Table 1.
Nisin variants produced by bioengineering in different hosts.
Host | Methods | Prenisin | Activation of Prenisin | Nisin Sensitive Indicator | Variants | Variant Features | References |
---|---|---|---|---|---|---|---|
L. lactis NZ9800 1 | site-directed mutagenesis | No | N/A | M. flavus, S. thermophilus | ΔN20, ΔM21 | inactive in the pore formation assay | [22] |
L. lactis NZ9800 1 | site-directed mutagenesis | No | N/A |
M. flavus S. faecalis, L. monocytogenes, S. cerevisiae, G. candidum. |
N20K, M21K | higher solubility, displayed antimicrobial activity against some G− strains | [49] |
L. lactis NZ9800 1 | random mutagenesis, saturation mutagenesis | No | N/A |
L. lactis ssp. cremoris HP, E. faecium, S. agalactiae, S. aureus, L. monocytogenes. |
N20P, M21V, K22S | enhanced antimicrobial activity | [50] |
L. lactis NZ9800 1 | random mutagenesis, saturation mutagenesis, site-directed mutagenesis |
No | N/A | A series of G+ positive and G− bacteria 5 | S29A/D/E/Q | enhanced antimicrobial activity against both G+ and G− bacteria | [56] |
L. lactis NZ9800 1 | saturation mutagenesis | No | N/A |
Streptococcus mitis, L. lactis UCC90, L. lactis HP, L. monocytogenes, S. agalactiae |
SVA, NAK | enhanced antimicrobial activity against L. monocytogenes in complex matrices | [76] |
L. lactis NZ9800 (L. lactis NZ9700ΔnisA) | saturation mutagenesis, site-directed mutagenesis | No | N/A | Six Gram-positive bacteria | K12A | enhanced antimicrobial activity | [44] |
L. lactis NZ9000 | site-directed mutagenesis | Yes | NisP (expressed by indicator strain) | L. lactis NZ9000 -pNZnisPT | variants of precursor nisin with negatively charged residues 11 | severe decrease in antimicrobial activity | [10] |
L. lactis NZ9800 1 | saturation mutagenesis | No | N/A |
S. agalactiae, L. lactis HP M. smegmatis |
AAK, NAI, SLS | enhanced antimicrobial activity | [52] |
L. lactis NZ9000 | site-directed mutagenesis | Yes | trypsin | A series of Gram-positive bacteria 6 | 20NK21, 20NLMK23, 20NVMK23, 20NIMK23 20NIVMK24 |
enhanced antimicrobial activity against specific strains at certain temperatures | [48] |
L. lactis NZ9800 1 | saturation mutagenesis | No | N/A |
S. pseudintermedius, S. intermedius, S. aureus, L. lactis HP, S. uberis, B. cereus |
I4V | enhanced antimicrobial activity and anti-biofilm activity against S. pseudintermedius and S. intermedius | [46] |
E. coli | ASM 4 | Yes | trypsin | L. lactis NZ9000 NlacZ | L16A, L16H, L16V, M21A, M21D, M21N | increased induction activity and antimicrobial activity | [77] |
L. lactis NZ9800 1 | site-directed mutagenesis | No | N/A |
S. aureus SA113, S. pseudintermedius DSM21284 |
M21V, I4V | The activity of the nisin derivative and antibiotic combination was higher than that of the nisin and antibiotic combination | [29] |
Trp-auxotrophic Lactococcus lactis NZ9000 | SPI 2 | Yes | NisP | L. lactis MG1363 | four different positions of nisin Trp and Trp analogue variants 12 | Nisin variants containing tryptophan analogues | [64] |
E. coli | SCS 3 | Yes | trypsin | M. flavus | Ser3TAG | Nisin variant with novel macrocyclic topologies | [65] |
Pro-auxotrophic E. coli strain | SPI 2 | Yes | NisP (expressed by indicator strain) | L. lactis NZ9000 | P9X 7 | Nisin variant with 6 proline analogues | [63] |
Lactococcus lactis NZ9000, E. coli | SCS 3 | Yes | NisP (expressed by indicator strain) | L. lactis NZ9000 | I4BocK 8, K12BocK 8 | enhanced antimicrobial activity | [78] |
E. coli, C321.ΔprfA-T7RNAPΔrneΔompTΔlon | site-directed mutagenesis | Yes | trypsin | L. lactis HP | Ser5m-BrPhe | Nisin variant with Phe analogues | [67] |
L. lactis NZ9000 | site-directed mutagenesis | Yes | NisP | L. lactis NZ9000Cm/NisI/NisFEG | 20NMKIV24 | decreased recognition of immunity protein | [54] |
L. lactis NZ9000 | saturation mutagenesis | Yes | NisP | L. lactis NZ9000-Cm/NisI/NisFEG/SaNSR /SaNsrFP | I1X 9 | I1X variants influenced antimicrobial activity and the efficiency of the immunity and resistance proteins. | [47] |
L. lactis NZ9800 1 | saturation mutagenesis | No | N/A | L. lactis subsp. diacetylactis DRC3 (expressing the nisin resistance protein (NSR)) | S29P | The variant exhibited a 20-fold increase in specific activity against a strain expressing the nisin resistance protein. | [60] |
L. lactis NZ9000 | site-directed mutagenesis | Yes | NisP | L. lactis NZ9000 pNZ-SV-Erm/SaNSR/SaNSRS236A | C28P | 3 times more efficient against SaNSR-expressing L. lactis cells | [59] |
L. lactis NZ9800 1 | site-directed mutagenesis | No | N/A |
Lb. plantarum UCC16, Lb. brevis SA-C12, L. lactis ssp. cremoris HP |
P9T, P9S | The variants retain induction capacity, while most of the antimicrobial activity is abolished. | [79] |
Met-auxotrophic Lactococcus lactis NZ9000 | SPI 2 | Yes | NisP | L. lactis and six Gram-positive pathogenic strains 10 | M21V-M17Aha + M21VM17Hpg | The variant is the most active dimeric nisin construct | [68] |
L. lactis NZ9800 1 | site-directed mutagenesis | No | N/A | L. innocua FH1836lux | M17Q + N20P, M17Q + S29E | The combinations of nisin derivative exhibited enhanced anti-listerial activity when used together compared to when used alone | [80] |
L. lactis NZ9000 | site-saturation mutagenesis | Yes | Not mentioned |
S. aureus RF122, S. aureus NCDO1499, S. agalactiae ATCC13813, L. lactis HP, L. lactis MG1363 |
M17Q, T2L, HTK | improved specific activity against some Staphylococci but unchanged or reduced activity against dairy Lactococci | [81] |
L. lactis NZ9800 1 | site-directed mutagenesis | No | N/A |
T. thermophilus HB27, T. scotoductus Se-1 |
M17Q, M21F | enhanced specific activity against Thermus strains | [55] |
1L. lactis NZ9800: L. lactis NZ9700∆nisA. 2 SPI = selection pressure incorporation. 3 SCS = stop codon suppression. 4 ASM = alanine scanning mutagenesis. 5 Targets included the antibiotic resistant S. aureus strains ST 528 (MRSA), ST 530 (MRSA), hVISA 32679, as well as S. aureus RF122, Streptococcus mitis, L. lactis HP and MG1363, Bacillus cereus DPC 6088/6089, Enterococcus durans and L. monocytogenes strains 10403S and LO28. 6 Enterococcus faecalis VE14089, Listeria monocytogenes, Bacillus cereus 4147, Bacillus cereus 4153, Lactococcus lactis MG1363, Bacillus cereus (L’29) 16, Micrococcus luteus, Streptococcus pneumoniae R6, Bacillus sporothermodurans lC4, S. aureus. 7 X represents six proline analogues: (4R)-fluoroproline, (4R)-hydroxyproline, (4R)-methanoproline, (4S)-fluoroproline, (4S)-hydroxyproline, (4S)-methanoproline. 8 BocK = Nε-Boc-L-lysine charged amino acids. 9 X includes four classes depending on the amino acid property: (1) aliphatic amino acids (L, A, V, G); (2) aromatic amino acids (W, F, Y); (3) C, T, S; (4) charged amino acids (K, R, H, Q, E, N, D). 10 The tested strains included two Staphylococci, two Enterococci, Bacillus cereus and Listeria monocytogenes. 11 NisA-H6 T2D P9D with two negatively charged residues, NisA-H6 T2D P9D K12D N20E with four negatively charged residues, and NisA-H6 T2D P9D K12D N20E H27D K34E with six negatively charged residues. 12 Tryptophan and tryptophan analogue variants at four positions of nisin: I1W/5FW/5HW/5MeW, I4W/5FW/5HW/5MeW, M17W/5FW/5HW/5MeW, V32W/5FW/5HW/5MeW.