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Abstract: With the development of the autopilot system, the main task of a pilot has changed from
controlling the aircraft to supervising the autopilot system and making critical decisions. Therefore,
the human–machine interaction system needs to be improved accordingly. A key step to improving
the human–machine interaction system is to improve its understanding of the pilots’ status, including
fatigue, stress, workload, etc. Monitoring pilots’ status can effectively prevent human error and
achieve optimal human–machine collaboration. As such, there is a need to recognize pilots’ status
and predict the behaviors responsible for changes of state. For this purpose, in this study, 14 Air
Force cadets fly in an F-35 Lightning II Joint Strike Fighter simulator through a series of maneuvers
involving takeoff, level flight, turn and hover, roll, somersault, and stall. Electro cardio (ECG),
myoelectricity (EMG), galvanic skin response (GSR), respiration (RESP), and skin temperature (SKT)
measurements are derived through wearable physiological data collection devices. Physiological
indicators influenced by the pilot’s behavioral status are objectively analyzed. Multi-modality fusion
technology (MTF) is adopted to fuse these data in the feature layer. Additionally, four classifiers are
integrated to identify pilots’ behaviors in the strategy layer. The results indicate that MTF can help to
recognize pilot behavior in a more comprehensive and precise way.

Keywords: MTF; physiological; behavior recognition; pilot; machine learning; multi-modal

1. Introduction

With the continuous development of autopilot systems and flight assistance systems,
pilot performance and air safety have been improved significantly. For example, the DLR
project ALLFlight provides pilot assistance during all phases of flight [1] and includes
an automatic aircraft upset-recovery system (AURS) that supports the pilot in recovering
from any upset in a manner that is both manually assisted and automatic [2] and an
assisting flight control system (FCS) that can simplify piloting, reduce pilot workload, and
improve the system’s reliability [3]. Owing to these developments, the main task of the
pilot has changed from controlling the aircraft to supervising the autopilot system and
making critical decisions [4]. Therefore, it is essential to improve autopilot systems via
better human–machine interaction. In addition to optimizing the display interface and
improving the automation technology, ensuring that the flight assistance system has a
better understanding of the pilots’ physiological status is a key step to improving human–
machine interaction. To correctly evaluate the effects of different flight behaviors at different
difficulty levels on pilot status, it is necessary to monitor various physiological parameters
of pilots under different flight behaviors and predict their workload.

Traditionally, the pilots’ workload under different flight operations is assessed based
on expert interviews and professional questionnaires, such as subjective rating scales [5].
However, these indirect analyses have many problems. For example, assessing workload
through questionnaire evaluation is subjective, and the result is greatly influenced by
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different individuals. Furthermore, the pilot sometimes needs to interrupt the flight in order
to answer the questionnaire, which cannot be carried out in real scenarios. Moreover, the
questionnaire can only be conducted at discrete time points and cannot provide information
on continuous, task-related workload or physiological state changes [6]. To solve these
problems, a more objective and time-continuous method, which recognizes the human state
according to physiological parameters, has been proposed. For instance, Law [7] assessed
pilot workload by analyzing electro cardio (ECG) and electroencephalogram (EEG) data and
showed that RR interval (RRI) and the root mean square of successive differences (RMSSD)
decreased with increasing flight mission difficulty. Feleke [8] used myoelectricity (EMG) to
detect the driver’s intention to make an emergency turn and found that the driver’s EMG
rose sharply before the turn. Some studies adopted a single physiological signal for the
identification of human states. For example, Rahul [9] used ECG to estimate pilot fatigue,
and Matthew [10] used functional near-infrared spectroscopy to identify the mental load of
helicopter pilots. However, recognition by a single physiological signal suffers from poor
stability, reduced data information, low reliability, and low discriminatory ability. Multiple
physiological signals have therefore been proposed. For example, Pamela et al. [11] used
electrodermal and electrocardiographic information to monitor the sympathetic response
of drivers. Nevertheless, the research on multi-modal physiological signals for human
state recognition still offers great development opportunities. Despite some studies [12–14]
involving a combination of physiological signals, there is still no consensus on many
elements, for instance, which indicators should be used as input, at which level to fuse,
what kind of the classification models should be adopted [15,16], and how to deal with
the problem of insufficient available data. Consequently, it is essential to create improved
frameworks that provide greater robustness in identifying the status of pilots during
different operations.

Besides fusing physiological information, the fusion of classification models to achieve
optimal results is also a way to improve the framework. This requires the investigation
of several classifiers which are to be integrated. These candidate classifiers have been
used frequently in previous studies. For example, Wang [17] analyzed skin conductance,
oximetry pulse, and respiration signals using Hilbert transform and a random forest
classifier algorithm and evaluated the model by Accurate Rate, MSE, ROC, F1_score,
Precision, and Recall. Hu [18] determined whether a driver is fatigued based on EEG signals
using a gradient-boosting decision tree (GBDT), reaching 94% accuracy, and the k-nearest
neighbor algorithm, support vector machine, and a neural network were also employed
as a comparison. Vargaslopez [19] compared different machine learning algorithms, such
as SVM and MLP, and showed that SVM obtained the best result in detecting stress
after normalization.

This study has two objectives: (i) to develop a model that recognizes pilots’ behavior
based on multi-modal fusion technology (MFT) that uses physiological characteristics; and
(ii) to analyze the physiological indicators influenced by the pilot’s behavioral status and
their association with flight difficulty. Firstly, a physiological database of pilots in different
behavioral states is formed through experimental protocol design and data collection.
Then, the correlation between pilot behavioral states and physiological data is analyzed in
terms of raw data, time-domain features, and frequency-domain features, and the difficulty
of flight behavior is evaluated. Additionally, the classification model for recognizing
pilots’ behavior is designed based on MFT. Finally, the performance of each machine
learning classification model and the proposed model is analyzed and compared from
the perspectives of accuracy, precision, F1 score, and mean squared error (MSE). As a
result, this paper makes the following contributions: (i) a new physiological data set from
14 pilots with wearable physiological measurement devices for multi-modal data input;
(ii) a classification model based on MFT, the accuracy of which reaches 98.15%; and (iii) an
analysis of the effects of flying behaviors on a pilot’s physiological measurements from an
objective point of view.
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2. Methods

The study was conducted according to the process of data mining [20], which is shown
in Figure 1.
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2.1. Data Construction
2.1.1. Participants

In this study, data were collected from 14 Air Force flight cadets (age 21± 2 years,
weight 70 ± 6 kg, all male). All subjects were professionally trained and proficient in
flying the F-35 Lightning II Joint Strike Fighter used for flight testing. All subjects were
right-handed, had normal vision, and had no history of cardiac, neurological, or psychiatric
disease. All subjects rested well and were healthy during the experiment.

2.1.2. Flight Platform and Task Details

In this study, the pilots performed various flight maneuvers in a flight simulator.
The flight simulator consisted of the obutto ergonomic workstation, Saitek Pro Flight
X-56 Rhino Stick (for controlling direction, roll, and pitch in the air), Saitek Pro Flight
X-56 Rhino Throttle (for controlling throttle), foot pedals (for controlling direction on the
ground), and flight simulation software Xplane (as shown in Figure 2). It provided a flight
simulation environment with high fidelity and good immersion. The simulation scenario
was 10 nautical miles from Beijing Capital Airport.
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Before the experiment began, each subject had 5 min to familiarize themselves with the
flight simulator. Then, the experiment started officially, and each subject flew as instructed,
completing five types of operation in each flight: takeoff, level flight, hover and turn,
roll, and somersault, and there was a chance that a stall scenario might occur during the
operation. Each subject performed the experiment once. All the maneuvers were carried
out for about 4 min to achieve a balanced data set, except for the stall scenes, which occurred
randomly and took about 3 min. Operations that met the criteria were counted. After the
experiment, all subjects were asked to rate the difficulty of the different flight behaviors
(1 to 10, with 10 being the most difficult) to obtain their subjective opinions.

2.1.3. Data Acquisition

The ErgoLAB Human Factors Physiological Recorder was used to collect physiological
data from the subjects. ECG data were collected from the subject’s chest via Ag/AgCl
electrodes (sampling rate of 512 Hz) and also from the earlobe via a pulse sensor (PPG)
(sampling rate of 64 Hz). GSR data were collected from the palm of the subject’s right hand
via Ag/AgCl electrodes (sampling rate of 64 Hz); EMG data were collected from the radial
carpal extensor muscle of the subject’s right lower arm via Ag/AgCl electrodes (sampling
rate of 1024 Hz); RESP data were collected from the subject’s chest cavity via a chest strap
respiratory sensor (sampling rate of 64 Hz); SKT data were collected from the subject’s
right lower arm via a skin temperature sensor (sampling rate of 32 Hz). All data were
transmitted via Bluetooth sensors to the synchronization platform for processing.

To reduce industrial frequency interference and environmental interference, high
viscosity electrodes were used to ensure good contact when collecting data. To avoid the
effect of temperature and humidity on data acquisition, the laboratory was kept in a dry
condition, and the temperature was maintained at 22–24 degrees Celsius. To reduce motion
disturbance, the subjects were told to avoid large movements as much as possible.

2.2. Data Pre-Processing

Data pre-processing is a time-consuming but essential step and can help improve the
classification accuracy and performance [21], as there are obvious problems in raw data,
including: missing data, data noise, data redundancy, unbalanced data sets, etc. Data
pre-processing methods can be summarized into three categories [22], as shown in Table 1.
It is believed that the pre-processing method should be selected and adjusted according
to the data set and the specific task [23,24]. Our data set was subject to time continuity,
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individual variability, and a high sampling rate, and was affected by motion and noise. As
a result, the pre-processing methods described below were adopted.

Table 1. Data pre-processing methods.

Category Aim Methods

Data cleaning Handling of anomalies in data values Missing value processing
(abandon/replacement)

Ectopic values processing
Outlier and noise handling

Data integration Increase sample data size Combining multiple data sets into a single data set

Data standardization Scales the sample values to a specified range Discretization
Dualization

Normalization (min–max, z-score)
Function transformation

2.2.1. Normalization

Due to individual differences, each subject’s measured physiological signal exhibited
a different scale or magnitude. Therefore, it was necessary to normalize the physiological
signal for each subject to obtain the same scale or magnitude [25]. Normalization methods
included min–max, z-score, baseline, etc. In this study, the changes in physiological
indicators varied greatly between individuals during flight and at rest. Adopting the
baseline method may have made the data subject to data scale inconsistency. To ensure
that the data distribution was not altered and to eliminate the influence of dimensionality
between indicators, the ECG signal, EDA signal GSR signal, EMG signal, and SKT signal
were normalized separately using Equation (1):

x̃ =
x− µ

σ
(1)

2.2.2. Ectopic and Missing Value Processing

For ectopic values, ectopic value detection was performed first. The percentage detec-
tion method, which defines data points with more than 20% variation from the previous
data point as ectopic, was adopted. Time windows (30 s) with more than 20% ectopic or
missing values were removed [26,27]. The remaining ectopic and missing values were
replaced with the mean value of the 11 adjacent data points centered on the missing or
ectopic value using Equation (2):

x′(n) = mean(x(n + m)), where |m| ≤ w− 1
2

(2)

2.2.3. Downsampling and Filtering

Since the sampling rate of physiological signals is usually much higher than what is
needed and the sampling rates vary [28], downsampling is needed. Before downsampling,
heart rate variability (HRV) features and frequency domain features were extracted first.
Then, to ensure the data consistency in timing and the ability to represent the pilot’s
behavior [29], all physiological signals were downsampled to 2 Hz based on the minimum
time of flight maneuvers (5 s for subject 2′s roll maneuver).

In addition, the physiological data were filtered to reduce interference from motion
artifacts, human noise, and other factors. Filtering mainly includes noise reduction, high
pass, band resistance, and low pass. Wavelet noise reduction was employed to remove
the baseline noise and drift signal from the signal. Gaussian filters, on the other hand,
transform the data by building a mathematical model, smoothing it, and reducing the effect
of noise [30–34]. The detailed data processing methods are shown in Table 2.
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Table 2. Detailed data processing.

ECG GSR EMG RESP SKT

Noise reduction Wavelet Gaussian Wavelet Wavelet Sliding average
High pass 1 Hz / 5 Hz / 5 Hz
Band stop 50 Hz 50 Hz 50 Hz 50 Hz 50 Hz
Low pass 40 Hz 5 Hz 500 Hz 20 Hz 200 Hz

2.3. Data Conversion

Data conversion means transforming the data into a suitable form for data mining
through aggregation. To transform the processed data into features that can be input into
the classifier and to make the features accurately describe the data, the physiological data
were analyzed in the time and frequency domains. To ensure the accuracy and continuity
of time- and frequency-domain data analysis, we selected 30 s as the time window and 10 s
as the step to obtain the continuous time- and frequency-domain indexes.

2.3.1. Time-Domain Features

Time-domain information is a depiction of the signal waveform with time as the
variable. Time-domain features include dimensional characteristic parameters, as well
as dimensionless characteristic parameters [35]. In this paper, the main parameters used
were the dimensional characteristics, including the indicators associated with heart rate
variability, the mean, the standard deviation, and the RMS. The expressions are shown in
Table 3.

Table 3. Time-domain features mathematical representation.

Parameters Description

Mean x =
i

Ns
∑Ns

i=1 x(i)

Standard Deviation Fs = (
1

Ns

√
∑Ns

i=1(x(i)− x)2

Root Mean Square (RMS) Fs =

√
1

Ns
∑Ns

i=1(x(i))2

2.3.2. Frequency-Domain Features

Frequency-domain analysis observes signal characteristics by frequency. The analysis
in the time domain is more intuitive, while the representation in the frequency domain is
more concise [36]. The frequency-domain feature parameters used in this study included
HRV frequency-domain analysis, EMG signal frequency-domain analysis, and RESP signal
frequency-domain analysis. The expressions are shown in Table 4.

Table 4. Frequency-domain features mathematical representation.

Parameters Description

Power Power in the frequency band
Median Frequency

∫ MF
0 P(ω)dω =

∫ ∞
MF P(ω)dω = 1

2
∫ ∞

0 P(ω)dω

Mean Power Frequency MPF =
∫ ∞

0 ωP(ω)dω∫ ∞
0 P(ω)dω

2.3.3. Multi-Modal Features Conversion

The pilot’s behaviors are reflected in physiological and biological changes, includ-
ing changes in heart beat, muscle activity, respiration, reflexes, etc. [37]. Therefore, these
features were extracted from ECG, GSR, EMG, RESP, and SKT. Since physiological mea-
surements change as the pilot’s behavior changes, statistical features were extracted to
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describe the variation in the measurements. As such, the variations of the time-domain fea-
tures and frequency-domain features commonly used in ECG, GSR, EMG, RESP, and SKT
measurements were analyzed to determine the most relevant features. The mathematical
representation of these features extracted from the multi-dimensional signal measurements
per time window is shown in Tables 3 and 4. Then, all features were fused according to the
time series. A total of 28 features, as shown in Table 5, were derived at each time point.

Table 5. Multi-modal features.

ECG GSR EMG RESP SKT

ECG value HR value SC value EMG value RESP value SKT value
SDSD NN mean standard deviation standard deviation
SDNN RMSSD

standard deviation

RMS power
pNN50 pNN20 Integral EMG mean

VLF ULF median frequency
LF HF mean power frequency

LF/HF mean

The full details of abbreviations can be found in Abbreviations.

2.3.4. Correlation Analysis

To ensure the independence of the features, the degree of correlation between the
features must be analyzed. Pearson correlation coefficient r reflects the degree of linear
correlation between two variables x and y. The value of r is between −1 and 1, and the
larger the absolute value, the stronger the correlation [38,39]. The formula for the Pearson
correlation coefficient r is shown in Equation (3):

rx,y =
cov(x, y)

σxσy
=

E
(
(x− µx)

(
y− µy

))
σxσy

=
E(xy)− E(x)E(y)√

E(x2)− E2(x)
√

E(y2)− E2(y)
(3)

Figure 3 is the correlation heatmap of the features. The different colors in the heatmap
correspond to the correlation coefficient; the darker the color, the greater the correlation
between the corresponding two features. The model tends to be influenced and to output
wrong results if there is high correlation between features [40].

According to the Pearson correlation coefficients among the features, it can be seen that
most of the features had low or no correlation, and a moderate correlation existed among
SDNN, RMSSD, SDSD, ULF, VLF, and LF. High correlations were observed in HR and
NN, SDSD and RMSSD, SC and SC mean, and EMG mean and iEMG. Features with high
correlations were then removed in the Classification Improvement part of the procedure.

2.4. Modeling

The features selected in Data Conversion part of the procedure were used as input for
the classifier models. The model suitable for this study was selected based on the advan-
tages and disadvantages of machine learning models. Several commonly used classifiers
were trained on the data set, and their 10-fold cross-validation results are shown in Table 6.
Candidate classifiers were picked by analyzing the validation results and reviewing previ-
ous studies [17–19,41–43]. Finally, 4 classifiers were selected due to their high accuracy and
low MSE, including the Extra Tree Classifier (ETC), Decision Tree Classifier (DTC), Gradient
Boosting Classifier (GBC), and XGBoost (XGBC). Extra Tree is a modification of Random
Forest (RF); its principle is the same as RF, but its generalization ability is stronger than RF.
DTC is an algorithm that divides the input space into different regions. Compared with
other machine learning classification algorithms, DTC is relatively simple and efficient in
data processing, which makes it suitable for real-time classification. GBC is an algorithm for
regression and classification problems that integrates weak predictive models to produce
a strong predictive model. XGBC is its enhanced version. The residuals of prediction are
reduced so that the effect can be improved.
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Table 6. The performance of several classification models.

Model Mean Accuracy Lowest Accuracy MSE

Logistic Regression 0.430 0.417 4.0109
Naive Byes 0.362 0.339 4.1813
AdaBoost 0.373 0.355 4.0822

SVM 0.441 0.432 3.9632
K-Nearest Neighbor 0.952 0.947 0.2989

ETC 0.965 0.962 0.1765
DTC 0.964 0.960 0.1733
GBC 0.968 0.965 0.1755

XGBC 0.967 0.962 0.1847

The goal of the modeling was to find the best classifier suitable for the study. To
integrate the predictions of these classifiers and, thus, improve the prediction performance,
a model was proposed that used a decision layer fusion technique. The advantage of
decision level fusion is that the errors of the fusion model come from different classifiers,
and the errors are often unrelated and independent of each other, which does not cause
further accumulation of errors [44]. As such, we created our proposed model by assigning
different weights to these classifiers and feeding their predictions to an integrated model,
which is also known as ensemble learning. The voting algorithm is one of the simplest, most
popular, and effective combiner schemes for ensemble learning [45,46]. It fuses the results
from various learning algorithms to achieve knowledge discovery and better predictive
performance [47–49]. Generally, there are two types of voting algorithm, majority voting
(MV) and weighted voting (WV) [50]. Past studies showed the effectiveness of ensemble
learning over the learning of a single learner [51,52]. After careful investigation, we
proposed a model based on a weighted version of the simple majority voting, where each
classifier contributes to the final output according to a reasonable weight ω. ω is calculated
by the base classifiers along with the related, estimated probability distributions. It is also
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known as the confidence level (CL), indicating the degree of support for the prediction.
The framework and scheme of the model is shown in Figure 4 and Algorithm 1.

Algorithm 1. Weighted voting scheme.

Input:
Ci: Classifier
Lj: Labels of Data Set
m: Ensemble Size
n: the Number of Labels
Output:
the predicted class yj from a single classifier Ci

the predicted class y*
for i = 1: m

for j = 1: n
compute pCiLj

, the probability assigned by Ci to class Lj

µ = arg maxL=1,...,r pCiLj

yCi
= yµ

for j = 1: n
y
(
Lj
)

= { i = 1, . . . ,m: yCi
== yLj

}
if y
(
Lj
)

== ∅
gLj

= 0
else

for i in y
(
Lj
)

do
ωCi = maxj=1,...,n pCiLj

gLj
= ∑m

i=1ωCi ,
µ = arg maxL=1,...,r gLj

y* = yµ
return y*
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3. Results and Discussion
3.1. Data Measures

Table 7 shows the results of the subjective difficulty assessment provided by the
participants (assessed while watching a video playback directly following the flight).
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Table 7. Difficulty level rating according to subjective ratings.

Stall Somersault Takeoff Turn
and Hover

Level
Flight Roll

Subject 1 10 8 6 6 4 3
Subject 2 7 6 8 5 3 4
Subject 3 8 9 5 6 4 4
Subject 4 9 8 3 5 3 3
Subject 5 8 5 2 3 2 2
Subject 6 8 4 1 4 1 3
Subject 7 6 8 1 5 2 2
Subject 8 3 7 2 3 3 6
Subject 9 8 9 5 6 5 5

Subject 10 7 8 3 6 4 4
Subject 11 8 7 3 5 4 3
Subject 12 5 7 2 6 5 2
Subject 13 7 9 3 7 5 3
Subject 14 8 8 4 5 4 3

Mean 7.29 7.36 3.43 5.14 3.50 3.36

Time-domain measurements, such as NN, SDNN, RMSSD, pNN50, pNN20, the mean
of RESP, the standard deviation of RESP, the mean of GSR, the standard deviation of GSR,
the mean of EMG, the standard deviation of EMG, the RMS of EMG, and iEMG, and
frequency-domain measurements, such as ULF, VLF, LF, HF, LF/HF, the frequency of RESP,
the EMG median frequency, and the EMG mean power frequency, as well as raw data,
such as ECG, HR, RESP, SC, EMG, and SKT, were recorded according to pilot behavior and
plotted as a trend (Figure 5).

To objectively analyze the relationship between these physiological parameters and
different behaviors, we analyzed them using the Kendall correlation analysis [53], as shown
in Figure 6. It turned out that the ECG value, HR, SDNN, SDSD, pNN50, pNN20, VLF,
LF, HF, RESP value, REAP mean, RESP standard deviation, SC standard deviation, EMG
value, RMS, iEMG, EMG mid frequency, EMG mean frequency, and SKT value had no
evident correlations with behavior; LF/HF, SCL, the EMG mean, and EMG standard
deviation had moderate correlations with behavior; and NN, ULF, RESP frequency, SCL,
and the SCL mean had high correlations with behavior. Parameters with a dark-green
background were negatively correlated with the degree of difficulty, and parameters with a
light-green background were positively correlated with the degree of difficulty. The trends
in physiological parameters were consistent with previous studies [54–58]. Nevertheless,
the results showed slight differences in ULF compared to some studies [9,59–62] which
believed that ULF cannot reflect a human’s workload level. After further literature research
and analysis, our results were found to be justified. The pilot is in a complex state when
performing flight maneuvers, inducing complicated physiological responses associated
with cognition, fatigue, stress, concentration, or distraction, etc. So, studies which only
take workload into consideration are neither comprehensive nor convincing with regard to
difficulty rating. As a result, despite ULF being unable to reflect a human’s workload level,
it could possibly be used in difficulty level recognition.

The objective analysis of the correlation between physiological indicators and be-
haviors helped to select key indicators for research. For example, if the condition was
too limited to collect multiple physiological features, the features with higher correla-
tion were selected for analysis. Additionally, this is the visual explanation of the feature
importance analysis.
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3.2. Classification Model Performance

Figure 7 and Table 8 depict the 10-fold cross-validation (10-fold CV) results and leave-
one-person-out (LOO) cross-validation results of various classifiers. The principles of LOO
CV can be found in Appendix A [63]. In this study, the proposed model obtained a higher
accuracy and generalization than other machine learning classification models. Although
the mean accuracy of the proposed model was not much improved compared to the base
model, the results of cross-validation show that it had the best stability. In addition, the
robustness and generalization of the model was improved.
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F1 0.96 0.91 0.97 1.00 0.99 0.98
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Table 8. Cont.

DTC

level roll turn and
hover takeoff somersault stall

precision 0.96 0.91 0.97 1.00 0.99 0.97
recall 0.95 0.92 0.97 1.00 0.99 1.00

F1 0.96 0.91 0.97 1.00 0.99 0.98
average accuracy for 10-fold CV 0.9642 MSE for 10-fold CV 0.1733
average accuracy for LOO CV 0.7062 MSE for LOO CV 1.5760

GBC

level roll turn and
hover takeoff somersault stall

precision 0.96 0.91 0.97 1.00 0.99 0.97
recall 0.95 0.93 0.98 1.00 0.99 0.93

F1 0.96 0.92 0.98 1.00 0.99 0.95
average accuracy for 10-fold CV 0.9677 MSE for 10-fold CV 0.1755

average accuracy for LOOCV 0.7064 MSE for LOO CV 1.4856

XGBC

level roll turn and
hover takeoff somersault stall

precision 0.96 0.91 0.97 1.00 0.99 0.97
recall 0.96 0.92 0.98 1.00 0.99 1.00

F1 0.96 0.92 0.98 1.00 0.99 0.98
average accuracy for 10-fold CV 0.9674 MSE for 10-fold CV 0.1847
average accuracy for LOO CV 0.7473 MSE for LOO CV 1.4894

Proposed Model

level roll turn and
hover takeoff somersault stall

precision 0.96 0.93 0.97 1.00 0.99 0.97
recall 0.96 0.92 0.98 1.00 0.99 1.00

F1 0.96 0.93 0.98 1.00 0.99 0.98
average accuracy for 10-fold CV 0.9693 MSE for 10-fold CV 0.1693
average accuracy for LOO CV 0.8094 MSE for LOO CV 1.0606

3.3. Classification Improvement

The importance ranking of various classifiers for features was found by feature impor-
tance selection, as shown in Figure 8.
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Figure 8. The importance ranking of the four different classifiers.

Removing irrelevant features can help to ease the learning task, make the model
simple and reduce the computational complexity. Based on the importance ranking, we
chose to keep NN, SDNN, pNN50, pNN20, VLF, LF, HF, RESP, RESP mean, RESP standard
deviation, SC, SC mean, SC standard deviation, EMG mean, EMG standard deviation, EMG
RMS, iEMG, EMG median frequency, and EMG mean power frequency as features. After
the features were selected and re-input into the model, the classification performance was
as shown in Figure 9 and Table 9. It was found that, after feature selection, the performance
of all models improved.
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Table 9. The classification report of classifiers after improvement.

ETC

level roll turn and
hover takeoff somersault stall

precision 0.97 0.95 0.99 1.00 1.00 1.00
recall 0.97 0.96 0.99 1.00 0.99 0.91

F1 0.97 0.96 0.99 1.00 0.99 0.95
average accuracy for 10-fold CV 0.9792 MSE for 10-fold CV 0.1093
average accuracy for LOO CV 0.7889 MSE for LOO CV 1.1933

DTC

level roll turn and
hover takeoff somersault stall

precision 0.96 0.92 0.99 1.00 0.99 0.97
recall 0.96 0.94 0.98 1.00 0.99 0.88

F1 0.96 0.93 0.98 1.00 0.99 0.92
average accuracy for 10-fold CV 0.9728 MSE for 10-fold CV 0.1579
average accuracy for LOO CV 0.7301 MSE for LOO CV 1.3759

GBC

level roll turn and
hover takeoff somersault stall

precision 0.98 0.93 0.99 1.00 0.99 0.97
recall 0.97 0.96 0.98 1.00 0.99 0.90

F1 0.97 0.94 0.99 1.00 0.99 0.93
average accuracy for 10-fold CV 0.9726 MSE for 10-fold CV 0.1266
average accuracy for LOO CV 0.7306 MSE for LOO CV 1.2341

XGBC

level roll turn and
hover takeoff somersault stall

precision 0.96 0.93 0.98 1.00 1.00 1.00
recall 0.97 0.94 0.98 1.00 0.99 0.94

F1 0.97 0.94 0.98 1.00 0.99 0.97
average accuracy for 10-fold CV 0.9741 MSE for 10-fold CV 0.1151
average accuracy for LOO CV 0.7697 MSE for LOO CV 1.3256

Proposed Model

level roll turn and
hover takeoff somersault stall

precision 0.98 0.95 0.99 1.00 1.00 0.97
recall 0.98 0.96 0.98 1.00 1.00 0.93

F1 0.98 0.95 0.99 1.00 1.00 0.95
average accuracy for 10-fold CV 0.9815 MSE for 10-fold CV 0.1026
average accuracy for LOO CV 0.8273 MSE for LOO CV 0.9601

According to the classification report, ‘takeoff’ achieved the highest accuracy, probably
because takeoff is at the beginning of the flight when the pilot’s attention is most focused.
To obtain more reliable data, in future work, we plan to perform the takeoff operation
several times in one trial to avoid the effect of attention on the results. Confusion tended
to occur between ‘level flight’, ‘roll’, and ‘turn and hover’, probably due to the similar
difficulty of these behaviors and the fact that stalls rarely occur during these maneuvers. To
our surprise, the ‘somersault’ was sometimes confused with ‘level flight’. After discussion
with the pilots, we thought that it might have been because there was a period of level flight
before and after the somersault. So, the definition of the flight behavior still needed further
clarification. ‘Stall’ achieved the lowest accuracy. We believe this is due to the minimum
number of sample points in the ‘stall’ state, which led to an insufficient amount of data
and, thus, affected the results. Therefore, expanding the data set is necessary to train a
better model.

Another finding is that the classification model trained on a data set using 10-fold
CV does not perform best in leave-one-person-out cross-validation. The reason for the
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variation might be attributed to individual differences. Hence, how to select the most
suitable classifier based on the results of 10-fold cross-validation and LOO cross-validation
and how to build an adaptive model to reduce individual variability will be the focus of
subsequent research.

4. Conclusions

This study provided a comparison of the physiological responses of 14 pilots perform-
ing flight missions with different flight behaviors, thus, demonstrating the physiological
indicators influenced by the pilot’s behavioral status and their association with flight
difficulty. It was found that ECG value, HR, SDSD, pNN50, pNN20, VLF, LF, HF, RESP
value, REAP mean, RESP standard deviation, SC standard deviation, EMG value, RMS,
iEMG, EMG mid frequency, EMG mean frequency, and SKT had no evident relations with
pilots’ behaviors. RESP frequency, SCL, and SCL mean rose with an increasing subjec-
tive difficulty rating. On the contrary, NN, ULF, LF/HF, EMG mean, and EMG standard
deviation decreased with increasing subjective difficulty rating. This provided a clue for
selecting key indicators for research, especially as the situation was too limited to collect
multiple physiological features. The comparison also visually explained the selection of
feature importance, which helped to reduce redundancy, avoid overfitting, and improve
the real-time detection capability of the model.

Furthermore, a model that recognizes pilots’ behavior based on multi-modal fusion
technology (MFT) using physiological characteristics was proposed. Pilot multi-modal
physiological parameters and various machine learning classifiers were used to detect
pilot behavior. Several machine learning models were employed to recognize the pilot’s
behaviors. By analyzing and comparing the accuracy, precision, F1 score, and MSE of
different models, it was found that the pilot-state-recognition model could be improved
in many ways, including feature layer fusion, decision layer fusion, and feature filtering.
The experimental results verified the superiority of the proposed model in recognizing
flight behavior. The accuracy of the proposed model reached 98.15%, proving that MFT is
promising for pilot state recognition.

Due to the limited data set used in this study, the accuracy of the classification network
could not be fully verified. In future work, it will be necessary to acquire more data for
training and testing to verify the model more precisely. Building an adaptive model to
reduce individual variation is also the core of future work. In addition, we plan to apply
the model in practice to detect the effects of flight assist systems on the physiological state
of pilots when they perform various behaviors. Furthermore, the generalization of the
model will be improved to make it applicable to more scenarios.
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Abbreviations
MFT Multi-modal Fusion Technology
ECG Electro Cardio
EMG Myoelectricity
GSR Galvanic Skin Response
RESP Respiration
SKT Skin Temperature
EEG Electroencephalogram
MSE Mean Square Error
ROC Receiver Operating Characteristic Curve
GBDT Gradient Boosting Decision Tree
SVM Support Vector Machine
MLP Multilayer Perceptron
RRI RR Interval
NN Normal-to-Normal
SDSD Standard Deviation of the Difference between Adjacent NN Intervals
SDNN Standard Deviation of NN intervals
RMSSD Root Mean Square of Successive Differences
pNN50 Percentage of Mean R–R Intervals Greater than 50 MS
pNN20 Percentage of Mean R–R Intervals Greater than 20 MS
VLF Very Low Frequency (0.0033–0.04 Hz)
ULF Ultra Low Frequency (0–0.0033 Hz)
LF Low Frequency (0.04–0.15 Hz)
HF High Frequency (0.15–0.4 Hz)
LF/HF Energy Ratio of Low Frequency to High Frequency
RMS Root Mean Square
iEMG Integral EMG

Appendix A

The principles of leave-one-person-out cross-validation are as shown.
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