Skip to main content
. 2022 May 27;12(6):1326. doi: 10.3390/diagnostics12061326

Table 5.

Decision matrix of alternatives for the BIRADS dataset.

Criteria Accuracy Recall Precision F1-Score ROC AUC Log Loss Number of Training Samples Needed Impact of Feature Scaling Impact of Hyperparameter Tuning Tolerance to İrrelevant Attributes
SVM 97.0% 95.5% 97.5% 98.5% 99.5% −0.8110 0.92 0.92 YES 0.92
Random Forest 96.0% 96.0% 98.0% 98.0% 99.0% −0.8026 0.75 0.08 YES 0.08
Logistic Regression 95.5% 95.5% 97.0% 96.5% 99.0% −0.7984 0.50 0.25 NO 0.50
KNN 95.5% 96.0% 97.5% 96.0% 98.5% −0.7990 0.08 0.92 YES 0.50
Naive Bayes 94.0% 94.0% 96.0% 96.0% 98.0% −0.7860 0.50 0.08 NO 0.75