Skip to main content
. 2022 May 30;11(6):1085. doi: 10.3390/antiox11061085

Table 2.

Effects of resveratrol in diabetic cardiovascular complications.

Study Type Model Dose/Dosing Method/Period Outcome Proposed Mechanism Ref.
In vivo SD rats (STZ DM model) RES 2.5 mg/kg, oral 15 days ↑Phosphorylation of eNOS
↓Blood glucose
RES improves diabetic myocardial GLUT4 translocation and glucose uptake through the AMPK pathway and by regulating the status of Cav-1 and Cav-3. [100]
In vivo Wistar rats (STZ DM model) RES 5 mg/kg, intraperitoneal inject 42 days ↑Contractile responses to noradrenaline
↑Relaxation response to Ach
↓Blood glucose
[101]
In vivo C57BL/6 mice (HFD) and db/db mice (T2DM model) RES 5, 30, 50 mg/kg, oral for 4 weeks ↓Plasma insulin levels
↓Hyperglycemia↓Fasting BP
↓Angiogenesis
↑Endothelial protection
RES protects diabetic wound healing through its SIRT1-dependent endothelial cell protection and pro-angiogenesis, involving inhibition of FOXO1 and de-inhibition of c-Myc expression. [102]
In vivo C57BL/6 mice (HFD) and db/db mice (T2DM model) RES (0.3% mixed in chow) for 8 weeks ↓Blood glucose, FFA
↓ICAM-1, VCAM-1, MCP-1
↓NF-κB activity
RES ameliorates diabetic vascular inflammation and macrophage infiltration by inhibiting the NF-κB pathway. [103]
In vivo SD rats (STZ model/HFD) RES 10 mg/kg, gavage for 8 months ↓Insulin sensitivity
↓TG, TC, LDLc
↓ROS
UCP2 mediates RES to improve cardiac function, inhibit myocardial cell apoptosis, and participate in the improvement of mitochondrial function. [104]
In vivo CD1 mice (STZ T1DM model) RES 100 mg/kg, oral for 3 months ↑SERCA2 promoter activity
↑SIRT1
RES enhances SERCA2a expression and improves cardiac function through activation of SIRT1. [105]
In vivo SD rats (STZ-NA model) RES 5 mg/kg, oral for 4 months ↓Antioxidant enzymes activities
↓Oxidative markers
RES treatment may delay or attenuate the progression of diabetes-related cardiac complications by reducing oxidative stress. [106]
In vivo SD rats (HFD T2DM model) RES 50 mg/kg, gavage for 16 weeks ↓Cardiac dysfunction and hypertrophy
↓SOD activity
↓ATP content
RES activates SIRT1 and increases PGC-1α deacetylation, thereby regulating mitochondrial function and alleviating cardiac injury in diabetic rats. [107]
In vivo mice (STZ T1DM model) RES 25 mg/kg, intraperitoneal inject for 5 days ↓Apoptosis
↑Mitochondrial biogenesis
Activation of SIRT1 by RES ameliorates myocardial injury in DCM through PGC-1α -mediated mitochondrial regulation. [108]
In vivo SD rats (STZ T1DM model) RES 80 mg/kg, intraperitoneal inject for 12 weeks ↑Glucose and lipid metabolism
↑Cardiac function
↓TNF-α, IL-6, IL-1β
Res alleviates cardiac dysfunction caused by diabetes through down-regulation of the AT1R-ERK/P38 MAPK signaling pathway. [109]
In vivo ZDF rats RES 200 mg/kg, oral for 6 weeks ↑The apparent Km to palmitoyl-CoA
↓Mitochondrial reactive oxygen
↓Lipid accumulation
Resveratrol reduces liver fibrosis, p-COA respiratory sensitivity, active lipid accumulation, and mitochondrial reactive oxygen emission rates. [110]
In vivo Wistar albino rats (DHEA-induced PCOS model) RES 20 mg/kg, oral for 28 days ↓Serum testosterone levels
↓Number of TUNEL (+) granulosa cells
↓Number of Graafian follicles
↓Body weights
Resveratrol activates SIRT1 and AMPK to induce antioxidant and anti-inflammatory systems of PCOS. [111]
In vivo ICR mice (HFD model) RES 50 mg/kg, gavage for 7 days ↓Collagen deposition
↓HIF-1α accumulation
↓Fibrosis and inflammation
Resveratrol reduces HIF-1α accumulation by promoting proteasome degradation of HIF-1α by regulating AMPK/SIRT1. [112]
In vivo SD rats (STZ model) RES 0.1, 1, 5, 10, 50 μg/kg, intravitreal inject or tail vein injects for 12 weeks ↑Insulin level
↓AGEs, LDL, Ox-LDL, caspase 3 activity
↓Damage of DR
Resveratrol reduces the inflammatory state and damage of DR through PON1. [113]
In vivo SD rats (STZ T1DM model) RES 25 mg/kg, oral for 8 weeks ↓Cardiac cell size
↓Oxidative stress
↓Fibrosis
Resveratrol activates SIRT3, maintains mitochondrial function, and regulates the acetylation of TFAM. [114]

Ach: Acetylcholine; AGEs: Advanced glycation end products; AMPK: Adenosine 5-monophosphate (AMP)-activated protein kinase; AT1R: AGTR1, Angiotensin II receptor type 1; ATP: Adenosine triphosphate; BP: Blood pressure; Cav-1: Caveolin 1; Cav-3: Caveolin 3; DHEA: Dehydroepiandrosterone; DM: Diabetes mellitus; DR: Diabetic retinopathy; eNOS: Endothelial nitric oxide synthase; FFA: Free fatty acid; FOXO1: Forkhead transcription factor 1; GLUT4: Glucose transporter 4; HIF-1α: Hypoxia inducible factor 1 subunit alpha; ICAM-1: Intercellular adhesion molecule 1; IL-1β: Interleukin 1 Beta; IL-6: Interleukin 6; LDL: Low density lipoprotein; LDLc: Low-density lipoprotein cholesterol; MAPK: Mitogen-activated protein kinase; MCP-1: CCL2, C-C motif chemokine ligand 2; NF-κB: Nuclear factor kappa B subunit 1; Ox-LDL: Oxidized low-density lipoprotein; p-COA: palmitoyl-CoA; PCOS: Polycystic ovary syndrome; PGC-1α: Peroxisome proliferator-activated receptor-gamma coactivator 1alpha; PON1: Paraoxonase 1; RES: Resveratrol; ROS: Reactive oxygen species; SERCA2: ATP2A2, ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2; SIRT1: Sirtuin 1; SIRT3: Sirtuin 3; SOD: Superoxide dismutase; T1DM: Type 1 diabetes mellitus; T2DM: Type 2 diabetes mellitus; TC: Total cholesterol; TFAM: Recombinant transcription factor A, Mitochondrial; TG: Triglycerides; TNF-α: Tumor necrosis factor; UCP2: Uncoupling protein 2; VCAM-1: Vascular cell adhesion molecule 1. ↑: Increase; ↓: Decrease.