Skip to main content
. 2022 Jun 16;12(6):1482. doi: 10.3390/diagnostics12061482

Table 4.

Benchmarking table.

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
SN Author Year TP TS IS2 TM DL Model Modality XAI Heatmap Models AUC SEN SPE PRE F1 ACC
1 Lu et al. [140] 2021 2482 100 to 500 5 CGENet CT Grad-CAM 97.9 97.7 97.7 97.8 97.8
2 Lahsaini et al. [141] 2021 177 4968 6 Transferred DenseNet201 CT Grad-CAM 0.988 99.5 98.2 97.8 98 98.2
3 Zhang et al. [143] 2021 86 5504 1024(CT) 2048(X-Ray) 8 MIDCAN CT, X-ray Grad-CAM 0.98 98.1 98 97.9 98 98
4 Monta et al. [144] 2021 9208 299 7 Fused-DenseNet-Tiny X-ray Grad-CAM 98.4 98.3 98
5 Proposed
Suri et al.
2022 80 5000 512 3 DenseNet-121
DenseNet-169
DenseNet-201
CT Grad-CAM
Grad-CAM++
Score-CAM
FasterScore-CAM
0.99
0.99
0.99
0.96
0.97
0.98
0.975
0.98
0.985
0.96
0.97
0.98
0.96
0.97
0.98
98
98.5
99

TP: total patients; TS: total slice; IS: image size; TM: total models; AUC: area under the curve; SEN (%): sensitivity (or recall); SPE (%): specificity; PRE (%): precision; ACC (%): accuracy.