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Adams-Bashforth technique of the model parameters, numerical results are used to support the significance of the
Existence and uniqueness fractional-order derivative. The graphs provide useful information about the complexity
Numerical scheme of the model, and provide reliable information about the model for any case, integer or

non-integer. Also, we demonstrate that any variant with the largest basic reproduction
ratio will automatically outperform the other variant.
© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Pathogen mutation has been a common phenomenon in disease spreading. Typical example can be seen from the
emergence of HIN1 influenza virus in Mexico and the USA in the year 2009. HIN1 is the mutation of the seasonal
influenza. Dengue fever, HIV, Tuberculosis, and some other sexually transmitted diseases come to existence as a result of
more than one pathogen variants. Many researchers studied the dynamical nature of the pathogen-host interactions with
more than one variant [1-4]. It is also shown basic reproduction ratio decides which variant outperforms the other [5].
Possibility of mutation,co-infection, and exponential growth of the host population were studied [6-9].

The global transmission and replication of SARSCOV-2, the causative agent of COVID-19 disease, gives rise to the
mutations of the virus. This may alter the virus’ mode of transmission, the vaccines’ effectiveness and the severity of
disease. Many variants surfaced, some of which have been identified by World Health Organization (WHO) as variants
of concern (VOC). This is as result of the risks they pose and their ability to impact the effectiveness of the available
vaccine [10-17].

The generalization of classical integer calculus is the Fractional calculus. Due to hereditary properties and provision
of a good description of the memory fractional order derivatives and fractional integrals play important role in the study
of fractional calculus. Nowadays, FO differential equations are frequently used in exploring the dynamics of many real
life phenomena [18-24]. Caputo-Fabrizio (CF) fractional derivative fractional order derivative was developed in 2015.
This fractional order derivative is based on exponential kernel and the detail on the operator can be found in [25].
Many problems used Caputo-Fabrizio derivative to model problems in various fields [26-28]. The fundamental differences
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among the fractional derivatives are their different kernels which can be selected to meet the requirements of different
applications. For example, the main differences between the Caputo fractional derivative, the Caputo-Fabrizio derivative,
and the Atangana-Baleanu fractional derivative are that the Caputo derivative is defined using a power law, the Caputo-
Fabrizio derivative is defined using an exponential decay law, and the Atangana-Baleanu derivative is defined using a
Mittag-Leffler law [29-31]. Atangana found that the power law derivative of the Riemann-Liouville fractional derivative
or the Caputo-Fabrizio fractional derivative provides noisy information due to its specific memory properties. However,
the Caputo-Fabrizio fractional derivative gives less noise than the Riemann-Liouville [32-34]. Hence, in this research we
choose Caputo-Fabrizio fractional derivative.

Here, we consider two variants of COVID-19 in which one variant is a mutation of the other. A mutation is the sudden
change in the genetic makeup that occurs either due to mistakes when DNA is copied or as a result of environmental
factors. In this research new variant is assumed to be as a result of changes in the proteins that made up old variant. Due
to the recent progress on fractional calculus and its wide applications, we intend to formulate and analyzed our model
with Caputo-Fabrizio fractional derivative. The primary goal of this article is to use a fresh non-integer order derivative to
study the model of COVID-19, to present information about the model solution’s, uniqueness and existence using a fixed
point theory. It is also in our interest to formally examine the mathematical implications of linking the various infectious
compartments in a sufficiently general manner.

The paper is divided into six sections: Section 1 is an introduction, Section 2 is a glossary of terms, Section 3 is the
model formulation, Section 4 is a study of the existence and uniqueness of the model’s solution, Section 5 is a study of
the numerical scheme and numerical simulations of the model, and Section 6 is the paper’s conclusion.

2. Definitions

Definition 1 ([29]). Caputo-Fabrizio fractional derivative for f € H! (a,b),b > a, « € [0, 1) is defined as;

t
oo =1 [ f’(x)exp[—af_x}dx.

—

M(«) is the normalized function that satisfies M (0) = M (1) = 1. When f' ¢ H' (a, b) the above definition is reduced to;

M(a) [ -
D (o) = T / (F (O - fx))exp [—alt "}dx.

—

Definition 2 ([29]). Let 0 < « < 1, and consider;
DY (f(t) =g,

then the corresponding o— fractional order integral is given as;

_20-0) (t)+27a/t (s)ds, t=>0
(2—a)M(a)g R—-—a)M (@) og T

3. Formulation of the model

IF(f (1) =

The model consists of six compartments; Susceptible S (t), Exposed E (t), Infected with new variant I, (t), Infected with
old variant I, (t), Hospitalized individuals H (t), and Recovered individuals R (t). The total population N (t) is defined as;

N@®)=S@®) +E@) +1,(t)+1, () +H()+R(t).

The model is described by the system of Caputo-Fabrizio fractional order differential equations of order o below. We
modify the fractional operator via an auxiliary parameter A > 0 to avoid dimensional mismatching.

A*'TDES (1) = A — B1SIy — BaSlo — piS.
A*TYEDYE (t) = BiSIy + BaSlo — a1E — anE — UE,
AYIED L, (6) = aiE — yily — ply — daly,
A*TIGDE, (£) = aaE = yalo — o — dal,
ATIEDEH (6) = il + yaly — (+ @ + d3) H, (1)
A“IEDYR(t) = @H — pR,
with the following initial conditions;
50) =ay,E(0) =ay, I, (0) = a3, 1 (0) = a4, H (0) = a5, R(0) = as.
The meaning of parameters involved in the model is given in Table 1.
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Table 1
Meaning of parameters.
Parameter Meaning
r Recruitment rate
n Natural death rate
B Effective contact rate with new variant
B> Effective contact rate with old variant
aq Progression from Exposed class to Infective with New variant
0%} Progression from Exposed class to Infective with Old variant
Y1 Hospitalization rate due to new variant
V2 Hospitalization rate due to old variant
dq Death rate due to new variant
d; Death rate due to old variant
ds Death rate in the hospital
] Recovery rate in the hospital

3.1. Equilibria and basic reprod

uction number

The equilibrium solutions are obtained by solving the following system of equations;

&D*s (t) = TDYE (t) =

CD, (t) = D%, (t) = CDYH (t) = GD¥R(t) = 0.

Physica A 603 (2022) 127813

Four equilibrium solutions are obtained; Disease free equilibrium (Ey), Endemic with respect to new variant (E;), Endemic

with respect to old variant (E,

), and Endemic with respect to both variants (Es).

1. The Disease free equilibrium (Ey) is given as;

A
Eo = (*,0,0,0,0,0),
uw

where S; = ﬁ

2. Endemic with respect to

new variant (E;) is given as;

Ey=(SLEL L', I,', H',R")
where,
51— A 1 [Bir —ar(Baln + )] I 1o Bl — yiln'
Bila' + p(Bal' 1) 7T ntdit
oyl A
Rl — $, andI,' = " [ a1 B - 1] _
wlp +ds + @) B Ly + e+ di +aipr)
Let,
_ Aoy B
K2(y1 + 1+ di +adp)
Therefore, this equilibrium only exists if Ry > 1.
3. Endemic equilibrium with respect to old variant (E;) is given as;
Ey = (S B I,". I,>, H* ) ,
where,
) A 2 [Bor—aa(Bals® + )] 1 12 0 M2 = yalo®
Bilo? + 1 w(pals +0) ptds+ @
Dysl,? )
= Lree andlozzu[ o2 i _1]_
w(+ds + @) B2 Lud(y2 + 4 dy + a3 5,)
Let,
Aoz B

wiyr +u+dy+

alpa)

Therefore, this equilibrium only exists if Ry > 1.

4, Endemic with respect to

Es=(S* B’ 1, I,°, H?,

both variants (E3) is given as;
R,
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where,

3 Ani+p+d)(tu+d)

S leaBra At d) Faafo (i +dDIEB3 (i +dn) (v e+ da)

13— o E? s o B3 ,3:[0513/1()/2+M+d2)+062)/2(1/1+,u+d1)]3
it+u+d 2+ u+d; (W+d3+ @)1 +p+di)(ya+ p+da)

R3:¢[01V1(V2+M+d2)+a27/2(71+M+d1)] 3 and
wp+d3+ @)1 +p+d)(y2 +pn+da)

B3 A wyr+pu+dy)(y2 +p+da)

ot ap (At utd)+ab(n+p+d)

Therefore, this equilibrium only exists if Ry + R, > 1.
By applying the next generation matrix method presented in [28], basic reproduction ratio (Ry) is obtained to be;

Ro = R1 +Ry.
4. Existence and uniqueness of solution

Here we apply fixed-point results to show the existence and uniqueness of the solutions of model (1). Let (1) be
re-written in the following form,;

TD*S (t) = Fi (t,5),
ODYE(t) =Fa (t,E),
DI (6) = F3 (t, 1) ,
CD{Io (t) = Fa(t, 1) ,
GDYH (6) = Fs (6, H)
GDYR(t) = Fs (£, R).
We apply fundamental theorem of Integration to write the system in fractional Volterra form [24]. Applying Caputo-

Fabrizio integral operator definition 2, the system above becomes integral equation of Volterra type, with 0 < a <
1.

s s =079 pgr 2 [Th 6y
(=S 0) = 5 >+(2_a)1w(a)/0 1 (0.5) d,
Fo-F0 =219 pepr 2 [ pabd

O —EO) = 5= ik >+(2_Q)M(a)/o 2 (0, E) dn,

@) =@ = 209 gy 2 /tF I)d

n (£) n()—m 3 (t, In) (ZT)IV[(O[) A 3 (1, I) dn,
o6 =1, ) = 2= py 2 /tF I)d

o (1) o()—mzl(’o) m A 4 (m, Ip) dn,
Ht—HO—Z(l_)FtH—f- 2o tF H)d

() ()—ms(, ) (ZT)M(a)/O 5 (7, H) dn,
R(t)—R(O)—MF (t R)+27“/[F( R d
T2-oM@ T T 2—aM@ Jy T

Next, is to prove that the kernels Fy, ..., Fs satisfy Lipchitz continuity and subsequently contraction. The following

theorem takes care of that;

Theorem 1. The kernel F; is Lipschitz. Moreover it satisfies contraction if the following inequality is satisfied;

0 < (Biki + Bk + ) < 1.

Proof. Consider S and Sy, then
IF1 (¢, S) — F1 (¢, SOl = [[=B1ln (S (t) — S1(£)) — Balo (S (t) — S1(t)) — (S (£) — S1(E))l
< B (OIS @) = S1Ol + B2 Ho (NS (€) — Sa(O)ll + p IS (&) — S1(E)]]
< {Biki + Baka + p} IS () — S1()|l
<L lIS(®) =Sl (2)
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where, L1 = B1ky + Baka + w1, k1 > |[L,(t)]] , ko = | I,(t)ll , k1 and ko are bounded functions. This implies;
IF1 (£, S) — F1 (£, SOl < Ly IS () — Sa(0)ll -

Hence F; is Lipschitz continuous. In addition if 0 < (81k; + B2k, + 1) < 1, then we have a contraction.
In the same manner, we show the Lipschitz continuity and subsequent contraction of F;, ..., Fg;

IF> (t, E) — F> (¢, EDIl < Ly |IE (¢) — Ea(0)I],
I1F5 (t, In) — F3 (¢, In) Il < L3 (lIn (6) — I (O]
IFa (t, 1) — Fa (¢, Il < Lalllo (£) — Ioa (O,
IFs (¢, H) — F5 (¢, H))|l < Ls [[H (¢) — Hy(8)Il,
IFs (¢, R) — Fg (¢, Rl < Lg IR (t) — Ra(E)1l..
Recursively, the difference between successive terms in (1) is given as;

n (t) = Sp(t) — Sp—a(t)

= %(H (t, Sn-1) — F1 (L&J))wLW/ (Fir 1, Su-1) — F1 (0, Sn—2)) dn,
7on (t) = En(t) — Eq—q(t)
=L(F(f5 ) —F (4 E ))+27a/[(1’( En1) —F2(n,En2))d
2 — o) M(a) 2 (L, En—1 2 (L, En—2 2 —a)M@) J 2 (7, En—1 2 (1, En—2 n,
73 (£) = Inp(t) — Inn—1(t)
= 2020 ) — B (o)
(Z—Q)MOZ) 3\ Inn—1 3\ Inn-2

+ 20 /t F I —F I d
m . (F3 (1, Inn—1) 3 (0, Inn—2)) dn,
T4n (t) = Ion(t) - Ion—l(t)

2a t
(F4 (t» Iun—l) - F4 (t’ Ion—Z)) + m /(; (F4 (777 Ion—l) - F4 (U, Ion—Z)) dT),

2(1 —a)
T 2—a)M(a) @
75, () = Hn(t) _Hn—l(t)
= 20 H) — B H—z))+27a/[(1:5(7l Hy_1) — Fs (1. Hy_2)) d
(2 — o) M(a) o o 2 —a)M(a) Jo o o ’
TTen (t) = Rn(t) _Rnfl(t)
= 220 Ry — Fo (R 2))+7/[(F6(77 Ro1) — Fs (1. Ru_2)) di
2 — o) M(a) " "~ @2 —a)M(a) Jo T T
with the following initial conditions;
So (t) =S(0),Eo (t) = E(0), Ino (t) = I, (0) , Ioo (t) = I (0) , Ho (t) = H (0), Ro (t) = R (0). (3)

Considering 1, and taking norm, we get;

710 (O = ISa(t) — Sn—a(E)]l
M(ﬂ (t, Sn—1) — F1 (£, Sn2)) + 270{[{(1”1 M, Sn-1) —F1 (1, S z))dnH
2-aM@) " " o 2 —a)M(a) Jo o o '
Applying triangular inequality, we get;
ISn(t) = Sn—a(t)]l
. k. B lFy (€, Sn—1) — F1 (¢, Sp—2)Il + e H/t (Fi . Sn-1) —F1 (1, S —2))d77”
2—a)Ma) " o 2 —a)M(@) | Jo T o
From (2), we get

2(1 — ) 20 t
||Sn(t) - Sn 1( )” = mh ||Sn 1= Sn—2|| + mh/g ||Sn71 - s1172” d'l-
This implies,
2(1 —«) 2u t
7 @I < mh I 1n—1 O + mh/o l7r1n—1 () dn.

5
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In the same manner,

¢

l7r20 O < WLZ l7r2n—1 (O + (2%(;1\/1(“)[-2/0 l7r20—1 (©) 1 dn,
¢

I Ol £ 0t I O+ G orta [ Ol
2(1 —a) 20 t

l7ran (O < mh l7an—1 (Ol + m[-zl/(; l7r2n—1 (Ol dn,
2(1 ) 2 t

l7wsn O < mLS l7tsn—1 (O + m%/ﬂ l7rsn—1 (Ol dn,
2(1 — ) 2 t

lwen O < WLS l7wen—1 (O + m’-s/o l7ren—1 (Ol dn.

Hence, we can write;

Sn (t) = Zm, (t), En () = anl (), I (8) = Zm, (©), Ion () = Zm, ®,

i=1 i=1

Ha () = Z 7si (¢) , and Ry (£) = Z Tsi ().

i=1 i=1

The following theorem confirms the existence of the solution.

Physica A 603 (2022) 127813

Theorem 2. The solution of the model exists if we can find t; in which the following inequality holds;

2(1 —a) 2ty
Ll' Li <
(2 — o) M(«) (2 — o) M(a)

Proof. By applying recursive technique on (2) and (3), we obtain;

(1—a) 2at "

e (O] < 115,(0 )||[(2 iRt (Z_a)M(a)L} ,
1—a) 2at n

20 ()1 < IEAO)] [(2 sl (2_Q)M(a)L} ,
[ 2(1 — ) 2ut 1"

e O1F = IO | o sl 4 st
[ 2(1 — ) 2ut 1"

I O = WO | 2ot st
[ 2(1 —a) 2at 1"

It Ol = IO | oot sl
Ien O] = IR(O)] | 2= a1
o O = 1RO M@ T 2 —aym@™]

Therefore, the solutions exist and are continuous. To confirm the functions above construct solutions of (1), we consider;

S() =5(0) =S, (t) =B (1),
E(t) —E(0) = Ep (t) — Ban (1),
In (€) = I (0) = Inn () — B3n (1),
Io () =15 (0) = Ion (t) — Ban (),
H(t) = H (0) = Hq (t) = Bsn (1),
R(t) =R (0) =Ry (t) — Ben (1) .
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Hence,
1B (0)]) = H) (Fr (t.5) — Fr (6. Sp) 4 =2 / R 01 ) — Fy (. Sy H
@ — o) M(a) @—a)M@) Jy
< 202D ks B Sl e H/ Fr (1.5) — Fy (n,sn_n)dnH
@ — o) M(a) @—aM@) |/,
< 202 s s —2 LS —Salt.
2 —a)M(a) 2 —a)M(a)
Repeating the same procedure,
n+1
1B O < ( (22_“0;,;()“) r oo z‘)"M(a)r> L, (4)

At t;, we have;
21—« 20 n+l
1B O] = (2= 6) .
QR-a)M(ax) (2—a)M(a)
Taking limit on (4) as n approaches oo, we get, ||By, (t)|| — 0. Similarly, [|Ba, (), 1B3n ()], 11Ban (O, 1Bsn ()], [|Ben (£) |l

— 0.

Lastly, to show the uniqueness of the solutions of the model, we suppose there exist some solutions of the model say;

ST(e), EX(t), 11(t), 11(¢), H'(t), R(t), then
S()—S! (t):M(F (t,S) —Fi (t s‘))+27a/t(F (1,5) —Fy (n,S")) dn
Q—)Me) " e Q-a)M@) Jy © " o ‘

Taking norm, we get

2(1 - 2 t
[s@-sto] = 5= ( )M P €)= Fi (65| + (ZT(;M((X)/O |Fi 1.5) — Fy (n,S") | dn.
Applying the Lipschitz continuity result, we get
2(1 2aLqt
Is®©-s'®| < le |s@—s'®f + Z;M(a) Is®~-s'o].
It simplifies to,
e B 2(1 — ) B 2aLqt
ls@=s'o (1 2-oMa" G- a)M(a)) =0 ®)
Theorem 3. If the condition below holds,
( 2(1 — @) 2uLqt )
1-— Ly — >0,
(2 — a) M(et) (2 — a) M(a)
then the solution is unique.
Proof. Consider (5), that is
1 _ 2(1 — O[) _ 20{L1t
ls@=s'o (1 C-wMa) '~ 2-w M(a)) =0
since,
( 2(1 —a) 2aLqt )
1-— Ly — > 0,
(2 —a)M(a) (2 — o) M(e)
then

|s @ —s' @] =o.
This implies,
S =S'(t).
This is true for the remaining solutions. Hence, the model solution exists and is unique.
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5. Numerical scheme and numerical simulations

In this section, we give an approximate solution of the Caputo-Fabrizio fractional order model for the dynamics of
two-strain COVID-19 model using two-step fractional Adams-Bash forth technique [25]. We use fundamental theorem of

Integration to write the system in fractional Volterra form. Consider the first equation in (1),

St —S(0) =

1—ap (tS)—i—L/IF( S)d
M) T M@ Jy

fort =t44,j=0,1,2,..., we get

1-— o G+1
S (ti+1) —So = e )F1(j,s])+mfo Fi(t,S)dt.

Hence, the difference in successive terms is given as,

o G+1
Fi (6, S;) = Fr (61, Si) } + M(a)ft] Fi(t,S)dt,

over the interval [t, t,+1]. We can approximate F; (t, S) interpolation polynomial;

f(tkf;.)’k) (= tey) — f(tk—li;yk—l)

P (t) = (t—t),

where h = tj — tj_;. Also

G+ G
/ Fi(t,S)dt = /
t t

J J
3h h
= 2 (tJ’S]) 2 (tf 1’51 ])

(ﬂ(tfsf) (t—ti1) — flonsy (t- tj)) “

h h

Simplifying, we get

S = sot (124 3 g (t.5)
20T M) T 2M(a) 1(5.5)

Similarly, we get
11—« 3h

) tj 1»Sj 1

Ej+q :E0+<W+ M () F (4. E (M F> (i1, Ei-
Inj+1=1n0+<1_7a+i>1:3 i, Ing) (1_0[ h >F3 ti-1. Inj—1)
: - M(e) =~ 2M(a) M(a) = 2M(a)
Ioj+1=loo+(1_7a+ 3h >F4 ;,101 (1—0{ ah >F4 ;1,1011
’ ’ M(a)  2M(x) M(a)

Hoi=Hot (2% 3" Ve (.1 ! “T_\F H
J+1 = O+(M(Ol)+2M(Ol)> 5(1’ J) (M()+ ()) 5(] 1, Jl)

Rir — R 11—« 3h (bR 11—« oh e (bs R
1 = Ko+ M(a) +2M(a)> 5 (5. 8) - M(a) +2M(a) 5 (61 Ri-1).

We describe the numerical simulations to study the dynamics of the propose model for various values of « € [0, 1] and
mode parameters. The parameter values used are obtained from [30], and they are; A = 400, 8; = 1.7 x 1075, 8, =
1.7x107°, 0 =5x10"% 0y =2x 1074 0 =2x 1074, y; = 1.6979 x 107!, y, = 1.6979 x 10}, d; = 9.6 x 1073, d, =
9.6x1073,d3;=1x 1075 ® =0.06, « € [0, 1].

Figs. 1-6, show the influence of the variation in the fractional order « on the biological behavior of the classes of
model (1). It is clear from these Figures that the population of Susceptible individuals, Exposed individuals, New variant
of COVID-19, Old variant of COVID-19, Hospitalized individuals and Recovered individuals have decreasing effect when «
is decreased from 1 — 0.2.

Fig. 7 compares the dynamics of new and old strain of COVID-19. This figure shows that the two variants can co-exist
in the same population when their basic reproduction ratio is the same.

Fig. 8 shows that when R; > R;, then the new variant of COVID-19 outperform the old variant which leads to
subsequent domination of the old variant by the new variant.

Fig. 9 shows that when R, > R;, then the old variant of COVID-19 outperform the new variant which leads to
subsequent domination of the new variant by the old variant.

8
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Fig. 1. Dynamics of Susceptible individuals for various values of «.

populaton

time

Fig. 2. Dynamics of Exposed individuals for various values of «.
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Fig. 3. Dynamics of new variant of COVID-19 for various values of «.

It worth mentioning here that the fractional derivative with « € (0, 1] is defined in Caputo-Fabrizio sense, so
introducing a convolution integral with a power-law memory kernel benefits in describing memory effects in dynamical
systems. The decaying rate of the memory kernel depends on «. A lower value of & corresponding to more slowly-decaying
time-correlation functions leads a long memory. Therefore, as @ — 1, the influence of memory decreases.
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Fig. 4. Dynamics of old variant of COVID-19 for various values of «.
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Fig. 6. Dynamics of Recovered individuals for various values of «.

6. Conclusion

The dynamics of COVID-19 variations were explored using a Caputo-Fabrizio fractional-order model. The model’s
fundamental properties were studied. The next-generation matrix (NGM) approach was used to calculate the basic
reproduction ratio Ry. Equilibrium solutions are found by equating system (1) to zero and simultaneously solving the
result. Fixed point theory is used to perform a detailed study of the existence and uniqueness of the model solution. The
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Fig. 9. Dynamics of new and old variants of COVID-19 when R, > R;.

iterative solution of the model is computed using the fractional Adams-Bashforth technique. The numerical results are
shown using the estimated values of the model parameters to justify the importance of the fractional-order derivative.
The graphs provide useful information about the model’s complexity and the feasibility of obtaining reliable information

about it.
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