Skip to main content
. 2022 Jun 12;12(6):404. doi: 10.3390/bios12060404

Table 1.

Data pre-processing methods.

Category Aim Methods
Data cleaning Handling of anomalies in data values Missing value processing
(abandon/replacement)
Ectopic values processing
Outlier and noise handling
Data integration Increase sample data size Combining multiple data sets into a single data set
Data standardization Scales the sample values to a specified range Discretization
Dualization
Normalization (min–max, z-score)
Function transformation