M. 2014. 4D flow imaging with MRI.
Cardiovasc. Diagn. Ther 4:173-92 [PubMed: 24834414]

Korosec FR, Reeder SB. 2012. “MR Physics for Clinicians” series: enhancement for the JMRI
CME program. J. Magn. Reson. Imaging 35:997 [PubMed: 22499276]

Markl M, Schnell S, Barker AJ. 2014. 4D flow imaging: current status to future clinical
applications. Curr. Cardiol. Rep 16:481 [PubMed: 24700368]

Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 2012. 4D flow MRI. J. Magn. Reson.
Imaging 36:1015-36 [PubMed: 23090914]

Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhall CJ, et al. 2015. 4D flow cardiovascular
magnetic resonance consensus statement. J. Cardiovasc. Magn. Reson 17:72 [PubMed: 26257141]
Schnell S, Ansari SA, Vakil P, Wasielewski M, Carr ML, et al. 2014. Three-dimensional
hemodynamics in intracranial aneurysms: influence of size and morphology. J. Magn. Reson.
Imaging 39:120-31 [PubMed: 24151067]

Hope MD, Purcell DD, Hope TA, von Morze C, Vigneron DB, et al. 2009. Complete intracranial
arterial and venous blood flow evaluation with 4D flow MR imaging. Am. J. Neuroradiol 30:362—
66 [PubMed: 18653687]

Ansari SA, Schnell S, Carroll T, Vakil P, Hurley MC, et al. 2013. Intracranial 4D flow MRI: toward
individualized assessment of arteriovenous malformation hemodynamics and treatment-induced
changes. Am. J. Neuroradiol 34:1922-28 [PubMed: 23639564]

Boussel L, Rayz VL, Martin A, Acevedo-Bolton G, Lawton MT, et al. 2009. Phase-contrast
magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns,
velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn.
Reson. Med 61:409-17 [PubMed: 19161132]

van Ooij P, Guedon A, Poelma C, Schneiders J, Rutten MC, et al. 2012. Complex flow patterns

in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image
velocimetry and computational fluid dynamics. NMR Biomed 25:14-26 [PubMed: 21480417]
Schnell S, Ansari SA, Wu C, Garcia J, Murphy IG, et al. 2017. Accelerated dual-venc 4D flow
MRI for neurovascular applications. J. Magn. Reson. Imaging 46:102-14 [PubMed: 28152256]
Liu J, Koskas L, Faraji F, Kao E, Wang Y, et al. 2017. Highly accelerated intracranial 4D flow
MRI: evaluation of healthy volunteers and patients with intracranial aneurysms. MAGMA 31:295—
307 [PubMed: 28785850]

Xiang J, Yu J, Snyder KV, Levy El, Siddiqui AH, Meng H. 2016. Hemodynamic-morphological
discriminant models for intracranial aneurysm rupture remain stable with increasing sample size. J.
Neurointerv. Surg 8:104-10 [PubMed: 25488922]

Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, et al. 2011. Hemodynamic-morphologic
discriminants for intracranial aneurysm rupture. Stroke 42:144-52 [PubMed: 21106956]

Frosen J, Cebral J, Robertson AM, Aoki T. 2019. Flow-induced, inflammation-mediated arterial
wall remodeling in the formation and progression of intracranial aneurysms. Neurosurg. Focus
47:E21

Cebral JR, Mut F, Weir J, Putman CM. 2011. Association of hemodynamic characteristics and
cerebral aneurysm rupture. Am. J. Neuroradiol 32:264-70 [PubMed: 21051508]

Annu Rev Biomed Eng. Author manuscript; available in PMC 2022 June 23.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Rayz and Cohen-Gadol

73

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

Page 23

. Cebral JR, Detmer F, Chung BJ, Choque-Velasquez J, Rezai B, et al. 2019. Local hemodynamic
conditions associated with focal changes in the intracranial aneurysm wall. Am. J. Neuroradiol
40:510-16 [PubMed: 30733253]

Dolan JM, Kolega J, Meng H. 2013. High wall shear stress and spatial gradients in vascular
pathology: a review. Ann. Biomed. Eng 41:1411-27 [PubMed: 23229281]

Zhou G, Zhu Y, Yin Y, Su M, Li M. 2017. Association of wall shear stress with intracranial
aneurysm rupture: systematic review and meta-analysis. Sci. Rep 7:5331 [PubMed: 28706287]

Xiang J, Tutino VM, Snyder KV, Meng H. 2014. CFD: computational fluid dynamics or
confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture
risk assessment. Am. J. Neuroradiol 35:1849-57 [PubMed: 24029393]

Meng H, Tutino VM, Xiang J, Siddiqui A. 2014. High WSS or low WSS? Complex interactions
of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying
hypothesis. Am. J. Neuroradiol 35:1254-62 [PubMed: 23598838]

Steinman DA, Pereira VM. 2019. How patient specific are patient-specific computational models
of cerebral aneurysms? An overview of sources of error and variability. Neurosurg. Focus 47:E14

Valen-Sendstad K, Bergersen AW, Shimogonya Y, Goubergrits L, Bruening J, et al. 2018. Real-
world variability in the prediction of intracranial aneurysm wall shear stress: the 2015 International
Aneurysm CFD Challenge. Cardiovasc. Eng. Technol 9:544-64 [PubMed: 30203115]

Radaelli AG, Augsburger L, Cebral JR, Ohta M, Rufenacht DA, et al. 2008. Reproducibility

of haemodynamical simulations in a subject-specific stented aneurysm model—a report on the
Virtual Intracranial Stenting Challenge 2007. J. Biomech 41:2069-81 [PubMed: 18582891]
Steinman DA, Hoi Y, Fahy P, Morris L, Walsh MT, et al. 2013. Variability of computational

fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer
Bioengineering Conference CFD Challenge. J. Biomech. Eng 135:021016 [PubMed: 23445061]

Berg P, Voss S, Saalfeld S, Janiga G, Bergersen AW, et al. 2018. Multiple Aneurysms AnaTomy
CHallenge 2018 (MATCH). Phase I: Segmentation. Cardiovasc. Eng. Technol 9:565-81 [PubMed:
30191538]

Berg P, Voss S, Janiga G, Saalfeld S, Bergersen AW, et al. 2019. Multiple Aneurysms AnaTomy
CHallenge 2018 (MATCH)—phase Il: rupture risk assessment. Int. J. Comput. Assist. Radiol.
Surg 14:1795-804 [PubMed: 31054128]

Berg P, Saalfeld S, Voss S, Beuing O, Janiga G. 2019. A review on the reliability of hemodynamic
modeling in intracranial aneurysms: why computational fluid dynamics alone cannot solve the
equation. Neurosurg. Focus 47:E15

Cebral J, Mut F, Sforza D, Lohner R, Scrivano E, et al. 2011. Clinical application of image-based
CFD for cerebral aneurysms. Int. J. Numer. Methods Biomed. Eng 27:977-92

Geers AJ, Larrabide I, Radaelli AG, Bogunovic H, Kim M, et al. 2011. Patient-specific
computational hemodynamics of intracranial aneurysms from 3D rotational angiography and CT
angiography: an in vivo reproducibility study. Am. J. Neuroradiol 32:581-86 [PubMed: 21183614]
Ramachandran M, Retarekar R, Harbaugh RE, Hasan D, Policeni B, et al. 2013. Sensitivity of
quantified intracranial aneurysm geometry to imaging modality. Cardiovasc. Eng. Technol 4:75-86
[PubMed: 24151529]

Rayz VL, Boussel L, Acevedo-Bolton G, Martin AJ, Young WL, et al. 2008. Numerical
simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI
measurements. J. Biomech. Eng 130:051011 [PubMed: 19045518]

Rayz VL, Abla A, Boussel L, Leach JR, Acevedo-Bolton G, et al. 2015. Computational modeling
of flow-altering surgeries in basilar aneurysms. Ann. Biomed. Eng 43:1210-22 [PubMed:
25348846]

Castro MA, Putman CM, Cebral JR. 2006. Computational fluid dynamics modeling of intracranial
aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. Am. J.
Neuroradiol 27:1703-9 [PubMed: 16971618]

Hodis S, Kargar S, Kallmes DF, Dragomir-Daescu D. 2015. Artery length sensitivity in patient-
specific cerebral aneurysm simulations. Am. J. Neuroradiol 36:737-43 [PubMed: 25500310]

Annu Rev Biomed Eng. Author manuscript; available in PMC 2022 June 23.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Rayz and Cohen-Gadol

92.

93.

94.

95.

96.

97.

98.

99.

100

101.

102.

103.

104.

105.

106.

107.

108.

109.

Page 24

Pereira VM, Brina O, Marcos Gonzales A, Narata AP, Bijlenga P, et al. 2013. Evaluation
of the influence of inlet boundary conditions on computational fluid dynamics for intracranial
aneurysms: a virtual experiment. J. Biomech 46:1531-39 [PubMed: 23602597]

Botti L, Paliwal N, Conti P, Antiga L, Meng H. 2018. Modeling hemodynamics in intracranial
aneurysms: comparing accuracy of CFD solvers based on finite element and finite volume
schemes. Int. J. Numer. Methods Biomed. Eng 34:¢3111

Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC. 2017. SimVascular:

an open source pipeline for cardiovascular simulation. Ann. Biomed. Eng 45:525-41 [PubMed:
27933407]

Khlebnikov R, Figueroa CA. 2015. CRIMSON: towards a software environment for patient-
specific blood flow simulation for diagnosis and treatment. In Proceedings of the 4th International
Workshop on Clinical Image-Based Procedures (CLIP 2015), pp. 10-18. Berlin: Springer
Valen-Sendstad K, Steinman DA. 2014. Mind the gap: impact of computational fluid dynamics
solution strategy on prediction of intracranial aneurysm hemodynamics and rupture status
indicators. Am. J. Neuroradiol 35:536-43 [PubMed: 24231854]

Valen-Sendstad K, Mardal KA, Steinman DA. 2013. High-resolution CFD detects high-frequency
velocity fluctuations in bifurcation, but not sidewall, aneurysms. J. Biomech 46:402—7 [PubMed:
23174422]

Khan MO, Valen-Sendstad K, Steinman DA. 2015. Narrowing the expertise gap for predicting
intracranial aneurysm hemodynamics: impact of solver numerics versus mesh and time-step
resolution. Am. J. Neuroradiol 36:1310-16 [PubMed: 25742983]

Ford MD, Piomelli U. 2012. Exploring high frequency temporal fluctuations in the terminal
aneurysm of the basilar bifurcation. J. Biomech. Eng 134:091003 [PubMed: 22938370]

. Khan MO, Steinman DA, Valen-Sendstad K. 2017. Non-Newtonian versus numerical rheology:
practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial
aneurysms. Int. J. Numer. Methods Biomed. Eng 33:62836

Xiang J, Tremmel M, Kolega J, Levy El, Natarajan SK, Meng H. 2012. Newtonian viscosity
model could overestimate wall shear stress in intracranial aneurysm domes and underestimate
rupture risk. J. Neurointerv. Surg 4:351-57 [PubMed: 21990529]

Robertson AM, Duan X, Aziz KM, Hill MR, Watkins SC, Cebral JR. 2015. Diversity in

the strength and structure of unruptured cerebral aneurysms. Ann. Biomed. Eng 43:1502-15
[PubMed: 25632891]

Humphrey JD. 2008. Vascular adaptation and mechanical homeostasis at tissue, cellular, and
sub-cellular levels. Cell Biochem. Biophys 50:53-78 [PubMed: 18209957]

Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. 2010. Outflow boundary conditions
for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries.
Comput. Methods Biomech. Biomed. Eng 13:625-40

Formaggia L, Lamponi D, Tuveri M, Veneziani A. 2006. Numerical modeling of 1D arterial
networks coupled with a lumped parameters description of the heart. Comput. Methods Biomech.
Biomed. Eng 9:273-88

Alastruey J, Xiao N, Fok H, Schaeffter T, Figueroa CA. 2016. On the impact of modelling
assumptions in multi-scale, subject-specific models of aortic haemodynamics. J. R. Soc. Interface
13:20160073 [PubMed: 27307511]

Formaggia L, Lamponi D, Quarteroni A. 2003. One-dimensional models for blood flow in
arteries. J. Eng. Math 47:251-76

Detmer FJ, Chung BJ, Mut F, Slawski M, Hamzei-Sichani F, et al. 2018. Development and
internal validation of an aneurysm rupture probability model based on patient characteristics
and aneurysm location, morphology, and hemodynamics. Int. J. Comput. Assist. Radiol. Surg
13:1767-79 [PubMed: 30094777]

Retarekar R, Ramachandran M, Berkowitz B, Harbaugh RE, Hasan D, et al. 2015. Stratification
of a population of intracranial aneurysms using blood flow metrics. Comput. Methods Biomech.
Biomed. Eng 18:1072-82

Annu Rev Biomed Eng. Author manuscript; available in PMC 2022 June 23.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Rayz and Cohen-Gadol

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

Page 25

Ruedinger KL, Medero R, Roldan-Alzate A. 2019. Fabrication of low-cost patient-specific
vascular models for particle image velocimetry. Cardiovasc. Eng. Technol 10:500-7 [PubMed:
31098919]

Yazdi SG, Geoghegan PH, Docherty PD, Jermy M, Khanafer A. 2018. A review of arterial
phantom fabrication methods for flow measurement using PIV techniques. Ann. Biomed. Eng
46:1697-721 [PubMed: 29987543]

Lieber BB, Livescu V, Hopkins LN, Wakhloo AK. 2002. Particle image velocimetry assessment
of stent design influence on intra-aneurysmal flow. Ann. Biomed. Eng 30:768-77 [PubMed:
12220077]

Trager AL, Sadasivan C, Seong J, Lieber BB. 2009. Correlation between angiographic and
particle image velocimetry quantifications of flow diverters in an in vitro model of elastase-
induced rabbit aneurysms. J. Biomech. Eng 131:034506 [PubMed: 19154077]

Ford MD, Nikolov HN, Milner JS, Lownie SP, Demont EM, et al. 2008. PI\VV-measured versus
CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech.
Eng 130:021015 [PubMed: 18412502]

Raschi M, Mut F, Byrne G, Putman CM, Tateshima S, et al. 2012. CFD and PIV analysis of
hemodynamics in a growing intracranial aneurysm. Int. J. Numer. Methods Biomed. Eng 28:214—
28

Roloff C, Stucht D, Beuing O, Berg P. 2019. Comparison of intracranial aneurysm flow
quantification techniques: standard PIV versus stereoscopic PIV versus tomographic PIV versus
phase-contrast MRI versus CFD. J. Neurointerv. Surg 11:275-82 [PubMed: 30061369]

Amili O, Schiavazzi D, Moen S, Jagadeesan B, Van de Moortele PF, Coletti F. 2018.
Hemodynamics in a giant intracranial aneurysm characterized by in vitro 4D flow MRI. PLOS
ONE 13:¢0188323 [PubMed: 29300738]

Brindise MC, Rothenberger S, Dickerhoff B, Schnell S, Markl M, et al. 2019. Multi-modality
cerebral aneurysm haemodynamic analysis: in vivo 4D flow MRI, in vitro volumetric particle
velocimetry and in silico computational fluid dynamics. J. R. Soc. Interface 16:20190465
[PubMed: 31506043]

Sforza DM, Kono K, Tateshima S, Vinuela F, Putman C, Cebral JR. 2016. Hemodynamics in
growing and stable cerebral aneurysms. J. Neurointerv. Surg 8:407-12 [PubMed: 25653228]
Walcott BP, Reinshagen C, Stapleton CJ, Choudhri O, Rayz VL, et al. 2016. Predictive
modeling and in vivo assessment of cerebral blood flow in the management of complex cerebral
aneurysms. J. Cereb. Blood Flow Metab 36:998-1003 [PubMed: 27009946]

Rayz VL, Lawton MT, Martin AJ, Young WL, Saloner D. 2008. Numerical simulation of pre- and
postsurgical flow in a giant basilar aneurysm. J. Biomech. Eng 130:021004 [PubMed: 18412491]
Lawton MT, Abla AA, Rutledge WC, Benet A, Zador Z, et al. 2016. Bypass surgery for the
treatment of dolichoectatic basilar trunk aneurysms: a work in progress. Neurosurgery 79:83-99
[PubMed: 26671632]

Babiker MH, Chong B, Gonzalez LF, Cheema S, Frakes DH. 2013. Finite element modeling of
embolic coil deployment: multifactor characterization of treatment effects on cerebral aneurysm
hemodynamics. J. Biomech 46:2809-16 [PubMed: 24119679]

Morales HG, Larrabide I, Geers AJ, San Roman L, Blasco J, et al. 2013. A virtual coiling
technique for image-based aneurysm models by dynamic path planning. IEEE Trans. Med.
Imaging 32:119-29 [PubMed: 23008248]

Zhang Q, Meng Z, Zhang Y, Yao K, Liu J, et al. 2016. Phantom-based experimental validation
of fast virtual deployment of self-expandable stents for cerebral aneurysms. Biomed. Eng. Online
15:125 [PubMed: 28155680]

Paliwal N, Yu H, Xu J, Xiang J, Siddiqui A, et al. 2016. Virtual stenting workflow with
vessel-specific initialization and adaptive expansion for neurovascular stents and flow diverters.
Comput. Methods Biomech. Biomed. Eng 19:1423-31

Damiano RJ, Ma D, Xiang J, Siddiqui AH, Snyder KV, Meng H. 2015. Finite element modeling
of endovascular coiling and flow diversion enables hemodynamic prediction of complex
treatment strategies for intracranial aneurysm. J. Biomech 48:3332-40 [PubMed: 26169778]

Annu Rev Biomed Eng. Author manuscript; available in PMC 2022 June 23.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Rayz and Cohen-Gadol

128.

129.

130.

131

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

Page 26

Mut F, Chung BJ, Chudyk J, Lylyk P, Kadirvel R, et al. 2019. Image-based modeling of blood
flow in cerebral aneurysms treated with intrasaccular flow diverting devices. Int. J. Numer.
Methods Biomed. Eng 35:e3202

Nair P, Chong BW, Indahlastari A, Ryan J, Workman C, et al. 2016. Hemodynamic
characterization of geometric cerebral aneurysm templates treated with embolic coils. J.
Biomech. Eng 138:021011 [PubMed: 26593324]

Augsburger L, Reymond P, Rufenacht DA, Stergiopulos N. 2011. Intracranial stents being
modeled as a porous medium: flow simulation in stented cerebral aneurysms. Ann. Biomed.
Eng 39:850-63 [PubMed: 21042856]

Raschi M, Mut F, Lohner R, Cebral JR. 2014. Strategy for modeling flow diverters in cerebral
aneurysms as a porous medium. Int. J. Numer. Methods Biomed. Eng 30:909-25

Cebral JR, Mut F, Raschi M, Scrivano E, Ceratto R, et al. 2011. Aneurysm rupture following
treatment with flow-diverting stents: computational hemodynamics analysis of treatment. Am. J.
Neuroradiol 32:27-33 [PubMed: 21071533]

Paliwal N, Damiano RJ, Davies JM, Siddiqui AH, Meng H. 2017. Association between
hemodynamic modifications and clinical outcome of intracranial aneurysms treated using flow
diverters. Proc. SPIE Int. Soc. Opt. Eng 10135:101352F

Mut F, Raschi M, Scrivano E, Bleise C, Chudyk J, et al. 2015. Association between hemodynamic
conditions and occlusion times after flow diversion in cerebral aneurysms. J. Neurointerv. Surg
7:286-90 [PubMed: 24696500]

Peach TW, Ricci D, Ventikos Y. 2019. A virtual comparison of the eCLIPs device and
conventional flow-diverters as treatment for cerebral bifurcation aneurysms. Cardiovasc. Eng.
Technol 10:508-19 [PubMed: 31286438]

Podgorsak AR, Rava RA, Shiraz Bhurwani MM, Chandra AR, Davies JM, et al. 2019.
Automatic radiomic feature extraction using deep learning for angiographic parametric imaging
of intracranial aneurysms. J. Neurointerv. Surg 10.1136/neurintsurg-2019-015214

Montoya JC, Li Y, Strother C, Chen GH. 2018. 3D deep learning angiography (3D-DLA) from
C-arm conebeam CT. Am. J. Neuroradiol 39:916-22 [PubMed: 29567655]

Min JK, Taylor CA, Achenbach S, Koo BK, Leipsic J, et al. 2015. Noninvasive fractional flow
reserve derived from coronary CT angiography: clinical data and scientific principles. JACC
Cardiovasc. Imaging 8:1209-22 [PubMed: 26481846]

Seo JH, Eslami P, Caplan J, Tamargo RJ, Mittal R. 2018. A highly automated computational
method for modeling of intracranial aneurysm hemodynamics. Front. Physiol 9:681 [PubMed:
29946264]

Park A, Chute C, Rajpurkar P, Lou J, Ball RL, et al. 2019. Deep learning—assisted diagnosis

of cerebral aneurysms using the HeadXNet model. JAMA Netw. Open 2:¢195600 [PubMed:
31173130]

Schiavazzi DE, Doostan A, laccarino G, Marsden AL. 2017. A generalized multi-resolution
expansion for uncertainty propagation with application to cardiovascular modeling. Comput.
Methods Appl. Mech. Eng 314:196-221 [PubMed: 28845061]

Schiavazzi DE, Arbia G, Baker C, Hlavacek AM, Hsia TY, et al. 2016. Uncertainty quantification
in virtual surgery hemodynamics predictions for single ventricle palliation. Int. J. Numer.
Methods Biomed. Eng 32:e02737

Sarrami-Foroushani A, Lassila T, Gooya A, Geers AJ, Frangi AF. 2016. Uncertainty
quantification of wall shear stress in intracranial aneurysms using a data-driven statistical model
of systemic blood flow variability. J. Biomech 49:3815-23 [PubMed: 28573970]

Sankaran S, Marsden AL. 2011. A stochastic collocation method for uncertainty quantification
and propagation in cardiovascular simulations. J. Biomech. Eng 133:031001 [PubMed:
21303177]

Langille BL, O’Donnell F. 1986. Reductions in arterial diameter produced by chronic decreases in
blood flow are endothelium-dependent. Science 231:405-7 [PubMed: 3941904]

Cebral JR, Duan X, Gade PS, Chung BJ, Mut F, et al. 2016. Regional mapping of flow and wall
characteristics of intracranial aneurysms. Ann. Biomed. Eng 44:3553-67 [PubMed: 27350071]

Annu Rev Biomed Eng. Author manuscript; available in PMC 2022 June 23.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Rayz and Cohen-Gadol

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

Page 27

Cebral JR, Mut F, Gade P, Cheng F, Tobe Y, et al. 2018. Combining data from multiple sources
to study mechanisms of aneurysm disease: tools and techniques. Int. J. Numer. Methods Biomed.
Eng 34:e3133

Cebral J, Ollikainen E, Chung BJ, Mut F, Sippola V, et al. 2017. Flow conditions in the
intracranial aneurysm lumen are associated with inflammation and degenerative changes of the
aneurysm wall. Am. J. Neuroradiol 38:119-26 [PubMed: 27686488]

Boussel L, Rayz VL, McCulloch C, Martin A, Acevedo-Bolton G, et al. 2008. Aneurysm growth
occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and
growth in a longitudinal study. Stroke 39:2997-3002 [PubMed: 18688012]

Jing L, Fan J, Wang Y, Li H, Wang S, et al. 2015. Morphologic and hemodynamic analysis

in the patients with multiple intracranial aneurysms: ruptured versus unruptured. PLOS ONE
10:e0132494 [PubMed: 26147995]

Kawaguchi T, Nishimura S, Kanamori M, Takazawa H, Omodaka S, et al. 2012. Distinctive flow
pattern of wall shear stress and oscillatory shear index: similarity and dissimilarity in ruptured
and unruptured cerebral aneurysm blebs. J. Neurosurg 117:774-80 [PubMed: 22920960]

Miura Y, Ishida F, Umeda Y, Tanemura H, Suzuki H, et al. 2013. Low wall shear stress is
independently associated with the rupture status of middle cerebral artery aneurysms. Stroke
44:519-21 [PubMed: 23223503]

Kallmes DF. 2012. Point: CFD—computational fluid dynamics or confounding factor
dissemination. Am. J. Neuroradiol 33:395-96 [PubMed: 22268081]

Cebral JR, Meng H. 2012. Counterpoint: Realizing the clinical utility of computational fluid
dynamics—closing the gap. Am. J. Neuroradiol 33:396-98 [PubMed: 22282452]

Detmer FJ, Chung BJ, Mut F, Pritz M, Slawski M, et al. 2018. Development of a statistical model
for discrimination of rupture status in posterior communicating artery aneurysms. Acta Neurochir
160:1643-52 [PubMed: 29922867]

Rispoli VC, Nielsen JF, Nayak KS, Carvalho JL. 2015. Computational fluid dynamics simulations
of blood flow regularized by 3D phase contrast MRI. Biomed. Eng. Online 14:110 [PubMed:
26611470]

Bertoglio C, Moireau P, Gerbeau JF. 2012. Sequential parameter estimation for fluid-structure
problems: application to hemodynamics. Int. J. Numer. Methods Biomed. Eng 28:434-55

Devault K, Gremaud PA, Novak V, Olufsen MS, Vernieres G, Zhao P. 2008. Blood flow in

the circle of Willis: modeling and calibration. Multiscale Model. Simul 7:888-909 [PubMed:
19043621]

Bakhshinejad A, Baghaie A, Vali A, Saloner D, Rayz VL, D’Souza RM. 2017. Merging
computational fluid dynamics and 4D flow MRI using proper orthogonal decomposition and
ridge regression. J. Biomech 58:162-73 [PubMed: 28577904]

Raissi M, Karniadakis GE. 2018. Hidden physics models: machine learning of nonlinear partial
differential equations. J. Comput. Phys 357:125-41

Raissi M, Perdikaris P, Karniadakis GE. 2019. Physics-informed neural networks: a deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. J. Comput. Phys 378:686-707

Annu Rev Biomed Eng. Author manuscript; available in PMC 2022 June 23.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Rayz and Cohen-Gadol Page 28

Figure 1.
Imaging cerebral aneurysm anatomy and hemodynamics. (4) DSA image. (6) CTA image.

(¢) CE-MRA maximum-intensity projection for an ICA aneurysm. (d) 4D flow MRI
streamlines for an ICA aneurysm. Abbreviations: CE-MRA, contrast-enhanced magnetic
resonance angiography; CTA, computed tomography angiography; DSA, digital subtraction
angiography; ICA, internal carotid artery; MRI, magnetic resonance imaging. Panel ¢
courtesy of Dr. David Saloner. Panel d courtesy of Dr. Susanne Schnell.
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Figure 2.
Numerical simulations of blood flow in an internal carotid artery aneurysm. (&) Flow

streamlines. (4) Wall shear stress distribution. The computational model is generated
from magnetic resonance imaging/magnetic resonance angiography data obtained at San
Francisco VA Medical Center.

Annu Rev Biomed Eng. Author manuscript; available in PMC 2022 June 23.



1duosnuey Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuey Joyiny

Rayz and Cohen-Gadol Page 30

Case 1

Case 2

Pretreatment Posttreatment

0.50
0.40

D
%

v‘ ‘ )

Velocity (m/s)

Figure 3.
Local hemodynamics before and after flow diverter device treatment in a representative

successful case, along with clinical images before treatment and at 12-month follow-up.
Figure adapted from Reference 133, courtesy of Dr. Hui Meng.
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