Skip to main content
. 2022 Jun 11;14(12):2887. doi: 10.3390/cancers14122887

Figure 1.

Figure 1

Gradual increase of ECM stiffness and prostate cancer progression. As prostate cells slowly progress towards prostatic intraepithelial neoplasia (PIN) and ultimately into invasive disease, the extracellular matrix that supports normal tissue homeostasis is gradually altered, which results in a stiffer prostate tissue. The matrix stiffness increases over time due to a greater rate of matrix components’ deposition (including type I collagen, pictured here), formation of crosslinking between ECM fibers, and ECM remodeling mediated mainly by fibroblasts and cancer-associated fibroblasts (CAF). These ECM alterations ultimately influence the hallmarks of cancer, especially angiogenesis, invasion, and distant site metastasis. Notably, fibers’ alignment can serve as paths that guide cancer cell migration.