Skip to main content
. 2022 May 30;11(6):1085. doi: 10.3390/antiox11061085

Table 1.

Effects of resveratrol in diabetes.

Study Type Model Dose/Dosing Method/Period Outcome Proposed Mechanism Ref.
In vivo SD rats (STZ DM model) RES 0.5 mg/kg, gavage for 8–14 days ↓Insulin resistance
↑Glucose uptake
↑Hepatic glycogen synthesis
[14]
In vivo Wistar rats (STZ-NA model) RES 5 mg/kg, oral for 30 days ↓Blood glucose
↓Plasma insulin and hemoglobin
↓AST, ALT, ALP
[15]
In vivo db/db mice (T2DM model) RES (0.3% mixed in chow) for 8 weeks ↑Mitochondrial oxidative stress and biogenesis
↓Blood glucose
RES improves oxidative stress and promotes mitochondrial biogenesis through normal Mn-SOD function and glycolipid metabolism. [16]
In vivo C57BL/6 mice (HFD) RES 0.03 µg/µL minipump
Intracerebroventricularly, 14 weeks
↓Hyperglycemia
↓Pyruvate-induced hyperglycemia
RES improves hypothalamic NF-κB inflammatory signal transduction by decreasing total and acetylated RelA/P65 protein content. [17]
In vivo ob/ob mice (T2DM model) RES 5, 15, 50 mg/kg, oral for 4 weeks ↓Hyperglycemia
↓Insulin resistance
↓TG, TC, ADPN, FFA
[18]
In vivo NOD mice (T1DM model) RES 250 mg/kg oral or subcutaneously inject for 32 weeks ↓Expression of inflammatory genes
↓Expression of CCR6
RES blocks CCR6 and CD11b (+) F4/80(hi) macrophages migration from peripheral lymphoid organs to the pancreas. [19]
In vivo C57BL/6 mice (HFD) RES (0.04% mixed in chow) for 6 months ↑Survival
↓Insulin sensitivity
↑Mitochondrial number
RES reduces IGF-I levels and increases AMPK and PGC-1α activity. [20]
In vivo C57BL/6 mice (HFD) RES 400 mg/kg, oral for 16 weeks ↓Insulin resistance
↑Mitochondrial biogenesis
↑Oxidative phosphorylation
RES improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. [21]
In vivo SD rats (HCF) RES 1 mg/kg, oral for 15 days or 15 weeks ↑Glucose uptake
↑Membrane trafficking activity of GLUT4
↑Phosphorylation of insulin receptor
ER is a key regulator in RES-stimulating insulin-dependent and -independent glucose uptake. [22]
In vivo Wistar rats (STZ/STZ-NA/ insulin-resistant diabetic model) RES 3 or 10 mg/kg, oral for 90 min ↓Blood glucose
↓Insulin resistance
↑GLUT4 expression
RES promotes skeletal muscle glucose uptake through the PI3K-Akt signaling pathway. [23]
In vivo NOD mice (T1DM model) RES 200 mg/kg, gavage for 28 days ↓Blood glucose
↓Inflammatory factors
RES improves renal function not only by its anti-inflammatory effect but also by improving the metabolic memory of hyperglycemia. [24]
In vivo SD rats (STZ model) RES 5, 10 mg/kg, gavage for 1–7 months ↓Blood glucose
↑Weight
RES significantly inhibited the HG-induced decreases in glutamate uptake, GS activity, GLAST, and GS expression. [25]
In vivo Albino rats (Alloxan model) RES 30 mg/kg, gavage for 30 days ↓Hyperglycemia [26]
In vivo ICR mice (HFD) RES 50 mg/kg, oral for 10 days ↓HIF-1α
↓Inflammation in the adipose tissue
↓Insulin sensitivity
RES reduces cAMP accumulation by preserving PDE3B, thereby preventing PKA/HSL activation and lipolysis, and decreasing FFAs influx and DAG accumulation, thereby improving insulin signaling by inhibiting PKCθ translocation. [27]
In vivo Wistar rats (STZ model) RES 5 mg/kg, oral for 8 weeks ↓Blood glucose
↑Antioxidant status
RES significantly improved the expression of TGF-β1, fibronectin, NF-κB/P65, Nrf2, Sirt1, and FoxO1 in the kidney. [28]
In vivo db/db, db/m mice (T2DM model) RES 10 mg/kg, gavage for 12 weeks ↓Apoptosis of podocytes
↑Autophagy of podocytes
Resveratrol regulates autophagy and apoptosis of podocytes by inhibiting microRNA-383-5p. [29]
In vivo Wistar albino rats (STZ model) RES 20 mg/kg, gavage for 8 weeks ↓Hyperglycemia
↓Serum MDA concentrations
Resveratrol inhibits oxidative stress and increases the potential of extra-hepatic tissues to absorb glucose. [30]
In vivo SD rats (HFS model) RES 147.6 mg/kg, oral for 12 weeks ↓Dysregulated gluconeogenesis
↓Dysregulation of several metabolic genes
[31]
In vivo ICR mice (STZ model) RES 50 mg/kg, oral for 7 days ↓TXNIP/NLRP3 inflammasome activation
↓Cell apoptosis
↓ROS-associated mitochondrial fission
Resveratrol inhibits Drp1 activity to protect mitochondrial integrity and inhibits endoplasmic reticulum stress to prevent NLRP3 inflammasome activation. [32]

ADPN: Adiponectin; AMPK: Adenosine 5-monophosphate (AMP)-activated protein kinase; ALP: Alkaline phosphatase; ALT: Alanine transaminase; AST: Aspartate transaminase; cAMP: Cyclic AMP; CCR6: Chemokine (C-C motif) ligand 6; DAG: Diacylglycerol; DM: Diabetes mellitus; Drp1: Dynamin-related protein 1; ER: Estrogen receptor; FFA: Free fatty acid; FoxO1: Forkhead transcription factor 1; GLAST: Glutamate transporters; GLUT4: Glucose transporter 4; GS: Glutamine synthetase; HCF: High cholesterol-fructose; HFS: High-fat and sucrose diet; HIF-1α: Hypoxia-inducible factor 1α; IGF-I: Insulin-like growth factor-1; MDA: Malondialdehyde; Mn-SOD: Manganese superoxide dismutase; NF-κB: Nuclear factor-kappaB; NLRP3: NOD-like receptor thermal protein domain associated protein 3; Nrf2: Nuclear factor E2-related factor; PDE3B: Phosphodiesterase 3B; PGC-1α: Peroxisome proliferator-activated receptor-gamma coactivator 1alpha; PI3K-Akt: phosphatidylinositol 3-kinase-Akt; PKCθ: Protein kinase Cθ; RES: Resveratrol; SIRT1: Sirtuin 1; STZ-NA: Streptozotocin and Nicotinamide; TC: Total cholesterol; TG: Triglycerides; TGF-β1: Transforming growth factor-beta1; TXNIP: Thioredoxin-interacting protein. ↑: Increase; ↓: Decrease.