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Abstract: Background: Bacteria produce volatile organic compounds (VOCs) during growth, which
can be detected by colorimetric sensor arrays (CSAs). The SpecifAST® system (Specific Diagnostics)
employs this technique to enable antibiotic susceptibility testing (AST) directly from blood cultures
without prior subculture of isolates. The aim of this study was to compare the SpecifAST® AST
results and analysis time to the VITEK®2 (bioMérieux) system. Methods: In a 12-month single site
prospective study, remnants of clinical positive monomicrobial blood cultures were combined with
a series of antibiotic concentrations. Volatile emission was monitored at 37 ◦C via CSAs. Minimal
Inhibitory Concentrations (MICs) of seven antimicrobial agents for Enterobacterales, Staphylococcus,
and Enterococcus spp. were compared to VITEK®2 AST results. MICs were interpreted according to
EUCAST clinical breakpoints. Performance was assessed by calculating agreement and discrepancy
rates. Results: In total, 96 positive blood cultures containing Enterobacterales, Staphylococcus, and Ente-
rococcus spp. were tested (269 bug–drug combinations). The categorical agreement of the SpecifAST®

system compared to the VITEK®2 system was 100% and 91% for Gram-negatives and Gram-positives,
respectively. Errors among Gram-positives were from coagulase-negative staphylococci. Overall
results were available in 3.1 h (±0.9 h) after growth detection without the need for subculture steps.
Conclusion: The AST results based on VOC detection are promising and warrant further evaluation
in studies with a larger sample of bacterial species and antimicrobials.

Keywords: direct antimicrobial susceptibility testing; blood cultures; phenotypic antimicrobial
susceptibility testing; volatile organic compounds; rapid diagnostics

1. Introduction

Rapid antimicrobial susceptibility test (AST) results of bacteria causing bloodstream
infections are essential to guide targeted antimicrobial therapy, as ineffective empirical
treatment increases the risk for morbidity and mortality in bacteremia [1,2]. Phenotypic
AST results are preferable given the poor correlation between genotypes and phenotypes,
the high number of resistance genes, and the lack of information on Minimal Inhibitory
Concentrations (MIC) for clinical decision-making [3,4]. Phenotypic AST is dependent on
bacterial growth rate and the lag phase of microbial growth is one of the time-limiting
factors [3]. Current AST results using automated growth-based systems (e.g., VITEK®2,
bioMérieux, Inc., Durham, NC, USA and BD PHOENIXTM, Franklin Lakes, NJ, USA)
often take at least two days after bacterial growth detection, partly due to the need for a
subsequent subculture step, to standardize the initial inoculum size for reliable results [5–9].
AST results during a single working shift are not possible when a subculture step is required,
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like in current AST methods. Subcultures might be unnecessary when measuring viability
indirectly, e.g., by volatile organic compound (VOC) detection for AST, thus potentially
enabling AST results within a single working shift.

VOCs are small metabolites (<300 Da) produced during bacterial growth. Several
functions of VOCs have been described involving the interaction between other physically
separated micro-organisms, such as modulation of virulence or growth, by diffusing in
water or air [10]. The group of VOCs is heterogeneous, involving different chemical
classes such as alcohols, ketones, and benzenoids [11]. Various biosynthetic pathways
are involved in the production of VOCs contributing to this high diversity. Some VOCs
can be seen as common metabolites, produced by many different bacteria or bacterial
groups, while other VOCs are specific to certain genera or even species [10]. Due to the
unique fingerprint of VOCs in bacterial species, the differentiation between species is
possible and has been studied using different detection methods, such as an electric nose,
ion mobility spectrometry, and gas chromatography/mass spectrometry (GC/MS) [12–16].
Nevertheless, these techniques come with some challenges, such as the inability to identify
and quantify VOCs (electric nose), the large, lab-based instruments (GC-MS), and high
costs (GC-MS and ion mobility spectrometry) [17,18]. In contrast, colorimetric sensor array
(CSA) is a technique that measures VOCs by a sensor with chemo responsive indicators,
changing color when exposed to different VOCs. This results in a fast, inexpensive, portable,
and simple to operate method [18,19]. Successful differentiation between bacterial species
using CSA has been described [19,20]. Additionally, identification of different yeast species
was described previously. with promising results [21]. Susceptibility testing based on
VOC detection is not widely studied, but discrimination between susceptible and resistant
Staphylococcus aureus and Escherichia coli strains (for oxacillin and ampicillin or gentamicin,
respectively) have been described previously [22–24]. The SpecifAST® system (Specific
Diagnostics, CA, USA), a prototype of the RevealASTTM system, measures VOCs of bacteria
combined with a selection of antibacterial agents by CSA.

The aim of our study was to compare SpecifAST® AST results and the corresponding
analysis time to the VITEK®2 AST system directly from clinical positive blood cultures
with Enterobacterales, Staphylococcus, and Enterococcus spp.

2. Methods

In a 12-month single site prospective laboratory study, the SpecifAST® system was
evaluated in comparison to the current standard practice, using remnant materials of
positive blood cultures collected in routine clinical care.

2.1. Objectives

The primary objective of this study was to assess the performance of the SpecifAST®

system compared to the VITEK®2 system. Performance was measured by the categorical
agreement, defined as agreement for the same categorical interpretation (susceptible (S),
susceptible increased exposure (I), or resistant (R)) based on MIC values, in accordance
with the 2021 European Committee on Antimicrobial Susceptibility Testing (EUCAST)
breakpoints [25]. The analysis time in hours and number of Colony Forming Units per
milliliter (CFU/mL) were measured as secondary objectives.

2.2. Sample Selection

From May 2017 until June 2018, blood cultures were selected for SpecifAST® testing
at the Medical Microbiology department of the Amsterdam University Medical Centers.
Microbial growth in blood cultures was detected in the automated blood culture systems
BACTEC™ FX (BACTEC; Becton Dickinson, Sparks, MD, USA) or BACT/ALERT®3 D
(BacT/ALERT 3D; bioMérieux, Marcy, L’Étoile, France), followed by Gram-staining. Aer-
obic blood culture bottles containing Gram-negative rods or Gram-positive cocci were
eligible for SpecifAST® testing (Figure 1, SpecifAST®, Specific Diagnostics, San Jose, CA,
USA). One positive blood culture was randomly selected by the study staff, once or twice a
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day, due to limited capacity of the SpecifAST® system. Exclusion criteria were (1) positive
blood cultures of the same patient enrolled in the past 30 days, to ensure enrolment of
unique bacteremia episodes, or (2) polymicrobial blood cultures.
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Figure 1. Study procedures MALDI-TOF: matrix-assisted laser desorption-ionization/time-of-flight
mass spectrometry.

2.3. Sample Preparation for SpecifAST® Testing

Blood cultures containing Gram-positive bacteria and Gram-negative bacteria were
diluted 1:150 and 1:500, respectively, in cation adjusted Mueller Hinton II Broth (CA-MHB
II). Samples were combined 1:1 with a range of antibiotics for SpecifAST® testing (Table 1,
Figure 2). Enterobacterales spp. were tested for susceptibility to cefotaxime, ciprofloxacin,
and meropenem; Enterococcus spp. were tested for susceptibility to vancomycin and
ampicillin; and Staphylococcus spp. were tested for susceptibility to cefoxitin, oxacillin,
and ampicillin (Table 1). The SpecifAST® software for VOC pattern analysis was trained
for these three groups of (easily growing) bacterial species, which are also the most often
identified in clinical blood cultures in our academic hospital. Each bug–drug combination
was tested in triplicate, including a positive (no antibiotics) and negative control (no
bacteria). Subcultures were performed to verify the number of CFU at the time of testing.

Table 1. Combinations of micro-organisms and antimicrobial agents (bug–drug combinations) and
corresponding antibiotic concentration ranges tested.

Micro-Organism
Group Antimicrobial Agent Specifast®

Concentration Range
VITEK2®

Concentration Range

Enterobacterales spp.
Ciprofloxacin
Cefotaxime
Meropenem

0.25–4 µg/mL
0.25–64 µg/mL
0.25–16 µg/mL

0.25–4 µg/mL
0.25–64 µg/mL
0.25–16 µg/mL

Staphylococcus spp.
Oxacillin + 2% NaCl a

Vancomycin
Cefoxitin

0.25–4 µg/mL
0.5–32 µg/mL

6 µg/mL

0.25–4 µg/mL
0.5–32 µg/mL

6 µg/mL

Enterococcus spp. Ampicillin
Vancomycin

2–32 µg/mL
0.5–64 µg/mL

2–32 µg/mL
0.5–32 µg/mL

NaCl: Sodium chloride; a The first seven Staphylococcal blood cultures were tested with solely oxacillin, in the
consecutive samples Oxacillin with two percent of sodium chloride was used.
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2.4. SpecifAST® Testing

Colorimetric Sensor Array (CSA) caps (Specific Diagnostics) were used for detecting
VOCs. Once the vials were inoculated with the bacterial suspension, a pre-assembled CSA
cap was screwed on top of the vial. The cap contained six indicator spots which react to
VOCs via color change in the presence of bacterial growth. The vials were inverted on a
flat-bed scanner with the CSA caps facing the scanner. This assembly was incubated at
37 ◦C at 200 rpm, and VOC patterns were measured every 10 min. The total run time was
12 h, collecting a total of 72 images by the completion of the assay. An early (2018) version
of Specific Diagnostics proprietary software was used to monitor the array of volatile-
responsive sensors positioned in the headspace above each growing sample. Divergence
of sensor responses in positive controls versus those with antibiotics were utilized to
determine MICs.

2.5. Comparator Method

VITEK®2 (bioMérieux, Marcy, L’Étoile, France) AST was used as a comparator method
(Figure 1). VITEK®2 AST cards N344, AST P567, and AST P586 were used for AST of
Enterobacterales, Staphylococcus, and Enterococcus spp., respectively, based on matrix-assisted
laser desorption-ionization/time-of-flight mass spectrometry (MALDI-TOF MS, Bruker
Daltonics, BD, Bremen, Germany) results for bacterial identification after subculture on
solid media.

2.6. Data Analysis

Positive blood cultures containing Enterobacterales, Staphylococcus, or Enterococcus spp.
were eligible for analysis. Samples with errors leading to missing VITEK®2 or SpecifAST®

test results were excluded from the analysis. MIC values were interpreted and compared in
accordance with the EUCAST clinical breakpoints [25]. For all Staphylococcus spp., cefoxitin
6 mg/L breakpoint was used. In bug–drug combinations without categorical agreement,
discrepancy rates were calculated: very major error (VME; falsely susceptible), major
error (ME; falsely resistant), and minor error (mE; susceptible, increased exposure versus
susceptible or resistant) [26]. Numbers and percentages of agreement and corresponding
error rates were calculated using IBM® SPSS® Statistics 26.
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2.7. Ethical Considerations

This study was exempted from medical ethical review and informed consent as
anonymized leftover materials were used. Specimens were only used when patients
had not indicated any objection for anonymized research use of specimens according to
local regulations.

3. Results

From May 2017 until June 2018, 136 aerobic positive clinical aerobic blood cultures
containing Gram-positive cocci or Gram-negative rods were tested in the SpecifAST® and
VITEK®2 system. Twenty-five samples were excluded for analysis due to polymicrobial
growth (6) or non-eligible bacterial species such as Streptococcus spp. or Pseudomonas
aeruginosa (19) (Figure 3; Supplemental Material Table S1). Another 15 blood cultures were
excluded since tests results (44 bug/drug combinations) were not available due to errors:
13 preparation errors, 26 SpecifAST® technical errors, and 2 errors due to lack of bacterial
growth in both SpecifAST® and VITEK®2 testing (Supplemental Material Table S2).
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Figure 3. Baseline figure in and excluded samples. Inclusion criteria were microbial growth de-
tection in aerobic blood culture bottles and monomicrobial gram stain result with gram-positive
cocci or gram-negative rods and no previous enrolment of the same patient in the past 30 days.
Exclusion criteria were polymicrobial blood cultures, micro-organisms, other than Enterobacterales
spp., Staphylococcus spp. or Enterococcus spp., and errors leading to missing data. Error details are
provided in Supplementary Table S2. B/d: bug–drug combinations. a 25 blood culture samples and
all corresponding b/d combinations (67) were excluded from analysis based on polymicrobial growth
or micro-organism identification result. b In 15 blood culture samples, all b/d combinations were
excluded from analysis due to errors or absence of microbial growth. In 2 blood culture samples, one
or more b/d combinations were excluded from analysis due to errors or absence of microbial growth.
In total, 41 b/d combinations were excluded.

A total of 96 positive blood cultures (269 bug–drug combinations) were included for
analysis: 46 Enterobacterales spp. (47.9%), 40 Staphylococcus spp. (41.7%), and 10 Enterococcus
spp. (10.4%). Eight different Enterobacterales spp., mostly Escherichia coli (n = 28, 60.9%), four
different Staphylococcus spp. and two different Enterococcus spp., were identified (Table 2).
No meropenem resistant Enterobacterales spp. or methicillin resistant Staphylococcus aureus
were found (Table 3). One vancomycin resistant Enterococcus spp. was found. In four
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samples, species were identified as Extended Spectrum Beta Lactamase (ESBL) producing
Enterobacterales.

Table 2. Identified micro-organisms in included blood culture samples.

Enterobacterales spp. N = 46

Citrobacter freundii 1 (2.2%)
Klebsiella aerogenes 1 (2.2%)

Escherichia coli 28 (60.9%)
Klebsiella pneumoniae 9 (19.6%)

Klebsiella variicola 3 (6.5%)
Morganella morganii 3 (6.5%)

Proteus mirabilis 1 (2.2%)
Salmonella typhi 1 (2.2%)

Enterococcus spp. N = 10

Enterococcus faecalis 3 (30.0%)
Enterococcus faecium 7 (70%)

Staphylococcus spp. N = 40

Staphylococcus aureus 12 (30.0%)
Staphylococcus epidermidis 13 (32.5%)

Staphylococcus hominis 11 (27.5%)
Staphylococcus capitis 4 (10.0%)

Table 3. Number and percentages of categorical and essential agreement between SpecifAST® and
VITEK2® AST results, corresponding error rates and percentages, resistance rates, and time to test
results per micro-organism group and antimicrobial agent.

Antimicrobial
Agent

Number of
Clinical
Blood

Cultures
Tested

Number of
AB Tested

(B/D)
CA VME ME mE R

TTR (h)
SpecifAST
Mean (SD)

TTR (h)
VITEK2 a

Mean (SD)

Enterobacterales
spp.

Cefotaxime 45 (46.9%) 45 (16.7%) 45
(100%)

0
(0%)

0
(0%)

0
(0%) 7 (15.6%)

Ciprofloxacin 44 (45.8%) 44 (16.4%) 44
(100%)

0
(0%)

0
(0%)

0
(0%) 9 (20.5%)

Meropenem 45 (46.9%) 45 (16.7%) 45
(100%)

0
(0%)

0
(0%)

0
(0%) 0 (0%)

Total 46 (47.9%) 134 (49.8%) 134
(100%)

0
(0%)

0
(0%)

0
(0%)

16
(11.9%) 2.8 (0.6) 9.8 (2.6)

Staphylococcus
spp.

Cefoxitin 38 (39.6%) 38 (14.1%) 34
(89.4%)

4
(25%)

0
(0%) n.a. 16

(42.1%)
Oxacillin 39 (40.6%) 39 (14.5%) 34

(87.1%)
1

(7.1%)
4

(16%)
0

(0%)
14

(35.9%)
Vancomycin 39 (40.6%) 39 (14.5%) 37

(94.9%)
0

(0%)
2

(5.1%)
0

(0%) 0 (0%)

Total 40 (41.7%) 116 (43.1%) 105
(90.5%)

5
(16.7%)

6
(7.0%)

0
(0%)

30
(25.9%) 3.4 (1.1) 11.5 (2.4)

Enterococcus
spp.

Ampicillin 10 (10.4%) 9 (3.3%) 8
(88.9%)

0
(0%)

0
(0%)

1
(11.1%) 5 (55.6%)

Vancomycin 10 (10.4%) 10 (3.7%) 10
(100%)

0
(0%)

0
(0%)

0
(0%) 1 (0.4%)

Total 10 (10.4%) 19 (7.1%) 18
(94.7%)

0
(0%)

0
(0%)

1
(1.7%) 6 (31.6%) 3.2 (0.5) 8.8 (1.6)

Overall 96 (100%) 269 (100%) 257
(95.5%)

5
(9.6%)

6
(2.8%)

1
(0.4%)

52
(19.3%) 3.1 (0.9) 10.5 (2.6)

Data are n (%) unless otherwise indicated. a 12 b/d combinations missing VITEK2® TTR. AB: antibiotics;
CA: categorical agreement; VME: very major error (the number of false susceptible b/d in SpecifAST®, divided
by the number of resistant b/d in VITEK2®); ME: major error (the number of false resistant b/d in SpecifAST®,
divided by the number of susceptible b/d in VITEK2®); mE: minor error (number of intermediate versus resistant
or susceptible b/d, divided by the total number of b/d tested); NA: not available; R: resistance; TTR: time to
test result.
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3.1. Primary Outcome SpecifAST® Performance

The overall categorical agreement between both AST methods for Enterobacterales
spp. was 100% (134/134), as no discrepancies in interpretative results for ciprofloxacin,
cefotaxime, and meropenem were found (Table 3). In Staphylococcus spp. the categorical
agreement was lower: 90.5% (105/116), due to 5 very major errors (5/30, 16.7%) and 6 major
errors (6/86, 7.0%). All five VME concerned Staphylococcus epidermidis, whereby four
cefoxitin resistant strains (MIC 6 mg/L) and one oxacillin resistant strain (MIC > 2 mg/L)
were reported as susceptible (MIC ≤ 0.25 mg/L) by SpecifAST® (Supplementary Material
Table S3E,F). The six major errors concerned Staphylococcus aureus (2) and coagulase negative
staphylococci, CoNS (4) with discrepancies in oxacillin and vancomycin susceptibilities
(Supplementary Material Table S3D,E,G,H). In Enterococcus spp. the overall categorical
agreement was 94.7% due to one minor error (1/19). The overall sensitivity and specificity
of the SpecifAST method compared to the VITEK2 was 91% (95%-CI: 83.1–98.9) and 97%
(95%-CI: 94.8–99.2), Supplementary Table S4.

3.2. Secondary Outcomes: Analysis Time and Number of CFU

The mean analysis time was 3.1 h (+/−0.9 h) by the SpecifAST® system compared to
10.5 h (2.6 +/−SD) by VITEK®2, which corresponds to a 70.5% reduction. A subculture
step of 18–24 h was required prior VITEK® testing, while this was not needed prior to
SpecifAST® testing. The time between bacterial growth detection in the automated blood
culture systems and the initiation of the SpecifAST® tests varied between 2.5 h and 38.5 h.
Blood cultures were used directly for SpecifAST® tests, without standardization of the
inoculum, and the mean numbers of CFU per blood culture bottle were 108.80 ± 0.69 and
108.75 ± 0.45 for Gram-positives and Gram-negatives, respectively.

4. Discussion

The SpecifAST® AST results in our proof-of-principle laboratory study are promising
for Enterobacterales spp., as full categorical agreement was found. Given the small number
of ciprofloxacin and cefotaxime resistant strains, and the lack of meropenem resistant
strains, further studies are required to establish the performance of detecting resistance.

The categorical agreement for Gram-positives was acceptable (≥90%), but the error
rates were high. All very major errors found in this study included oxacillin or cefox-
itin resistance in Staphylococcus epidermidis. Beta-lactam resistance (such as oxacillin and
cefoxitin resistance) in CoNS is very common [27,28] and mostly mediated by alteration
of the penicillin-binding-protein (PBP2a), encoded by the MecA gene [29]. Detection of
beta-lactam resistance in CoNS is complex, even in current AST methods, as resistance
can be expressed solely in a small proportion of cells (heterotypic phenotype) [30–32]. An
essential difference between the SpecifAST® system and the VITEK®2 system is the use of
a single or a few colonies from subcultures by the VITEK®2 system, while the SpecifAST®

system directly uses positive blood cultures. It could be hypothesized that VOC detection
in the entire bacterial population represents the main expressed beta-lactam phenotype in
CoNS. Therefore, SpecifAST® results could hypothetically be more representative of the
entire bacterial population present in the blood culture. For beta-lactam resistance detection
in CoNS, further studies to assess whether AST of the entire bacterial population might be
an advantage compared to AST of single colonies, which should include standard reference
testing for beta-lactam resistance either by PBP2a culture colony test or MecA PCR [30].

Susceptibility testing based on VOCs as surrogates of viability is a new area of re-
search. The correlation between VOCs and AST results in different combinations of bacteria
and antibiotics may vary [3]. There are many factors that influence VOC levels, either
directly, e.g., temperature or humidity (volatility), or indirectly, e.g., oxygen or the nutrient
availability in a growth medium (bacterial metabolism) [10]. Further investigations should
aim to standardize those factors to limited variability in results.

The time range between bacterial growth detection and SpecifAST® testing was broad
due to the laboratory operating hours. The corresponding inoculum sizes for SpecifAST®
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testing also varied widely. It is notable that a high categorical agreement was found despite
a wide range of CFUs in tested samples, as standardized inoculum sizes are required for
most AST systems for reliable MIC values [33]. This might be due to the fact that SpecifAST®

detects changes in bacterial metabolic products instead of bacterial growth. By facilitating
non-standardized initial inoculum sizes and omitting prior subculture steps, SpecifAST®

enables the rapid availability of test results, possibly facilitating same-day test results after
bacterial growth detection. As we did not formally assess the correlation between inoculum
size and AST results, the reliability of VOC-based AST without subculture steps should be
assessed in future studies.

One of the limitations of this study was the comparison with the VITEK®2 system,
instead of a reference method for AST, such as broth dilution [34,35]. The VITEK®2 system
is our current clinical reference test like many clinical laboratories, which use less time-
consuming and laborious phenotypic and genotypic AST tests [34,35]. Although the
VITEK®2 system has proven to be a reliable AST method, it is possible that some of the
discordant results were due to VITEK®2 errors. Further studies should therefore compare
the SpecifAST® system to a reference method.

Second, only a limited number and type of bacterial species and antibiotics were
included in this study. Only Enterobacterales, Staphylococcus, and Enterococcus spp. were
eligible for testing with the SpecifAST® prototype. Future studies should assess AST
results of other bacterial species and multiple antibiotics using the automated Reveal
ASTTM system, which is an updated version of the SpecifAST® system that enables parallel
identification and susceptibility testing for a panel of antibacterial agents. Polymicrobial
blood cultures were excluded from our analysis and some concerns exist related to the
use of polymicrobial specimens. First, it is known that bacterial species can affect VOC
production of other species, which might play a role in polymicrobial specimens [36].
Second, direct positive blood culture testing provides a combined resistance phenotype of
all bacteria present in polymicrobial specimens, which might not be clinically relevant. AST
results in polymicrobial specimens varied when using another rapid system that enables
AST without prior subcultures, the Accelerate Pheno™ system (Accelerate Diagnostics,
Tucson, AZ) [37], based on fluorescence in-situ hybridization [38,39]. Follow-up studies
should assess whether AST results are reliable in various polymicrobial specimens.

Finally, this study was performed in a setting with low AMR levels. To evaluate the
SpecifAST® performance in detecting resistance, further studies in settings with higher
AMR prevalence are required.

5. Conclusions

Measuring volatile organic compounds is a novelty for antimicrobial susceptibility
testing. Our proof-of-principle results are promising, and further investigation is warranted
to establish the reliability of results in multiple combinations of bacteria and antimicrobials.
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