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Abstract

Gene editing has recently emerged as a promising technology to engineer genetic modifications 

precisely in the genome to achieve long-term relief from corneal disorders. Recent advances 

in the molecular biology leading to the development of Clustered Regularly Interspaced Short 

Palindromic Repeats (CRISPRs) and CRISPR-associated systems, zinc finger nucleases and 

transcription activator like effector nucleases have ushered in a new era for high throughput in 
vitro and in vivo genome engineering. Genome editing can be successfully used to decipher 

complex molecular mechanisms underlying disease pathophysiology, develop innovative next 

generation gene therapy, stem cell-based regenerative therapy, and personalized medicine for 
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corneal and other ocular diseases. In this review we describe latest developments in the field 

of genome editing, current challenges, and future prospects for the development of personalized 

gene-based medicine for corneal diseases. The gene editing approach is expected to revolutionize 

current diagnostic and treatment practices for curing blindness.
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INTRODUCTION

According to World Health Organization ocular diseases affect about 285 million people 

worldwide. It is estimated that over 39 million people suffer from blindness and 246 million 

people have low or impaired vision worldwide. In the United States, vision impairment is 

among the top ten disabilities according to the Centers for Disease Control and Prevention. 

According to the National Eye Institute, approximately 38 million people have vision 

impairment in the United States with an annual cost of over $68.8 billion for medical 

care. If the present increasing trend in eye disease continues, it is estimated that by 2050 

the patient volume with blindness will increase by 150% with a corresponding increase 

of 250% in direct medical costs leading to an economic burden of $717 billion. To break 

this increasing trend and fulfill unmet clinical needs, it is imperative to develop novel next 

generation gene-based molecular therapies for ocular disease.

Cornea is the transparent tissue in front of the eye. It provides two thirds of refractive 

power and protection to the eye[1]. Trauma, injury and/or infection to the eye are known 

to compromise corneal transparency and cause corneal fibrosis and/or neovascularization. 

Corneal diseases are the second leading cause of blindness globally with an estimated 23 

million patients and nearly 80% of all corneal blindness is preventable. Corneal defects are 

one of the most prevalent reasons for vision impairment worldwide. About 4% of the United 

States population has corneal disorders and approximately 1.5 million additional people 

experience corneal blindness each year. It is more pronounced in developing countries 

especially among children due to trachoma which alone causes blindness in 4.9 million 

people worldwide[2,3]. The current treatments for corneal blindness offer only short-term 

relief, require repeated drug application, meticulous patient compliance, cause side effects, 

and often fail. The surgical corneal transplantation is typically used to restore vision, 

requiring donor corneas which are not available in many countries, and their availability 

in America is sharply declining due to laser surgeries, hepatitis, human immunodeficiency 

virus (HIV), etc. Therefore there is an urgent need to develop novel corneal disease models 

and therapeutic strategies to treat corneal diseases. Over the past several years, the major 

focus of our research has been on the development of novel strategies for gene therapy 

to treat corneal diseases using adeno-associated virus (AAV) and nanoparticles[1,4–11]. Our 

lab has demonstrated that various AAV serotypes could be successfully used to deliver 
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therapeutic genes to treat corneal diseases with varying transduction efficiency without 

major side effects. Our ongoing research suggests that AAV and nanoparticle vectors are 

essential for achieving intended gene editing in the cornea.

Gene targeting by homologous recombination has been the gold standard for generating 

germ-line targeted gene knockout and knock-in mice[12,13]. Ocular cells represent a unique 

platform to investigate emerging technologies to gain an insight in to the precise molecular 

mechanisms underlying the disease as well as to develop novel personalized therapeutic 

strategies. According to clinicaltrials.gov there are currently multiple clinical studies on 

gene therapy and stem cell based regenerative medicine for ocular diseases. However, gene-

targeting strategies in human embryonic stem (hES) and human induced pluripotent stem 

(hiPS) cells are relatively more cumbersome, inefficient, time consuming, expensive and 

challenging[14]. As a result, several studies have utilized small interfering RNA and short 

hairpin RNA to knockdown multiple genes. There are several major caveats of this approach 

including non-specificity, off target effects, altered cellular physiology, toxicity and only 

a transient reduction in gene expression leading to an incomplete or partial knockdown 

effect[15–19]. To overcome these limitations, it is imperative to modify the host genome 

precisely. The recent advances in gene editing have led to a widespread enthusiasm and 

significant improvements in this direction. In this review, we describe the current and 

emerging tools for gene editing, and their potential applications in the treatment of ocular 

diseases.

ZINC FINGER NUCLEASES

Zinc finger nucleases (ZFNs)’s belong to the first generation of gene editing tools based on 

the pioneering work of Kim et al[20–23]. ZFNs are designer nucleases that combine the DNA 

binding domain of eukaryotic transcription factors-zinc finger proteins with the nuclease 

domain of the FokI restriction enzyme[24,25]. In ZFNs, tandem arrays of Cys2His2 zinc 

fingers provide DNA binding specificity through recognition of approximately 3 base pairs 

of the target DNA. The catalytic domain of FokI requires dimerization to cleave the DNA 

at the targeted site and two adjacent ZFNs to independently bind to a specific codon with 

correct orientation and spacing. ZFNs work by introducing site-specific DNA double strand 

breaks (DSB) at a predetermined genomic locus. The DSB introduced by ZFNs undergo 

repair in the eukaryotic cells by either homology directed repair (HDR) process or non-

homologous end joining pathway (NHEJ)[26–28]. DNA repair by homologous recombination 

leads to preservation of the original DNA sequence in the targeted cells rendering them 

vulnerable to re-cutting by ZFNs. In contrast, NHEJ can potentially lead to random insertion 

or deletion of nucleotides at the target break site thereby causing permanent disruption of the 

original DNA sequence. Figure 1 shows schematic representation of ZFN technology.

A previous study by Urnov et al[29] has demonstrated that ZFNs designed against X-linked 

severe combined immune deficiency (SCID) mutation in the IL2R gamma gene yielded > 

18% gene-modified human cells with about 7% cells exhibiting desired genetic mutation on 

both X chromosomes. It has been previously demonstrated that HIV-1 uses the co-receptor 

CCR5, a validated target for HIV therapy[30,31]. Surprisingly, allogeneic stem cell transplant 

of a naturally occurring homozygous CCR5 deletion mutant (CCR5Δ32/Δ32) led to the 
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elimination of HIV-1 in a patient[32]. Despite the low frequency of naturally occurring 

CCR5Δ32/Δ32 mutation, researchers have successfully harnessed the potential of ZFNs 

to disrupt CCR5 gene expression in hematopoietic stem and progenitor cells using a 

recombinant adenoviral vector encoding CCR5-specific ZFNs[33]. Recently, ZFNs have 

shown potential therapeutic benefits in clinical trials[34–36]. In a recent open-label phase Ⅰ 
clinical study, HIV patient-derived autologous CD4 T cells were subjected to ZFN-mediated 

gene editing to render them resistant to HIV by knocking out CCR5 gene[36].

While the promise and feasibility of ZFN technology for gene editing has been 

demonstrated, multiple challenges remain. For example, ZFNs are relatively difficult to 

generate and are very expensive. Additionally, ZFNs can be non-specific and may result 

in off-target cleavage leading to multiple DSBs, which in turn can cause chromosomal 

rearrangements. These issues were addressed by developing ZFN variants that have ability to 

reduce off-target non-specific mutagenesis. The ZFN variants include a mix of two distinct 

ZFNs with different FokI domains that are obligate heterodimers, which introduce DSBs 

only when two distinct ZFNs are able to bind adjacent DNA regions[37–39].

TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASES

Another approach to administer gene editing has subsequently emerged through the 

recognition of a new class of designer nucleases termed transcription activator-like effector 

nucleases (TALENs). The gene editing steps associated with TALEN technology are 

presented in Figure 2. Transcription activator-like effectors (TALEs) are proteins secreted 

by Xanthomonas bacteria to subvert the host genome regulatory networks and can be 

engineered to bind any desired target sequence[40–43]. TALEs have a DNA binding module 

termed TAL repeat, which is used by each protein in a tandem array with 10–30 repeats to 

recognize extended DNA sequences with a ratio of 1 TAL repeat to 1 base pair of DNA 

sequence[43]. Each repeat in turn has about 33–35 amino acids with 2 adjacent amino acids 

[Repeat Variable Di-residue (RVD)], which confer their specificity for the DNA bases[40,44]. 

Decoding of the RVD has led to the development of a new class of designer nucleases called 

TALENs that contain an array of TAL repeats fused to FokI nuclease domain[45–47].

As compared to ZFNs, TALENs are relatively easier to design and generate due to their 

modular nature[48]. The promise of TALEN approach has been successfully demonstrated 

through the generation of gene-knockout animal models of C. elegans, rats, mice and zebra 

fish[49–53]. Deml et al[53] have developed zebrafish mutants carrying MAB21L2 gene to 

model human ocular coloboma. Homozygous mab21l2Q48Sfs*5 zebrafish mutant embryos 

exhibit severe lens and retinal defects with complete lethality while mab21l2R51_F52del 

mutants display a milder lens phenotype and severe coloboma. This study demonstrates 

the power of genome editing in model organisms for studying molecular mechanisms 

underlying human ocular diseases. TALENs have recently been exploited to develop 

genetically engineered hES cell lines, hiPS cells and mouse disease models[45,54–57]. 

Experimental correction of genetic defects in vitro has been successfully achieved 

by TALENs in hemophilia[54], mitochondrial diseases[58,59], and Duchenne muscular 

dystrophy[60]. To demonstrate the potential utility and efficiency of TALENs, Ding et al[61] 

have successfully generated mutant alleles of 15 genes in cultured somatic cells or human 
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pluripotent stem cells. In an interesting study, Kim and colleagues have generated a library 

of 18740 TALEN pairs (http://www.talenlibrary.net/) to disrupt or modify every protein-

coding gene for the entire human genome using a high throughput Golden-Gate cloning 

system[62]. In another study, Menon et al[63] utilized iPS cell technology and TALENs to 

generate a subject-specific mutant gene-corrected iPS cell lines for the treatment of X-linked 

SCID. It is interesting to note that while the subject derived mutant iPS cells could generate 

hematopoietic precursors and myeloid cells, only wild-type and gene corrected iPS cells 

could additionally generate mature cells and T cell precursors expressing the correctly 

spliced IL2R gamma. The work also suggests that TALEN technology can be employed 

for the manipulation of immune processes and chronic inflammatory diseases in the eye 

including corneal inflammatory disorders and diabetic retinopathy. Indeed, scores of further 

studies are needed to harness the bench-to-bedside potential of this approach and move 

forward towards the development of an autologous patient-based cell therapy.

The reversal of malignant phenotype via TALEN technology has been recently reported. Hu 

et al[64] have demonstrated that genome editing of human papilloma virus (HPV) oncogenes 

E6/E7 by TALENs efficiently reduced viral DNA load, restored the function of tumor 

suppressor p53/RB1, and reversed the malignant phenotype of host cells both in vitro as 

well as in vivo. In this study, HPV E6/E7 specific TALENs were effective in inducing 

apoptosis, inhibiting growth and reducing tumorigenicity in HPV positive cell lines. Further, 

direct cervical application of HPV E7 targeted TALENs efficiently mutated the E7 oncogene 

and reversed the malignant phenotype in K14-HPV16 transgenic mice. The study suggested 

two possible mechanisms for the reversal of the malignant phenotype. Firstly, TALENs 

specifically recognized and cleaved HPV DNA sequence in host cells leading to DSBs 

that directly induced apoptosis and suppressed their proliferation. Secondly, the cells that 

survived genotoxic stress, activated DSB repair via NHEJ pathway causing E6/E7 mutation. 

This led to the activation of E6/E7-inhibited tumor suppressor p53/RB1 and downregulation 

of CDK2 and E2F1. The ongoing experiments in our laboratory are attempting to generate 

in vitro and in vivo models and newer therapeutic approaches for corneal disorders and 

dystrophies using TALEN technology. This powerful gene editing approach has been 

particularly useful in studying keratoconus and Fuchs’ endothelial corneal dystrophy.

CLUSTERED REGULARLY INTERSPACED SHORT PALINDROMIC REPEATS 

AND CLUSTERED REGULARLY INTERSPACED SHORT PALINDROMIC 

REPEAT ASSOCIATED SYSTEMS

Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Clustered Regularly 

Interspaced Short Palindromic Repeat Associated Systems (Cas9), derived from the bacterial 

adaptive immune system, has tremendous potential for achieving precise in vitro and in 
vivo gene editing[65–69]. Figure 3 depicts the core principle of this approach for obtaining 

intended gene editing in the genome. For the sake of convenience, Figure 4 provides a 

side-by-side comparison between TALENs and CRISPR/Cas9 systems. CRISPR/Cas9 based 

gene editing relies on co-expression of the bacterial Cas9 endonuclease and a short guide 

RNA (sgRNA) sequence to generate DNA DSBs in eukaryotic cells. The excision occurs 

at genomic sites that have a short homologous sequence to the 5’ end of the sgRNA 
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followed by an NGG sequence called protospacer-adjacent motif (PAM)[66,70]. Since DNA 

DSB are primarily repaired through the error-prone NHEJ pathway in eukaryotes via small 

indels generated at the target sites. Therefore, CRISPR/Cas9 system provides a simple and 

cost-effective approach to simultaneously disrupt the open reading frames of multiple coding 

genes to produce loss/gain of function alleles at a high versatility[71–78]. CRISPR/Cas9 

system has been successfully used for genome editing in C. elegans, Drosophila, mosquito, 

zebrafish, mouse, rat and human[79–90]. Cas9 nucleases cleave the double stranded DNA 

through the activity of their RuvC and HNH nuclease domains to generate DSBs. Cas9 

can be engineered to cut only one strand of the DNA by catalytically inactivating either 

the RuvC or HNH nuclease domains[66,91,92]. These newly designed Cas9 nickases offer a 

unique approach to gene editing with high fidelity and specificity.

Recently, Chen et al[93] have successfully combined tamoxifen-inducible CRISPR/Cas-

mediated genome editing with Flp/FRT and Cre/LoxP system to generate inducible gene 

knockout hPSC lines. They found that targeting dual sgRNA was essential for biallelic 

knockin of FRT sequences to flank the exon. They further developed a strategy to 

simultaneously insert an activity controlled recombinase-expressing cassette and removed 

the drug-resistance gene thereby enhancing the generation of SOX2, PAX6, OTX2 and 

AGO2 inducible knockout human ES and iPS cell lines. The target genes in these cell lines 

can be uniformly deleted at any given time by simple application of 4-OHT.

Wu et al[94] have recently reported successful correction of Crygc gene mutation that causes 

cataracts in mice. In this study, a dominant mutation in Crygc gene could be rescued 

in mouse zygotes by co-injection of Cas9 mRNA and a sgRNA targeting the mutant 

allele. Correction in the Crygc gene occurred by HDR based on an exogenously supplied 

oligonucleotide or the endogenous wild type allele, with only rare evidence of off-target 

modifications. The resulting mice were fertile and were able to transmit the corrected 

allele to their progeny. Similarly, Courtney et al[95] have examined the potential of an allele-

specific CRISPR/Cas9 system for hereditary corneal dystrophies by specifically focusing 

on a dominant-negative mutation in KRT12, Leu132Pro which results in Meesmann’s 

epithelial corneal dystrophy. Further, Zhong et al[96] have utilized the CRISPR/Cas9 system 

to generate Kcnj13 mutant mice, which mimic human KCNJ13-related Leber congenital 

amaurosis, an early form of blindness.

The studies discussed above provide proof of principle for the application of CRISPR/

Cas9 system in developing models of corneal dystrophies and personalized therapeutics for 

treating ocular diseases.

GENE EDITING FOR CORNEAL DISEASE MANAGEMENT

Cornea is an ideal target tissue for the development of personalized therapy. Gene editing 

approaches can successfully be used to develop novel corneal disease models. For example, 

it is possible to develop disease in a dish model for corneal dystrophies using patient 

derived corneal tissues. However, there are multiple challenges that need to be overcome 

before gene editing for corneal disease management becomes a reality. One of the major 

challenges is the lack of an authentic in vitro corneal endothelial cell culture model. This 
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is because feline and human corneal endothelial cells are extremely difficult to culture. 

To overcome this major limitation, we have recently established reversibly immortalized 

feline and human corneal endothelial cell lines using Doxycycline inducible lentiviral vector 

system expressing human papillomavirus E6/E7 chimeric gene product. These immortalized 

feline and human corneal endothelial cell lines are valuable to study pathophysiology as well 

as molecular mechanisms regulating dystrophies and wound healing in the cornea. Currently 

there is no in vivo model for Fuchs’ endothelial corneal dystrophy.

We are attempting to develop novel Fuchs’ endothelial corneal dystrophy models employing 

CRISPR/Cas9 gene editing technology and conditionally immortalized corneal endothelial 

cells (Figure 5). Further, gene editing can be used on patient derived iPS cells to develop 

novel corneal disease models. Gene editing can be used to treat corneal fibrosis and 

neovascularization by targeting pathologic genes, microRNAs, long noncoding RNAs, 

and/or signaling pathways driving corneal wound repair. Combat related traumatic corneal 

injuries present an ideal target where gene editing can be applied to maximize wound 

healing and tissue regeneration in corneal tissue without major adverse effects. Viral vectors 

and nanoparticles offer a novel platform to accomplish gene editing in corneal tissue. Real-

time noninvasive intravital imaging will allow precise monitoring of gene editing success in 

an in vivo experimental animal model. Overall, there is tremendous potential of gene editing 

technology for corneal disease management as depicted in Table 1.

CURRENT CHALLENGES AND FUTURE DIRECTIONS

The current major limitations in the field of gene editing include concerns regarding 

specificity, efficiency, and delivery of designer nucleases (ZFNs, TALENs and CRISPR/

Cas9). The non-viral delivery systems including electroporation and protein transfection 

of designer nucleases have shown promising results with limited applications. The cell-

specific delivery of designer nucleases such as CRISPR/Cas9 could be achieved through 

the recombinant viral vectors including adeno-associated virus (rAAV), integrase deficient 

lentivirus, baculovirus, adenovirus or nanoparticle vectors. Our laboratory has successfully 

identified rAAV, disabled lentivirus and nanoparticle vectors for delivering therapeutic genes 

into keratocytes of the mouse and rabbit corneas in vivo and human and canine corneas 

using ex vivo organ culture models[4,97]. The restricted cloning capacity and challenges 

associated with packaging of the expression cassettes limit the use of current hybrid 

rAAV vectors. However, recently two different promising strategies have been successfully 

employed to overcome the packaging limitations of rAAV. A strategy developed by a 

commercial vendor, proposed that Cas9 gene could be split between pAAV-Guide-it-Up 

and pAAV-Guide-it-Down plasmids with 1.6 kb region of homology. In this system, sgRNA 

sequence against the genomic sequence of interest could be cloned into pAAV-Guide-it-

Down plasmid and two separate recombinant AAVs (AAV-Up and AAV-Down) could be 

generated and co-transduced into target cells. Due to precise homologous recombination at 

the site of homology, full-length Cas9 gene driven by an upstream promoter is generated in 

the targeted cells leading to successful genome editing. Employing a different strategy, Ran 

et al[98] have recently identified six smaller Cas9 orthologs. These authors showed that Cas9 

from Staphylococcus aureus (SaCas9) could edit the genome with efficiencies similar to 

those of Staphylococcus pyogenes (SpCas9) despite being more than 1 kilobase shorter[98]. 
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In these studies SaCas9 and its sgRNA expression cassette were packaged into hepatocyte 

tropic rAAV8 to target the cholesterol regulatory gene pro-protein convertase subtilisin/kexin 

type 9 (Pcsk9) in the mouse liver. Following systemic delivery with rAAV, > 40% genome 

modification accompanied by significant reduction in serum Pcsk9 and total cholesterol 

levels was observed. Further, the specificity of SaCas9 was confirmed using an unbiased 

DSB detection method, BLESS to identify a list of candidate off-target cleavage sites. These 

studies highlight the potential of newer SaCas9 for AAV-mediated in vivo genome editing 

applications.

The possibility of undesired genetic modification is a major concern associated with 

current gene editing technologies. To minimize off-target activity of Cas9, Ran et al[99] 

have recently developed an approach that simultaneously combines a Cas9 nickase mutant 

with paired guide RNAs to introduce targeted DSB. Since individual nicks in the genome 

are repaired with high fidelity, simultaneous nicking via appropriately offset guide RNAs 

is required for DSB and extends the number of specifically recognized bases for target 

cleavage. This versatile strategy can reduce off target effects by 50- to 1500-fold in cell lines 

and therefore has a great potential for genome editing applications that require high fidelity 

as well as high specificity.

In yet another interesting study, Suzuki et al[100] have performed whole genome sequencing 

to evaluate the mutational load at single base resolution in individual gene-corrected hiPS 

cells derived from Hutchinson-Gilford progeria syndrome, sickle disease and Parkinson’s 

disease patients. They have reported that in single cell clones, gene correction by helper-

dependent adenoviral vector (HDAdV) or TALEN exhibited few off-target effects and a low 

level of sequence variation. Furthermore, they have developed a TALEN-HDAdV hybrid 

vector, which significantly increased gene-correction efficiency in hiPS cells. Interestingly, a 

comparative analysis of TALENs, CRISPR/Cas9 and HDAdV revealed that HDAdVs have a 

clear superiority over both CRISPR/Cas9 and TALENs in gene targeting and gene correction 

of the HBB locus.

Utilizing a novel approach, Nihongaki et al[101] have recently developed an engineered 

photoactivatable Cas9 (paCas9) that enables optogenetic control of CRISPR-Cas9 genome 

editing by NHEJ and HDR pathways in human cells. Optogenetic paCas9 was developed 

by fusing the two split Cas9 fragments with photoinducible dimerization domains termed 

magnets. The system gets activated in response to blue light and expresses paCas9 in target 

cells and induces targeted genome editing which can be switched off by extinguishing the 

light. Development of optogenetic paCas9 will enable conditional genome editing with ultra 

high precision and lead to potentially innovative gene and cellular therapies for currently 

incurable genetic disorders.

Most recently, Zetsche et al[102] have now characterized Cpf1, a new single crRNA-guided 

endonuclease which lacks tracrRNA and utilizes a T rich PAM. In contrast to the well-

established Cas9, which requires tracrRNA to process crRNA arrays as well as crRNA and 

tracrRNA to mediate interference, Cpf1 doesn’t require tracrRNA to process crRNA arrays. 

Furthermore, Cpf1-crRNA complexes are capable of independently cleaving target DNA 

molecules without any additional RNA species to generate staggered cut with a 5’ overhang 
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unlike the blunt ends generated by Cas9. Additionally, Cpf1 has multiple advantages over 

Cas9 including smaller size and therefore it has a great potential to maximize high fidelity 

gene editing in corneal diseases.

Human germ line editing approach is currently in its infancy as its application has recently 

been demonstrated in China[103] and is gaining momentum in the United Kingdom. Further, 

CRISPR/Cas9 could be effectively used to eradicate selective group of harmful plants, 

animals or insects that interfere with the natural ecological balance. For example, taking 

a note of the fact that only female mosquitos (Aedes aegypti) which feed on blood are 

responsible for pathogenic transmission of dengue, yellow fever and chikungunya viruses, 

Hall et al[87] were able to harness the power of CRISPR/Cas9 system to knockout Nix gene 

leading to a population of largely feminized genetic males while induced ectopic expression 

of Nix resulted in genetic females with nearly complete male genitalia. This study represents 

a promising new approach for implementing vector-controlled strategies wherein the disease 

carrier female mosquitoes can be converted into harmless male mosquitoes.

Another, pressing challenge with viral vectors especially AAV and lentiviral vectors is 

that they have a broad tissue tropism and efficiently transduce vast majority of cell types 

both in vitro as well as in vivo[4]. As a result, targeted in vivo genome editing of a very 

specific cell type in a highly complex organ like eye is extremely challenging but not 

impossible. Several different approaches can be used either independently or in combination 

to circumnavigate and bypass this critical issue. First, a highly tissue specific promoter-

enhancer combination can be used to specifically limit the expression of CRISPR-Cas9 

to the desired cell type. However, tissue-specific promoters often times lack fidelity and 

exhibit promiscuous expression in non-targeted cells. Furthermore, transgene expression 

driven by tissue-specific promoters may either be inadequate for therapeutic effect or supra-

physiological thereby leading to toxicity. Second approach involves either AAV capsid 

engineering or using a specific AAV serotype to target specific cell types. In this regard, 

doxycycline, rapamycin, mifepristone and tamoxifen inducible expression vectors offer an 

excellent choice. However, caution needs to be exercised since certain drugs like rapamycin 

can perturb endogenous mammalian target of rapamycin pathway. Alternatively, delivery of 

Cas9 vectors into the target cells using episomal expression vectors, integration deficient 

lentiviral vectors, adenoviral vectors and nanoparticles has a tremendous potential that needs 

to be explored. We believe that the development of novel hybrid genome editing vectors 

will lead to robust high fidelity targeted genome editing and will potentially enable futuristic 

gene and cellular therapies for currently incurable genetic disorders an ultimate reality.

The tremendous potential to achieve intended gene editing using ZFNs, TALENs and 

CRISPR/Cas9 system for the development of novel disease models and innovative therapies 

has been well demonstrated (Table 2). However, a theoretical risk remains that this 

technology can be misused and exploited for bioterrorism and may have unimaginable 

negative consequences. Thus, it is extremely important to develop stringent guidelines to 

prevent the potential misuse of CRISPR/Cas9 based innovative gene editing technology. 

Like any other genetic engineering technology ZFNs, TALENs, and CRISPR/Cas9 

technologies can be a double-edged sword. Indeed, gene editing approach is going to play a 
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crucial role in improving human and animal health, increasing food and biopharmaceutical 

production, maintaining clean environment and revolutionizing medicine.
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Core tip:

Gene editing technology including Clustered Regularly Interspaced Short Palindromic 

Repeats/Clustered Regularly Interspaced Short Palindromic Repeats associated protein 9, 

zinc finger nucleases, or transcription activator like effector nucleases has great potential 

for generating in vitro and in vivo models of corneal diseases including keratoconus 

and Fuchs’ endothelial corneal dystrophy. Furthermore, gene editing is a powerful 

tool for studying molecular mechanisms mediating corneal development, pathogenesis 

and developing next generation innovative gene therapies including the patient-specific 

personalized medicine for curing corneal diseases. This review discusses current status 

and latest developments in the field of gene editing. Gene editing based molecular 

therapy has the potential to revolutionize current practices in ophthalmology clinic for 

curing corneal blindness.
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Figure 1. Schematic diagram showing structure and design of a typical zinc finger nuclease.
Zinc finger nucleases (ZFNs) use a modular array of 3–6 ZFNs (4 shown) specifically 

designed to bind to the target DNA together with the FokI cleavage domain. The FokI 

cleavage domains can be engineered to function as heterodimers or homodimers to achieve 

desired cleavage specificity. ZFNs typically recognize 24–36 bp unique sequence within the 

genome to achieve target specificity. ZFN mediated cleavage of the target leads to double 

strand breaks, which in turn induces either non-homologous end joining pathway (NHEJ) 

or homology directed repair (HDR) processes. NHEJ leads to gene disruption due to small 

insertions or deletions (indels) while HDR leads to gene correction.
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Figure 2. Transcription activator-like effector nucleases.
In transcription activator-like effector nucleases (TALENs) the nuclease effector domains of 

FokI are fused to TALE DNA binding domains. Since FokI is active only as a dimer, pair 

of TALENs are constructed to position FokI nuclease domains adjacent to genomic target 

sites. Like zinc finger nucleases, dimerization of TALENs leads to double strand breaks that 

is repaired by either error prone non-homologous end joining pathway thereby leading to 

frameshift mutations (deletions, insertions or frameshift) if exons are targeted or homology 

directed repair which can be utilized to introduce non-random mutations, targeted deletion 

or addition of large fragments.
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Figure 3. Clustered Regularly Interspaced Short Palindromic Repeat/Clustered Regularly 
Interspaced Short Palindromic Repeat Associated Systems.
In contrast to Like zinc finger nucleases and transcription activator-like effector nucleases, 

Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated protein 

(Cas9) monomer possess innate nuclease activity which catalyzes double strand breaks 

leading to random knockout phenotypes via non-homologous end joining pathway. 

Therefore Cas9 requires a single guide RNA (sgRNA) to recognize its target site. The 

sgRNA is composed of two separately expressed RNAs including a CRISPR RNA (crRNA) 

and a trans-activating crRNA (tracrRNA), which are processed by endogenous bacterial 

machinery to yield the mature gRNA. The current CRISPR/Cas9 system employs a single 

chimeric sgRNA, which is a fusion of crRNA and tracrRNA. Currently used sgRNA 

typically contains a 17–20 nucleotide long variable region, which is complementary to the 

genomic target sequence. A short region immediately 3’ to the target sequence known as 

protospacer adjacent motif has NGG sequence which is a major specificity determinant of 

Cas9. PAM: Protospacer-adjacent motif.
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Figure 4. Venn diagram of transcription activator-like effector nucleases and Clustered 
Regularly Interspaced Short Palindromic Repeat.
The schematic Venn diagram shows potential differences and similarities between 

transcription activator-like effector nucleases (TALENs) and Clustered Regularly 

Interspaced Short Palindromic Repeat (CRISPR) systems. The gold standard to decipher 

the gene function is to selectively knockout or disrupt the gene expression and analyze 

the resulting phenotypes. Both TALENs and CRISPR are promising and powerful gene 

editing tools that allow complete loss-of-function reverse genetics approaches to study 

gene function. sgRNA: Single guide RNA; Cas9: Clustered Regularly Interspaced Short 

Palindromic Repeats associated protein 9.
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Figure 5. Application of Clustered Regularly Interspaced Short Palindromic Repeat/Clustered 
Regularly Interspaced Short Palindromic Repeat Associated Systems to develop novel therapies 
for corneal diseases.
Corneal Delivery of Clustered Regularly Interspaced Short Palindromic Repeat/Clustered 

Regularly Interspaced Short Palindromic Repeat Associated System using recombinant 

adeno-associated virus, integrase deficient lentiviral vectors and nanovectors can be used to 

potentially target multiple corneal diseases especially Fuchs’ endothelial corneal dystrophy 

to develop novel disease models as well as innovative personalized gene and stem cell 

therapies. PAM: Protospacer adjacent motif. Cas9: Clustered Regularly Interspaced Short 

Palindromic Repeats associated protein 9.
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