Skip to main content
. 2022 Jun 16;12(6):1482. doi: 10.3390/diagnostics12061482

Table 3.

Comparative table for three kinds of DenseNet classifier models.

SN Attributes DN-121 DN-169 DN-201
1 # Layers 430 598 710
2 Learning Rate 0.0001 0.0001 0.0001
3 # Epochs 20 20 20
4 Loss 0.003 0.0025 0.002
5 ACC 98 98.5 99
6 SPE 0.975 0.98 0.985
7 F1-Score 0.96 0.97 0.98
8 Recall 0.96 0.97 0.98
9 Precision 0.96 0.97 0.98
10 AUC 0.99 0.99 0.99
11 Size (MB) 93 165 233
12 Batch size 16 8 4
13 Trainable Parameters 80 M 141 M 200 M
14 Total Parameters 81 M 143 M 203 M

DN-121: DenseNet-121; DN-169: DenseNet-169; DN-201: DenseNet-201; # = number of. Bold highlights the superior performance of the DenseNet-201 (DN-201) model.