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Abstract

Significance: Ergothioneine (ET) is an unusual sulfur-containing amino acid derived from histidine, acquired
predominantly from food. Its depletion is associated with deleterious consequences in response to stress stimuli
in cell culture models, prompting us to classify it as a vitamin in 2010, which was later supported by in vivo
studies. ET is obtained from a variety of foods and is taken up by a selective transporter. ET possesses
antioxidant and anti-inflammatory properties that confer cytoprotection. ET crosses the blood–brain barrier and
has been reported to have beneficial effects in the brain. In this study, we discuss the cytoprotective and
neuroprotective properties of ET, which may be harnessed for combating neurodegeneration and decline
during aging.
Recent Advances: The designation of ET as a stress vitamin is gaining momentum, opening a new field of
investigation involving small molecules that are essential for optimal physiological functioning and mainte-
nance of health span.
Critical Issues: Although ET was discovered more than a century ago, its physiological functions are still being
elucidated, especially in the brain. As ET is present in most foods, toxicity associated with its deprivation has
been difficult to assess.
Future Directions: Using genetically engineered cells and mice, it may now be possible to elucidate roles of
ET. This coupled with advances in genomics and metabolomics may lead to identification of ET function. As ET
is a stable antioxidant with anti-inflammatory properties, whose levels decline during aging, supplementing ET in
the diet or consuming an ET-rich diet may prove beneficial. Antioxid. Redox Signal. 36, 1306–1317.
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Introduction

Ergothioneine (ET) is a sulfur-containing derivative
of the amino acid, histidine. Discovered more than a

century ago in 1909, physiological functions for this mole-
cule are still being elucidated (126). Mammals cannot syn-
thesize ET and acquire it predominantly from food. Its
depletion is linked to impaired stress responses and toxicity,
prompting us to designate it as a vitamin (102). This desig-
nation has gained recognition and momentum in the field,
opening new avenues of investigation (4, 10). ET was first
isolated from the ergot of rye, Claviceps purpurea (hence the
name ergothioneine), and its structure was determined in
1911 (78). Mycobacteria, members of the genus Actinomy-
cetales, and fungi were the first organisms reported to pro-
duce ET (37, 38). Later, ET was also discovered in
cyanobacteria, methylobacteria, and other microbes (3, 75,
105). Unlike eukaryotes and Gram-negative bacteria, where
glutathione (GSH) is the primary thiol, in mycobacteria, GSH
is absent and small molecules such as ET and mycothiol
(MSH) constitute the major thiol reserve. ET and MSH are
utilized in the biosynthesis of lincomycin A, a sulfur-
containing C8 sugar (lincosamide) antibiotic (137). The
presence of ET in mammals was first identified in pig blood in
independent studies, where it was identified as the substance
that interfered with the detection of uric acid (11, 57).

Physicochemical Properties of ET

The molecular weight of ET is 229.3 Da. It is a colorless, and
odorless compound that is readily soluble in water. Structurally,
ET is a betaine of histidine thiol or 2-mercaptohistidine tri-
methylbetaine (Fig. 1). In 1911, Barger and Ewins showed that

ET is the betaine of thiolhistidine. ET exhibits tautomerism and
exists predominantly as a thione at physiological pH. Thus,
several of its properties are different from thiol molecules. ET
is relatively more stable and does not auto-oxidize at physio-
logical pH and generates free radicals such as GSH (88). Unlike
most thiols whose standard redox potential of the thiol–
disulfide couple ranges from -0.2 to -0.32 V, the value for ET
is -0.06 V. An important feature of ET is its thermostability (it
does not decompose upon cooking), a feature desirable for its
use in culinary preparations.

Another characteristic of ET, that contributes to its cyto-
protective properties, is its capacity to absorb ultraviolet
(UV) light. ET absorbs light in the UV range similar to DNA,
with a molar extinction coefficient of 1.4 · 10-4 M-1$cm-1,
kmax 257, indicating that ET acts as a physiological UV filter
(16). In the caterpillar fungus, Cordyceps militaris, a mush-
room harvested for its medicinal activities, irradiation with
ultraviolet B (UVB) increased ET content (55). These studies
also revealed that ET prevents DNA damage induced by UV
irradiation in a dose-dependent manner (102). In addition to
absorbing UV light, ET present in the Coprinus comatus
extract protects UVB-induced DNA damage (halogenation)
by inhibiting myeloperoxidase activity and scavenging ha-
logenous species (7). The mammalian skin is particularly
vulnerable to UV damage, which may induce sunburn, im-
munosuppression, skin aging, and carcinogenesis, in addition
to other damage (26, 123). ET accumulates in skin cells and
not only prevents oxidative damage but also facilitates DNA
repair in UV-irradiated cells (80). For these reasons, ET has
been included as an ingredient in several skin care products
and cosmetics.

Biosynthesis of ET

The biosynthetic pathway of ET involves a series of re-
actions involving histidine and cysteine (8, 86) (Fig. 2). The
use of radioactive precursors showed that histidine was first
converted to hercynine by addition of three methyl groups,
followed by incorporation of sulfur from cysteine, to generate
ET (49–51). The conversion of hercynine to ET involved a
sulfoxide intermediate (61). More recently, the gene clusters
involved in ET biosynthesis were identified in Mycobacteria
and Neurospora crassa (54, 60, 112). The mycobacterial
pathway involves EgtA-EgtE enzymes, while fungal bio-
synthesis involves Egt1-Egt2 enzymes. The key steps involve
a nonheme iron enzyme-catalyzed oxidative C-S bond for-
mation (EgtB/Egt1 catalysis) and a pyridoxal 5¢-phosphate
(PLP)-catalyzed C-S lyase (EgtE/Egt2) reaction, which cul-
minates in the transfer of a sulfur atom from a cysteine to a
histidine side chain. Although biosynthesis of ET was be-
lieved to require oxygen, recent studies show that the an-
aerobic bacterium, Chlorobium limicola, might produce ET
via oxygen-independent reactions, which suggests that ET
may have been present on the planet in an anoxic environ-
ment (15).

Features of ET Meriting Its Classification as a Vitamin

In this section, the features that ET shares with vitamins
are described. Vitamins are essential nutrients and constitu-
ents of a healthy diet, which cannot be synthesized by hu-
mans, but if so, only in suboptimal amounts (1). The concept
of vitamins, although not originally termed so, originated in

FIG. 1. Thione–thiol tautomerism of ET. ET is an
unusual sulfur-containing histidine derivative and is the
betaine of 2-mercapto-L-histidine. Chemically, it is an N,N,N-
trimethylhistidine with a sulfhydryl group linked at the C2
position of the imidazole ring. ET undergoes tautomerism
and exists both in the thiol form and thione form, with the
latter predominating at physiological pH. Due to this prop-
erty, ET is resistant to auto-oxidation. ET, ergothioneine.
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the 18th and 19th centuries when it was noted that nutritional
deficiencies caused disease (113). A study by Frederick
Hopkins in 1912 revealed that growth of young rats was re-
tarded on a basal diet of protein, starch, cane sugar, lard, and
minerals. Normal growth resumed when a small amount of
milk was added to the diet. The as yet unknown components
in milk, which support life, were reported to be present in
astonishingly small amounts and called accessory factors
(52). Later, Casimir Funk proposed the term ‘‘vitamine’’ for
these factors in 1912 (36). Soon these unknown factors in
foods became synonymous with both ‘‘vitamine’’ and ‘‘ac-
cessory food factors.’’ Most vitamins are associated with
deficiency syndromes, which led to their discovery to begin
with. For instance, deficiency of vitamin A causes night
blindness, vitamin C causes scurvy, and vitamin D causes
rickets (84). Although ET has not been afforded the status of a
classical vitamin, its importance in the well-being of humans
may have gone unnoticed as it is present in a wide variety of
foodstuffs. No pathological syndrome of ET deficiency has
been reported. However, lack of such reports may simply
reflect the relative paucity of ET research as well as the dif-
ficulty of depleting ET. ET is obtained by mammals exclu-
sively from their diet like many vitamins. ET is concentrated
in cells and tissues that are frequently exposed to oxidative
stress, such as blood, liver, eye lens, and seminal fluid, and its
concentration approaches high micromolar or millimolar
levels in some of these tissues (97, 115, 116, 121, 124).

Similar to vitamin C, ET is taken up by a very specific
transporter (130). The avidity with which ET is retained in
mammalian systems and toxicity associated with its deple-
tion in response to stress and its dietary origin led us to
propose that ET merits designation as a vitamin. With ac-
cumulating evidence, it appears that ET is a stress vitamin
that comes into play during adverse conditions or under du-
ress (102) (Table 1). Foods such as mushrooms are a rich
source of ET, with certain species, including king oyster,
enoki, and shiitake mushrooms, having higher levels. Inter-

estingly, yellow oyster and porcini mushrooms have higher
levels of ET compared with GSH, the major antioxidant in
most species (65). Plants too obtain ET from the soil, pre-
sumably through fungi present in their vicinity. Other food-
stuffs that have higher levels of ET include garlic and
Brazilian and gingko nuts (33, 44, 65) (Fig. 3).

Similar to several vitamins, which have specific transporters
for their uptake, ET is imported into cells by a specific trans-
porter, the ergothioneine transporter (ETT/SLC22A4), in a
sodium- and pH-dependent manner (42, 130). Knockdown of
ETT decreases ET uptake in cell lines and mice, indicating that
ETT is the major transporter for ET (67, 102). Additionally, a
general evolutionary ancient genomic approach, which iden-
tifies genetic variants with frequency changes that are signif-
icantly greater over a given time period than expected under
genetic drift alone, revealed ETT or SLC22A4 as one of the
genes positively selected over evolutionary time, attesting to
its importance (79). Differences in abundance of fungi in soil
may also give rise to variations in the ET content of crops. It
has been reported that excessive tillage of the soil can deplete
ET levels in crops by disruption of mycelia of mycorrhizal
fungi in symbiotic association with plants (10, 14, 100). A
functional variant in the ETT is proposed to have provided
protection against ET deficiency through increased absorption
of this unusual amino acid in European agriculturalists (56).
Although this allele was present at low frequencies in the early
Neolithic populations, its enrichment only occurred within the
last 4000 years (82). Functional variants of ETT such as
L503F, which increase absorption of ET, have been linked to
Crohn’s disease and believed to be protective in nature (103).

Interestingly, ET levels increase during periods of starva-
tion in both yeast and humans (106). Metabolomic studies
have also confirmed these findings in the blood of humans,
where ET is enriched (70). Additionally, levels of ET de-
crease as a function of aging in blood (17, 72, 121). In a study
measuring age-related decline in gait speed, ET content was
positively correlated with gait speed in middle-aged adults

FIG. 2. Biosynthesis of ET.
The biosynthesis of ET utilizes
histidine as a precursor and cys-
teine as the sulfur donor in both
Mycobacteria and Neurospora
crassa. The enzymes involved in
ET biosynthesis (EgtA-E) in My-
cobacteria are depicted in blue
and those in N. crassa (Egt1-2)
are depicted in brown.
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(96). ET levels also diminished twofold in the blood of sickle
cell anemia patients and were associated with increased
markers of oxidative stress (18). In a longitudinal study an-
alyzing mortality and coronary artery disease (CAD), ET was

identified as the metabolite most significantly associated with
lower morbidity and mortality, being associated with a lower
risk of CAD (117). This study also proposed ET as a bio-
marker for a healthy diet and low cardiometabolic risk.
Consumption of an ET-based nutritional supplement has also
been reported to improve joint range of motion and reduction
of chronic pain (12). More recently, decrease in ET in the
whole blood of human subjects has identified it as a potential
marker of frailty (66). In the subsequent sections, the prop-
erties of ET that set it apart from other known antioxidant
cytoprotectants and its role in neuroprotection are discussed.

ET as an Antioxidant

The fact that mammals do not synthesize ET, but import it
via a specific evolutionarily conserved transporter, and retain
it with high avidity suggests important physiological func-
tions. ET accumulates in cells and tissues frequently exposed
to oxidative stress, with concentrations approaching the
millimolar range in blood, lens of the eye, liver, bone mar-
row, and seminal fluid (97, 115, 116, 120). One of the prin-
cipal functions of ET is its antioxidant–cytoprotectant
function (2, 44, 46, 102). High levels of ET are present in red
blood cells, which also express the transporter. At the cellular
level, ET has been reported to be present in the mitochondria,
which produce reactive oxygen species during respiration
(68). Thus, it is not surprising that its transporter has been
localized to the mitochondria (73). ET mitigates deleterious
effects of several free radicals, including reactive oxygen and
reactive nitrogen species (Table 2). ET protects against the

Table 1. Stress Stimuli That Induce the Ergothioneine/Ergothioneine Transporter System

Stress stimuli System References

UV-B irradiation Increased ET content in caterpillar mushroom, Cordyceps militaris. (55)

Inflammatory
cytokines

IL-1b and TNF-a increased the expression of the ET transporter
(ETT/OCTN1/SLC22A4) in the human fibroblast-like synoviocyte cell line,
MH7A, derived from RA patients.

(77)

SDS SDS increased the population of Lactobacillus reuteri, which produced ET,
in the intestine of rats exposed to SDS.

(83)

Starvation Under starvation conditions, ET levels increase in fission yeast, Schizosaccharomyces pombe. (106)

High-cholesterol diet Livers of guinea pigs fed a cholesterol-rich diet accumulated higher levels of ET. (24)

Liver fibrosis
inducing stress

Injection of the hepatotoxin, DMN, which induces liver fibrosis, increased expression
of ETT/SLC22A4 and ET content in wild-type mice.

(125)

Metabolic acidosis Metabolic acidosis induced by NH4Cl caused upregulation of ETT in the mouse kidney. (41)

AIMD Mice treated with a mixture of antibiotics (ampicillin, vancomycin, neomycin,
metronidazole, and amphotericin B) displayed upregulation of ETT.

(136)

Ni2+ ion irradiation The human EC line (EA.hy926) irradiated with accelerated nickel ions exhibited
an increase in ETT.

(9)

Vaccination using a
recombinant virus

Nonhuman primates injected with vaccines directed against VSV-EBOV exhibited
upregulation of ETT/SLC22A4.

(87)

RUPP rat model In the RUPP model of preeclampsia, ET upregulates antioxidant enzymes such
as Nrf2, UCP1, PGC-1a, and SOD1 and SOD2.

(133)

AIMD, antibiotic-induced microbiome depletion; DMN, dimethylnitrosamine; EC, endothelial cell; ET, ergothioneine; ETT,
ergothioneine transporter; IL, interleukin; Nrf2, nuclear factor [erythroid-derived 2]-like 2; PGC-1a, peroxisome proliferator-activated
receptor-c coactivator 1a; RA, rheumatoid arthritis; RUPP, reduced uterine perfusion pressure; SDS, social defeat stress; SOD, superoxide
dismutase; TNF-a, tumor necrosis factor a; UCP1, uncoupling protein 1; UV, ultraviolet; VSV-EBOV, vesicular stomatitis virus expressing
the EBOV glycoprotein.

FIG. 3. Dietary sources of ET. ET (depicted as a ball and
stick model) is present in a variety of foodstuffs. It is enriched in
mushrooms and fungi in the soil, which is taken up by plants. ET
is also enriched in red meat, black beans, nuts, milk, and oats.
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deleterious effects of hydroxyl radicals (�OH), peroxynitrite
(ONOO-), hypochlorous acid (HOCl), and singlet oxygen
1O2 (2, 47). ET is a better scavenger of 1O2 than GSH (122).
1O2 is generated by photosensitizers activated by sunlight in
the eye and skin, which can also affect red blood cells, where
ET is enriched. Sunlight exposure causes generation of 1O2

from protoporphyrin IX, the iron-free precursor of heme,
while the iron-bound form does not produce 1O2. The per-
oxidase activity of hemoglobin can also lead to 1O2 produc-
tion (32, 92). Cell culture studies have revealed that ET
protects against ONOO--induced DNA damage (5). Knock-
ing down ETT causes increased levels of oxidative damage,
as reflected by increase in protein carbonylation, lipid per-
oxidation, and DNA damage (102). Knocking out this
transporter in Caenorhabditis elegans leads to increased
oxidative stress and decrease in longevity (23). Similarly,
knocking out the transporter in zebrafish, Danio rerio, results
in increased oxidation of DNA, as revealed by accumulation
of 8-oxoguanine (104). ET scavenges 1O2 more efficiently
than GSH or ascorbate (99). In addition to these properties,
ET can chelate divalent cations such as Cu2+, Zn2+, Ni2+, and
Zn2+, and chelation of Cu2+ accounts for its ability to coun-
teract Cu2+-mediated DNA damage (45, 91, 138).

ET and Inflammation

A link between ET and inflammation was observed in
rheumatoid arthritis, where an SNP was found to be associ-
ated with the disease (129). In addition to these observations,
expression of ETT was increased in response to the proin-
flammatory cytokine, tumor necrosis factor a (TNF-a), in in-
flamed joints. Moreover, mice lacking ETT exhibit increased
susceptibility to inflammation after ischemia–reperfusion in-
jury (67). The anti-inflammatory property of ET was evident in
studies where both H2O2 and TNF-a mediated activation of
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-jB), and release of interleukin 8 (IL-8) was prevented
by ET (107). Furthermore, NF-jB has binding sites in the
promoter of human ETT and regulates its expression, fur-
ther supporting a role for ETT in modulating inflammatory
processes (77).

ET Functions in the Nervous System

The presence of ET in the brain was observed as early as
the sixties and was initially believed to be a neurotransmitter
and identified as the cerebellar factor (28, 29). Later, it was
shown that ET did not support neurotransmission and the
cerebellar factor and ET had distinct properties, although
they shared several similar features (13, 71). It is not sur-
prising that ET is enriched in the cerebellum as its transporter
is abundant in this tissue (134). ET is also present in other
brain regions. The basal concentration of ET in the cortex of
the brain has been reported to be *3.73 – 0.59 ng/mg (124).
Exogenous administration of ET revealed that ET is widely
distributed in the brain in regions such as the cerebellum,
striatum, medulla and pons, midbrain, hippocampus, hypo-
thalamus, and cortex and the concentration correlates with
the expression of its transporter, indicating its ability to cross
the blood–brain barrier (94, 95).

ET exerts potent neuroprotective effects in the brain
(Fig. 4). In the brain, the transporter, ETT, is functionally
present in neurons, but not in astrocytes (58, 95). ET protects
neuronal cells against oxidative stress (5). ET also protected
against neurotoxicity induced by the excitotoxin, N-methyl-
d-aspartate (NMDA) and cisplatin in vivo (90, 118). The
protective effect of ET was also observed against b-amyloid
toxicity. Mice injected with b-amyloid developed learning
and memory deficits, while those pretreated with ET were
spared (135). In addition, ET prevented oxidative stress, as
revealed by decreased lipid peroxidation and maintenance of
the GSH/GSH disulfide ratio and superoxide dismutase
(SOD). ET has also been shown to be protective against
learning and memory impairment induced by d-galactose in
mice (119). Other studies have reported a role for ET in
neuronal differentiation (63, 95). The effects on neuronal
differentiation are partly attributed to phosphorylation of p70
ribosomal protein S6 kinase 1 (S6K1), a component of the
mTOR signaling pathway, at Thr389 and by activation of the
neurotrophin receptor, Tropomyosin receptor kinase B
(TrkB) signaling, by upregulation of the neurotrophin, NT5
(62). Recently, it has been reported that ET activates human
carbonic anhydrase VII at nanomolar levels (89). Carbonic
anhydrases have been linked to modulation of redox

Table 2. Free Radical Scavenging/Neutralizing Activity of Ergothioneine

Free radical
and oxidants System References

ONOO- Prevented peroxynitrite-dependent nitration of tyrosine and inactivation of a1-antiproteinase. (6)

1O2 Prevented oxidation of BHMF. Scavenges singlet oxygen in vitro. (31, 108)

O2
�2 Prevented cell death induced by pyrogallol, a superoxide generator in HeLa cells.

Scavenged superoxide and singlet oxygen in UV-irradiated human dermal fibroblasts.
Reduced cytotoxicity of paraquat, a superoxide generating agent in ECs, and formed
the hercynine and sulfonic acid derivative (ESO3H) in both cell-free systems when
reacted with superoxide and also
in ECs exposed to high glucose.

(98, 102, 114)

HOCl ET protected a1-antiproteinase against inactivation by HOCl. (132)

�OH ET is a powerful scavenger of hydroxyl radicals and an inhibitor of iron
or copper ion-dependent generation of �OH from hydrogen peroxide.

(2)

1O2, singlet oxygen; BHMF, 2,5-bis(hydroxymethyl) furan; HOCl, hypochlorous acid; O2
�-, superoxide; �OH, hydroxyl radical; ONOO-,

peroxynitrite.
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homeostasis in cells and thus activation of these enzymes
could be beneficial in the treatment of conditions involving
redox imbalance. Neurodegenerative diseases have been as-
sociated with elevated oxidative and nitrosative stress, and
ET may be beneficial in decreasing damage caused by reac-
tive oxygen and nitrogen species in these diseases. ET pre-
vented cisplatin-induced neuronal injury in neuronal cultures
as well as mice and enhanced cognition, likely through in-
hibition of oxidative stress and restoration of acetylcholin-
esterase (AChE) activity in neuronal cells (118).
Metabolomic analysis of Parkinson’s disease (PD), the sec-
ond most common neurodegenerative disease after Alzhei-
mer’s disease (AD), revealed a significant decline in ET
levels, suggesting a decreased ability in antioxidant defenses
(48). In addition, decrease in ET levels has also been ob-
served in vascular dementia and dementia (21, 127). A study
of subjects who consumed mushrooms, a rich source of ET,
revealed an inverse correlation between mild cognitive im-
pairment and mushroom intake, which was independent of
age, gender, or lifestyle habits such as smoking or alcohol
consumption (35). Oral administration of ET also promoted
memory in rodents, as measured by the novel object recog-
nition test (93). In another study, ET was reported to mitigate
the deleterious effects of 7-ketocholesterol (7KC), an oxi-
dation product of cholesterol, in the human brain endothelial
cell line (69). 7KC induced elevation in messenger RNA
(mRNA) levels of proinflammatory cytokines, IL-1b, IL-6,
IL-8, TNF-a, and cyclooxygenase-2 (COX2), and COX2
activity was decreased by ET. Increased 7KC levels have
been observed in the AD brain and administering ET may
afford neuroprotection (128). Indeed, ET counters neuro-
toxicity induced in the cell line, C. elegans, and mouse
models of AD (22, 64, 135).

ET has also been implicated in behavioral responses to so-
cial stress. Oral delivery of ET significantly prevented major
depressive disorder (MDD)-like social avoidance and sleep
abnormalities in a social defeat stress (SDS) model in rats (83).
Symptoms of MDD include lack of interest or pleasure and
depressed mood in addition to sleep abnormalities, a psychi-
atric disorder affecting millions worldwide (25). SDS had ef-
fects on the gut microbiota as well. The study reported

increases in fecal Lactobacillus reuteri in correlation with ET
levels at around day 11, which continued for at least 1 month
following SDS administration. Thus, ET may participate in the
gut–brain axis via the microbiota that produce it.

An interesting aspect of neuroprotection mediated by ET
has been observed in the parasitic interaction between a
fungus, Ophiocordyceps kimflemingiae, and the carpenter
ant, Camponotus castaneus (76). The fungal infection trig-
gers neurobehavioral alterations in behavior of these ants,
which then invade plants and bite into them, before being
killed by the fungus. The metabolic profile of the ant’s brain
revealed an elevation of ET levels, which presumably pre-
vents neurodegeneration and preserves brain function.

ET and Antiaging Effects

Blood ET levels have been found to decrease significantly
beyond 60 years of age. The serum concentrations of ET
showed an inverse correlation with age (121). Moreover, a
subset of the population exhibiting mild cognitive impair-
ment had significantly lower plasma ET levels compared
with age-matched controls, indicating that ET deficiency
could contribute to aging (19). ET was found to delay en-
dothelial cell senescence caused by high glucose through a
mechanism involving the histone deacetylases, sirtuin 1
(SIRT1) and sirtuin 6 (SIRT6) (30). Due to its cytoprotective
properties and UV filtering capability, ET is one of the top
ingredients used in antiaging creams (27). ET protects UV-
irradiated human dermal fibroblasts by scavenging 1O2 and
O2
�- and reduces levels of inflammation (98). ETT is present

on skin cells, allowing them to import ET and reduce levels of
reactive oxygen species and DNA, protein, and lipid damage
in keratinocytes subjected to solar-simulating UV oxidative
stress (80). ET has been reported to protect ultaviolet A
(UVA)-irradiated human dermal fibroblasts via inhibition of
the activator protein-1 (AP-1) pathway and activation of
nuclear factor [erythroid-derived 2]-like 2 (Nrf2)-mediated
antioxidant genes (53). ET is also protective in the eye, and
formation of cataract is associated with a decline in ET levels
(116). Interestingly, levels of ET in the eye lens exceed that of
GSH, unlike the scenario in other tissues.

FIG. 4. Effects of ET on
brain function. ET (depicted
as a ball and stick model) is a
neuroprotective molecule af-
fecting multiple aspects of
brain function. ET promotes
neuronal differentiation and
increases neurotrophin levels
in the brain. ET prevents neu-
rotoxicity induced by the ex-
citotoxin, NMDA, and
cisplatin in vivo. ET also ame-
liorates learning and memory
deficits induced by amyloid b
in mice. ET produced by the
gut microbiota such as Lacto-
bacillus reuteri protects against
stress-induced sleep distur-
bances and social defeat stress.
NMDA, N-methyl-d-aspartate.
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Cardiovascular Benefits

Cardiovascular disease is responsible for a vast majority of
deaths worldwide and there is a constant search for drugs that
can improve cardiovascular function. Endothelial dysfunc-
tion is a major cause of cardiovascular disease with links to
oxidative and nitrosative stress (34, 59). ET, with its proven
in vitro antioxidant functions, has also been reported to be
imported by endothelial cells and reduce markers of oxida-
tive damage (74). ET prevents toxicity induced by mercury
chloride and preserves acetylcholine-mediated relaxation,
improves the ratio of reduced GSH to oxidized GSH and
catalase levels, and reduces overall oxidative stress (40). ET
elicits a concentration-dependent relaxation in endothelium-
intact aortic rings, which is abrogated endothelial denudation
or NO synthase inhibition (39). The study also describes
protection against the Cu/Zn SOD inhibitor, diethyldithio-
carbamate (DETCA), and hypoxanthine/xanthine oxidase-
induced impairment in vasorelaxation, all of which involved
decreases in superoxide production. In addition to these ef-
fects, ET also prevents the binding of monocytes to endothelial
cells, an early event in cardiovascular dysfunction (81).

Concluding Remarks: Future Perspectives
and Therapeutic Avenues

The body has evolved multiple mechanisms to counteract
stress. Some of these defenses act constitutively, while others
are inducible and act during stress. No single antioxidant can
scavenge or neutralize the wide variety of reactive oxygen
and nitrogen species single-handedly. Thus, the search is on
for molecules that counter a wide variety of reactive oxygen
and nitrogen species. Additionally, molecules that possess
anti-inflammatory effects in addition to antioxidant scav-
enging roles would provide improved neuroprotection. ET is
an unusual antioxidant, in that it is exceptionally stable and
does not auto-oxidize at physiological pH and is not de-
stroyed upon heating. ET is water soluble and neutralizes
several reactive oxygen and nitrogen species, including �OH,
O2
�-, ONOO-, HOCl, and 1O2. Accumulating evidence

suggests that ET is endowed with cytoprotective signaling
functions in addition to its antioxidant and anti-inflammatory
role in cells. It has also been posited that ET is an adaptive
antioxidant, with cells deliberately accumulating ET in times
of stress (43). Thus, ET is a stress metabolite that is obtained
via specific transport, implying that regulation of the trans-
porter is part of an adaptive stress response. Accumulation of
ET has been observed in infarcted mouse hearts, diabetes,
and preeclampsia (109, 110, 131). Similarly, metabolomic
analysis of mice repeatedly injected with metamphetamine, a
drug of abuse, led to increase in ET levels in the brain (85).
These observations, in conjunction with the fact that ET has
not been associated with any toxic or adverse effects, support
its use in therapies against a wide range of diseases and
conditions, ranging from cardiovascular diseases to aging
and neurodegeneration. ET is a rare antioxidant–
cytoprotectant capable of crossing the blood–brain barrier, a
feature that is necessary to treat neurodegenerative disorders
where oxidative stress plays a central role in disease pro-
gression (111). It is present in mitochondria, which is a fea-
ture that can be harnessed in therapies for disorders involving
mitochondrial dysfunction such as PD, where this molecule is
significantly depleted (48). Another avenue of exploration

could be its anti-inflammatory potential to develop a new
series of nonsteroidal anti-inflammatory drugs. Because of its
antioxidant and anti-inflammatory properties, the use of ET
as a therapeutic in the treatment of COVID-19 patients has
been proposed (20). A feature of COVID-19 is dysregulated
redox balance, which is also observed in patients exhibiting
chronic fatigue (COVID-19 long haulers) long after the in-
fection was cleared. Presumably, ET may be beneficial in this
aspect of the disease as well (101). Future studies that elu-
cidate its precise mechanism of action in signal transduction
cascades could pave the way for development of novel
strategies to combat aging and disease. In summary, ET may
afford a more stable mode of cytoprotection. It is not metab-
olized to any significant extent in mammalian tissues, the half-
life of dietary ET being *1 month. Its existence as a tautomer
of thiol and thione forms confers resistance to auto-oxidation,
distinguishing it from other common thiols. These properties
suggest a role for ET as a bulwark, a final defense for cells
against oxidative damage. Evidence that ET is a physiological
antioxidant raises the question of its status in biology. Despite
its high concentration and ubiquitous presence, mammalian
ET is mostly derived from dietary sources. The existence of
ETT establishes ET as an important normal body constituent,
and in this regard, ET fits the definition of a vitamin.
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Abbreviations Used
1O2¼ singlet oxygen

7KC¼ 7-ketocholesterol
AD¼Alzheimer’s disease

AIMD¼ antibiotic-induced microbiome depletion
BHMF¼ 2,5-bis(hydroxymethyl) furan

CAD¼ coronary artery disease

COX2¼ cyclooxygenase-2
DMN¼ dimethylnitrosamine

EC¼ endothelial cell
ET¼ ergothioneine

ETT¼ ergothioneine transporter
GSH¼ glutathione

HOCl¼ hypochlorous acid
IL¼ interleukin

MDD¼major depressive disorder
MSH¼mycothiol

NF-jB¼ nuclear factor kappa-light-chain-enhancer
of activated B cells

NMDA¼N-methyl-D-aspartate
Nrf2¼ nuclear factor [erythroid-derived 2]-like 2
O2
�-¼ superoxide

�OH¼ hydroxyl radical
ONOO-¼ peroxynitrite

PD¼ Parkinson’s disease
PGC-1a¼ peroxisome proliferator-activated

receptor-c coactivator 1a
RA¼ rheumatoid arthritis

RUPP¼ reduced uterine perfusion pressure
SDS¼ social defeat stress

SIRT¼ sirtuin
SOD¼ superoxide dismutase

TNF-a¼ tumor necrosis factor a
UCP1¼ uncoupling protein 1

UV¼ ultraviolet
VSV-EBOV¼ vesicular stomatitis virus expressing the

EBOV glycoprotein
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