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Abstract

Microbes can form complex communities that perform critical functions in

maintaining the integrity of their environment or their hosts' wellbeing. Rationally

managing these microbial communities requires improving our ability to predict

how different species assemblages affect the final species composition of the

community. However, making such a prediction remains challenging because of

our limited knowledge of the diverse physical, biochemical, and ecological pro-

cesses governing microbial dynamics. To overcome this challenge, we present a

deep learning framework that automatically learns the map between species

assemblages and community compositions from training data only, without

knowing any of the above processes. First, we systematically validate our frame-

work using synthetic data generated by classical population dynamics models.

Then, we apply our framework to data from in vitro and in vivo microbial com-

munities, including ocean and soil microbiota, Drosophila melanogaster gut mi-

crobiota, and human gut and oral microbiota. We find that our framework learns to

perform accurate out‐of‐sample predictions of complex community compositions

from a small number of training samples. Our results demonstrate how deep

learning can enable us to understand better and potentially manage complex mi-

crobial communities.
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Highlights

• A deep learning framework was developed to predict community compositions

from species assemblages.

• The framework does not require knowing any microbial dynamics.

• Validation in various data shows accurate predictions.
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INTRODUCTION

Microbes can form complex multispecies commu-
nities that perform critical functions in maintaining
the integrity of their environment [1,2] or the well‐
being of their hosts [3–6]. For example, microbial
communities play key roles in nutrient cycling in soils
[7] and crop growth [8]. In humans, the gut micro-
biota plays important roles in our nutrition [9], im-
mune system response [10], pathogen resistance [11],
and even our central nervous system response [5].
Still, species invasions (e.g., pathogens) and extinc-
tions (e.g., due to antibiotic administration) produce
changes in the species assemblages that may shift
these communities to undesired compositions [12].
For instance, antibiotic administrations can shift the
human gut microbiota to compositions making the
host more susceptible to recurrent infections by
pathogens [13]. Similarly, intentional changes in the
species assemblages, such as by using fecal microbiota
transplantations, can shift back these communities to
desired “healthier” compositions [14,15]. Therefore,
improving our ability to rationally manage these mi-
crobial communities requires that we can predict
changes in the community composition based on
changes in species assemblages [16]. Building these
predictions would also reduce managing costs, help-
ing us to predict which changes in the species' as-
semblages are more likely to yield a desired
community composition. Unfortunately, making such
a prediction remains challenging because of our lim-
ited knowledge of the diverse physical [17], bio-
chemical [18], and ecological [19,20] processes
governing the microbial dynamics.

To overcome the above challenge, we present a
deep learning framework that automatically learns the
map between species assemblages and community
compositions from training data only, without know-
ing the underlying microbial dynamics. We system-
atically validated our framework using synthetic data
generated by classical ecological dynamics models,
demonstrating its robustness to changes in the system
dynamics and measurement errors. Then, we applied
our framework to real data of both in vitro and in vivo
communities, including ocean and soil microbial
communities [21,22], Drosophila melanogaster gut mi-
crobiota [23], and human gut [24] and oral microbiota
[25]. Across these diverse microbial communities, we
find that our framework learns to predict accurate out‐
of‐sample compositions given a few training samples.
Our results show how deep learning can be an enabling
ingredient for understanding and managing complex
microbial communities.

PREDICTING MICROBIOME
COMPOSITIONS FROM SPECIES
ASSEMBLAGES

Consider the pool NΩ = {1, …, } of all microbial species
(or taxa) that can inhabit an ecological habitat of interest,
such as the human gut. A microbiome sample obtained
from this habitat can be considered as a local community
assembled from Ω with a particular species assemblage.
The species assemblage of a sample is characterized by a
binary vector ∈z {0, 1}N , where its ith entry zi satisfies
z = 1i (or z = 0i ) if the ith species is present (or absent)
in this sample. Each sample is also associated with a
composition vector ∈p ΔN , where its ith entry pi is the
relative abundance of the ith species, and

∈ ≥ { }p pΔ = = 1N N
i i0 is the probability simplex.

Therefore, our problem can be formalized as learning the
map

∈ ⟼ ∈φ z p: {0, 1} Δ ,N N (1)

which assigns the composition vector p φ z= ( ) based on
the species assemblage z. Note that the above map depends
on many physical, biochemical, and ecological processes
influencing the dynamics of microbial communities. These
processes include the spatial structure of the ecological
habitat [17], the chemical gradients of available resources
[18], and inter/intraspecies interactions [20], among many
others. Therefore, our limited knowledge of all these
processes for most microbial communities renders the map
of Equation (1) highly uncertain.

Next, we show it is possible to predict the microbial
composition from species assemblage without knowing
the mechanistic details of all the above processes. Our
approach consists in learning the map φ directly from a
data setD with S microbiome samples. We arrange each of
those samples as a pair z p( , ) satisfying the map of
Equation (1), see Figure 1A. Note that microbiome samples
are readily available using standard metagenomic sequen-
cing techniques.

Conditions for predicting compositions
from species assemblages

To ensure that the problem of learning φ from D is
mathematically well‐posed, we make the following as-
sumptions. First, we assume that the species pool in the
habitat has universal dynamics [26] (i.e., different local
communities of this habitat can be described by the same
population dynamics model with the same parameters).
This assumption is necessary because, otherwise, the
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map φ does not exist, implying that predicting commu-
nity compositions from species assemblages has to be
done in a sample‐specific manner, which is a daunting
task. The universal dynamics assumption will be satisfied
when samples in the data set were collected from similar
environments. Indeed, in this case, the environmental
factors can be treated as roughly fixed and hence need
not be used for composition prediction. For in vitro
communities, the universal dynamics assumption is sa-
tisfied if samples were collected from the same experi-
ment or multiple experiments but with very similar
environmental conditions. For in vivo communities,
empirical evidence indicates that the human gut and oral
microbiota of healthy adults, as well as certain environ-
ment microbiota, display strong universal dynamics [26].

Second, we assume that the compositions of the col-
lected samples represent steady states of the microbial
communities. This assumption is natural because the
map φ is not well defined for highly fluctuating microbial
compositions. We note that observational studies of host‐
associated microbial communities such as the human gut
microbiota indicate that they remain close to stable
steady states in the absence of drastic dietary change or
antibiotic administrations [24,27,28].

Finally, we assume that for each species assemblage
∈z {0, 1}N there is a unique steady‐state composition
∈p ΔN . In particular, this assumption requires that true

multistability does not exist for the species pool
(or any subset of it) in this habitat. This assumption is
required because, otherwise, the map φ is not injective,
and the prediction of community compositions becomes
mathematically ill‐defined.

In practice, we expect that the above three assump-
tions cannot be strictly satisfied. Therefore, any algo-
rithm that predicts microbial compositions from species
assemblages needs to be systematically tested to ensure
its robustness against errors due to the violation of such
approximations. Note that we can a priori check if a
microbiome data set satisfies the universal dynamics
assumption using the Dissimilarity‐Overlap analysis [26].
Yet, it is mathematically challenging to a priori check if the
other two assumptions are satisfied for real data. Never-
theless, the ability to accurately predict microbiome com-
positions from species assemblage is a posteriori evidence of
the validity of the above three assumptions.

Learning to predict species compositions

Consider building a map →φ̂ : {0, 1} Δθ
N N , parametrized

by ∈θ p, giving the predicted composition p φ zˆ = ˆ ( )θ

associated with the species assemblage z. Under the
above assumptions, we can in principle learn the map of
Equation (1) from the data set D by training φ̂θ (i.e.,

(A) (B) (C)

FIGURE 1 A deep learning framework to predict microbiome compositions from species assemblages. We illustrate this framework
using experimental data from a pool of N = 5 bacterial species in Drosophila melangaster gut microbiota [23]: Lactobacillus plantarum
(blue), Lactobacillus brevis (pink), Acetobacter pasteurianus (yellow), Acetobacter tropicalis (green), and Acetobacter orientalis (purple). (A)
We randomly split this data set into training ( 1D ) and test ( 2D ) data sets, which contain 80% and 20% of the samples, respectively. Each data
set contains pairs z p( , ) with the species assemblage ∈z {0, 1}N (top) and its corresponding composition ∈p ΔN (bottom) from each
sample. (B) To predict compositions from species assemblages, our compositional neural ordinary differential equation (cNODE) framework
consists of a solver for the ordinary differential equation shown in Equation (2), together with a chosen parametrized function fθ . During
training, the parameters θ are adjusted to learn to predict the composition ∈p̂ ΔN of the species assemblage ∈z {0, 1}N in 1D . (C) After
training, the performance is evaluated by predicting the composition of never‐seen‐before species assemblages in the test data set 2D . In this
experimental microbiota, cNODE learned to perform accurate predictions of the composition in the test data set. For example, in the
assemblage of species 3 and 4 (sample 26), cNODE correctly predicts that the composition is strongly dominated by a single species
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adjusting its parameters θ to ensure that φ̂θ approximates
φ). Existing deep learning network architectures and
training methods [29,30], such as ResNet [31] trained
with a gradient descent algorithm, are natural candidates
to solve this problem (Methods Section). We found that it
is possible to train a ResNet architecture for predicting
microbiome compositions in simple cases like small in
vitro communities (Supporting Information Note S.2.1).
But for large in vivo communities like the human gut
microbiota, ResNet does not perform very well
(Figure S1). The poor performance of ResNet is likely due
to a vanishing gradient problem during training [32].
Namely, the ResNet architecture must satisfy two re-
strictions that are very particular to the map of Equation
(1). First, the predicted compositions p̂ must be com-
positional (i.e., ∈p̂ ΔN). Second, the predicted relative
abundance of any absent species in the assemblage must
be identically zero (i.e., z = 0i should imply that p̂ = 0i ).

To overcome the limitations of traditional deep learning
frameworks based on neural networks (such as ResNet) in
predicting microbial compositions from species assemblages,
we developed cNODE (compositional Neural Ordinary Dif-
ferential Equation, see Methods Section and Figure 1B). We
design the cNODE framework using the notion of Neural
Ordinary Differential Equations, which can be interpreted as
a continuous limit of ResNet architecture [33]. Crucially, the
architecture and initialization of cNODE ensure that the
above two restrictions are satisfied by construction. Fur-
thermore, cNODE's architecture naturally circumvents the
typical difficulties of handling zero values associated with
compositional data analysis. Zero abundance values often
occur in human microbiome datasets because of their highly
personalized compositions across hosts (i.e., different in-
dividuals tend to have different species assemblages). To
evaluate the prediction error of cNODE, one can choose any
dissimilarity measure between the predicted and actual
compositions related to a given species assemblage. Once
this dissimilarity measure is selected, we train cNODE using
a meta‐learning algorithm for a given number of epochs to
minimize the average prediction error in a training data set

1D (Methods Section). Using this meta‐learning algorithm
improves the ability of cNODE for predicting the composi-
tion of never‐seen‐before species assemblages. Once trained,
we evaluate the performance of cNODE by calculating its
average prediction error in a test data set 2D containing
samples not used during the training.

Figure 1 illustrates the application of cNODE in a small
experimental community of N = 5 bacterial species of
Drosophila melanogaster microbiota studied by Gould et al.
[23]. The data set D obtained from this study has S = 26

samples (Methods Section). To illustrate the potential of
cNODE, we consider a training data set of 21 randomly
chosen samples (Figure 1A). As explained before, we

arrange each training sample as a pair of “species assem-
blage” z (top) and “composition” p (bottom). Once trained,
the main use of cNODE is to predict the composition of
“never‐seen‐before” species assemblages —namely, “test
assemblages” that are not in the training data set. To
evaluate the performance of cNODE for predicting such test
assemblages, we use as test data set the remaining five
experimental samples not included during training.
Figure 1C shows that the trained cNODE predicts accurate
compositions for the test species assemblages. For example,
cNODE predicts that in the assemblage of species 3 with
species 4 (which was not used for training), species 3 will
become nearly extinct. This prediction agrees well with the
actual experimental result (sample 26 in Figure 1C).

RESULTS

In silico validation of cNODE with large
species pools

We first evaluated cNODE's performance using in silico
microbiome samples generated as steady‐state composi-
tions of pools with N = 100 species and Generalized
Lotka‐Volterra (GLV) population dynamics (Methods
Section). We characterize the population dynamics of a
species pool using two parameters. First, the connectivity
C > 0, characterizing how likely is that two species in the
pool interact directly. Second, the typical interaction
strength ≥σ 0, characterizing the typical effect of one
species over the per‐capita growth rate of another species
if they interact. Different habitats where the species pool
is assembled are thus represented by different parameters
C σ( , ) . Note that, despite its simplicity, the GLV model
successfully describes the population dynamics of mi-
crobial communities in diverse environments, from the
soil [34] and lakes [35] to the human gut [11,36,37].

Figure 2A shows the performance of cNODE during
training. The training and test datasets have S N=

samples for this panel. Note that the training prediction
error decreases with the number of training epochs,
especially for low values of σ . Interestingly, the test
prediction error reaches a plateau after sufficient training
epochs, regardless of the value of σ . This plateau implies
that cNODE was adequately trained with low overfitting.
Note that the plateau's value increases with σ (i.e., the
test prediction error increases). This result remains valid
for different training data set sizes and different values
for the parameters C σ( , ) . In all these cases, the test
prediction error reaches a plateau whose value increases
both by increasing C (Figure 2B) or σ (Figure 2C). But,
crucially, such an increase can be compensated by in-
creasing the number of samples in the training data set.
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This result implies that, in general, cNODE requires a
larger number of training samples in species pools with
higher connectivity or higher typical interaction strength
between species. Overall, these results suggest that using
S N= 2 or more training samples is enough to adequately
train cNODE, regardless of the habitat type. In this case,
we also observe a high correlation between the true and
predicted compositions in the test data set, as expected
from a low test prediction error (Figure S2).

To systematically evaluate the robustness of cNODE
against violation of its three key assumptions, we per-
formed three types of validations. In the first validation,
we generated datasets that violate the assumption of
universal dynamics (Methods Section). In this case, if
two species interact, the effect of one species over the
per‐capita growth rate of the other species changes on
average by ≥η 0 among samples in the data set. There-
fore, the value η = 0 corresponds to universal dynamics,
and larger values of η correspond to more significant
losses of universal dynamics. We find that cNODE is
robust against universality loss as its asymptotic

prediction error changes continuously and maintains a
reasonably low test prediction error up to η = 0.4 (-
Figure 2D). cNODE is also robust to losses of universal
dynamics that occur when species interact with different
species in a sample‐specific manner (Figure S3).

In the second validation, we evaluated the robustness
of cNODE against measurement noises in the relative
abundance of species (Methods Section). We characterize
the noise intensity by a constant ≥ε 0. The measurement
noise may cause some absent species to be measured as
present and vice‐versa. We find that cNODE performs
adequately up to ε = 0.025 (Figure 2E).

In the final validation, we generated datasets with true
multistability by simulating a population dynamics model
with nonlinear functional responses (Methods Section). For
each species assemblage, these functional responses gen-
erate two interior equilibria in different “regimes”: one re-
gime with low biomass and the other with high biomass.
Therefore, each species assemblage can have two associated
compositions. We built training datasets by choosing a
fraction μ(1 − ) of samples from the first regime and the

(A) (B) (C)

(D) (E) (F)

FIGURE 2 In silico validation of compositional neural ordinary differential equation (cNODE). Results are for pools of N = 100 species
with Generalized Lotka‐Volterra population dynamics (A–E) or population dynamics model with nonlinear functional responses that admits
true multistability (F). The population dynamics is characterized by two parameters: the connectivity C > 0 and the typical interaction
strength ≥σ 0. In panels B–F, thin lines represent the prediction errors for 10 validations of training cNODE with a different data set. Mean
errors are shown with thick lines. (A) Training cNODE using S N= samples with connectivity C = 0.5 and different typical interaction
strengths σ . (B) Performance of cNODE for in‐silico data sets with σ = 0.1 and different connectivity C . (C) Performance of cNODE for
in‐silico datasets with C = 0.5 and different interaction strengths σ . (D) Performance of cNODE for in silico data sets with nonuniversal
dynamics. The lack of universal dynamics is quantified by the value of η. For all datasets, σ = 0.1 and C = 0.5. (E) Performance of cNODE
for in‐silico data sets with measurement errors quantified by ε. For all data sets, σ = 0.1 andC = 0.5. (F) Performance of cNODE for in‐silico
data sets with multiple interior equilibria, quantified by the probability ∈μ [0, 1] of finding multiple equilibria. For all data
sets, C σ= 0.5, = 0.1
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rest from the second regime. We find that cNODE is robust
enough to provide reasonable predictions up to μ = 0.2

(Figure 2F).

cNODE predicts microbiome compositions
in real microbial communities

We evaluated cNODE using six microbiome datasets of
different habitats (Supporting Information Note S4). The
first data set consists of S = 275 samples [38] of the ocean
microbiome at the phylum taxonomic level, resulting in
N = 73 different taxa. The second data set consists of
S = 26 in vivo samples of Drosophila melanogaster gut
microbiota of N = 5 species [23], as described in
Figure 1. The third data set has S = 93 samples of in vitro
communities of N = 8 soil bacterial species [21]. The
fourth data set contains S = 113 samples of the Central
Park soil microbiome [22] at the phylum level (N = 36

phyla). The fifth data set contains S = 150 samples of the
human oral microbiome [25] at the genus level (N = 73

genera). The final data set has S = 106 samples of the
human gut microbiome from the Human Microbiome
Project [24] at the genus level (N = 58 genera). Note that
for each data set, to ensure cNODE has enough training
samples, we chose to work at a specific taxonomic level
so that the number of samples ≥S N2 , where N is the
total number of taxa at the specific taxonomic level. Note
that, based on the Dissimilarity‐Overlap analysis, all the
six microbiome datasets display the signature of uni-
versal microbial dynamics to some extent (Supporting
Information Note S4.5 and Figure S4).

To evaluate cNODE, we performed the leave‐one‐
out cross‐validation on each data set (Methods Sec-
tion). The median test prediction errors were 0.06,
0.066, 0.079, 0.107, 0.211, and 0.242 for the six datasets,
respectively (Figure 3A). These errors are consistent
with the strength of universality observed in each data
set. To understand the meaning of these errors, for
each data set we inspected five pairs (p p, ˆ ) corre-
sponding to the observed and out‐of‐sample predicted
composition of five samples. We chose the five samples
based on their test prediction error. Specifically, we
selected those samples with the minimal error, close to
the first quartile, closer to the median, closer to the
third quartile, and with the maximal error (columns in
Figure 3B–G, from left to right). We found that samples
with errors below the third quartile provide acceptable
predictions (left three columns in Figure 3B–G), while
samples with errors close to the third quartile or with
the maximal error do demonstrate salient differences
between the observed and predicted compositions
(right two columns in Figure 3B–G). Note that in the

sample with largest error of the human gut data set
(Figure 3G, rightmost column), the observed compo-
sition is dominated by Prevotella (pink) while the
predicted sample is dominated by Bacteroides (blue).
This drastic difference is likely due to different dietary
patterns [39]. These results also confirm that N2 or
more training samples are enough to adequately train
cNODE, regardless of the habitat type. Note that using
other taxonomic levels in these experimental datasets
may change the performance of cNODE because it will
effectively change the sample size.

DISCUSSION

cNODE is a deep learning framework to predict micro-
bial compositions from species assemblages only. We
validated its performance using in silico, in vitro, and in
vivo microbial communities, finding that cNODE learns
to perform accurate out‐of‐sample predictions using a
few training samples. Classic methods for predicting
species abundances in microbial communities use in-
ference based on population dynamics models
[21,36,40,41]. However, these methods typically require
high‐quality time‐series data of species absolute abun-
dances, which can be difficult and expensive to obtain in
vivo microbial communities. cNODE circumvents need-
ing absolute abundances or time‐series data. However,
compared to the classic methods, the cost to pay is that
cNODE cannot be mechanistically interpreted because of
the lack of identifiability inherent to compositional data
[42,43]. We also found that cNODE can outperform ex-
isting deep‐learning architectures like ResNet, specially
when predicting the composition of large in‐vivo micro-
biomes. Recently, Maynard et al. [44] proposed a statis-
tical method to predict the steady‐state abundance in
ecological communities [44]. This method requires ab-
solute abundance data of species, which are not available
in most microbiome datasets. cNODE can outperform
this statistical method despite using only relative abun-
dances (Supporting Information Note S6). See also
Supporting Information Note S5 and Figure S5 for a
discussion of how our framework compares to other
related works.

Deep learning techniques are actively applied in mi-
crobiome research [45–53], such as for classifying sam-
ples that shifted to a diseased state [54], predicting
infection complications in immunocompromised pa-
tients [55], or predicting the temporal or spatial evolution
of certain species collection [56,57]. However, to the best
of our knowledge, the potential of deep learning for
predicting the effect of changing species assemblages was
not explored nor validated before. Our framework, based
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on the notion of neural ODE [33], is a baseline that could
be improved by incorporating additional information.
For example, incorporating available environmental in-
formation such as pH, temperature, age, BMI, body‐site,
and host's diet could enhance the prediction accuracy.
This additional information would help us predict the
species present in different environments. Adding “hid-
den variables” such as the unmeasured total biomass or
unmeasured resources to our ODE will enhance the ex-
pressivity of the cNODE [58,59], but this may result in
more challenging training. Finally, if available, knowl-
edge of the genetic similarity between species can be

leveraged into the loss function by using the phylogenetic
Wasserstein distance [60] that provides a well‐defined
gradient [61].

We anticipate that a useful application of our
framework is to predict if by adding some species col-
lection to a local community we can bring the abundance
of target species below the practical extinction threshold.
Thus, given a local community containing the target (and
potentially pathogenic) species, we could use a greedy
optimization algorithm to identify a minimal collection
of species to add such that our architecture predicts that
they will decolonize the target species.

(A)

(B)

(C)

(D)

(E)

(F)

(G)

FIGURE 3 Predicting the composition of real microbiomes from species assemblages. Results of the compositional neural ordinary
differential equation applied to six experimental microbial communities using a leave‐one‐out crossvalidation. (A) Prediction error obtained
from a leave‐one‐out crossvalidation of each data set. (B–G) For each data set, we show the true and predicted compositions corresponding
to the minimal prediction error, closer to the first quartile, median, closer to the third quartile, maximum prediction error (including
outliers). All compositions shown in (B–G) are out‐of‐sample predictions
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Our framework has a few limitations. For example,
cNODE cannot accurately predict the abundance of taxa
that have never been observed in the training data set.
An additional limitation of our current architecture is
that it assumes that true multistability does not exist—
namely, a community with a given species assemblage
permits only one stable steady‐state, where each species
in the collection has a positive abundance. For complex
microbial communities such as the human gut micro-
biota, the highly personalized species collections make it
very difficult to decide if true multistability exists or not.
We could extend our framework to handle multistability
by predicting a probability density function for the
abundance of each species. True multistability would
correspond to predicting a multimodal density function
in such a case. Datasets with insufficient sequencing
depth or coverage can produce samples with “fake”
multistability, leading to prediction errors that our fra-
mework cannot resolve. Indeed, the in‐silico validation of
cNODE in Figure 2 indicates that measurement errors
can significantly degrade the performance of cNODE.

In conclusion, the many species and the complex,
uncertain dynamics that microbial communities exhibit,
have been fundamental obstacles in our ability to learn
how they respond to alterations, such as removing or
adding species. Moving this field forward may require
losing some ability to interpret the mechanism behind
their response. In this sense, deep learning methods
could enable us to rationally manage and predict com-
plex microbial communities' dynamics.

METHODS

A ResNet architecture for predicting
microbiome compositions from species
assemblages

As a top‐rated tool in image processing, ResNet is a cascade
of ≥L 1 hidden layers where the state ∈h N

ℓ of the ℓth
hidden layer satisfies h h f h L= + ( ), ℓ = 1, …,θℓ ℓ−1 ℓ−1 ,
for some parametrized function fθ with parameters θ.
These hidden layers are plugged to the input h g z= ( )0 in

and the output p g hˆ = ( )Lout layers, where g in and gout are
some functions. Crucially, for our problem, any archi-
tecture must satisfy two restrictions: (1) vector p̂ must be
compositional (i.e., ∈p̂ ΔN); and (2) the predicted relative
abundance of any absent species must be identically zero
(i.e., z = 0i should imply that p̂ = 0i ). Simultaneously sa-
tisfying both restrictions requires that the output layer is a
normalization of the form ∕p z h z hˆ =i i L i j j L j, , , and that fθ
is a non‐negative function (because ≥h 0L is required to

ensure the normalization is correct). This result is likely
due to the normalization of the output layer, which chal-
lenges the training of neural networks because of vanishing
gradients [30]. The vanishing gradient problem is often
solved by using other normalization layers such as the
softmax or sparsemax layers [62]. However, we
cannot use these layers because they do not satisfy the
second restriction. We also note that ResNet becomes a
universal approximation only in the limit → ∞L , which
again complicates the training [32].

The cNODE architecture

In cNODE, an input species assemblage ∈z {0, 1}N is first
transformed into the initial condition ∕ ∈⊺h z z(0) = ΔN ,
where ∈⊺= (1, …, 1) N (left in Figure 1B). This initial
condition is used to solve the set of nonlinear ODEs

⊙ ⊺dh τ

d τ
h τ f h τ h τ f h τ

( )
= ( ) [ ( ( )) − ( ) ( ( ))].θ θ (2)

Here, the independent variable ≥τ 0 represents a
virtual “time”. The expression ⊙h v is the entry‐wise
multiplication of the vectors ∈h v, N . The function

→f : Δθ
N N can be any continuous function para-

metrized by θ. For example, it can be the linear function
f h h( ) = Θθ with parameter matrix ∈Θ N N× (bottom in
Figure 1B), or a more complicated function represented
by a feedforward deep neural network. Note that Equa-
tion (2) is a general form of the replicator equation—a
canonical model in evolutionary game theory [63]—with
fθ representing the fitness function. By choosing a final
integration “time” τ > 0c , Equation (2) is numerically
integrated to obtain the prediction p h τˆ = ( )c that is the
output of cNODE (right in Figure 1B). We choose τ = 1c

without loss of generality, as τ in Equation (2) can be
rescaled by multiplying fθ by a constant. The cNODE
thus implements the map

∈ ⟼ ∈φ z pˆ : {0, 1} ˆ Δ ,θ
N N

(3)

taking an input species assemblage z to the predicted
composition p̂ (see Supporting Information Note S.1 for
implementation details). Note that Equation (2) is key to
cNODE because its architecture guarantees that the two
restrictions imposed before are naturally satisfied. Name-
ly, ∈p̂ ΔN because the conditions ∈h (0) ΔN and

∕⊺ h τd d = 0 imply that ∈h τ( ) ΔN for all ≥τ 0. Ad-
ditionally, z = 0i implies p̂ = 0i because h (0) and z have
the same zero pattern, and the right‐hand side of Equation
(2) is entry‐wise multiplied by h.
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Training cNODE

We train cNODE by adjusting the parameters θ to ap-
proximate φ with φ̂θ . To do this, we first choose a dis-
tance or dissimilarity measure d p q( , ) to quantify how
dissimilar are two compositions ∈p q, ΔN . We choose
the Bray‐Curtis [64] dissimilarity to present our results,
however, the performance of cNODE is quite robust to
the specific distance or dissimilarity measure used
(Figure S6). Specifically, for a data set ⊆iD D, we use as
loss function the prediction error

∈

E d p φ z( ) =
1

( , ˆ ( )).i
i z p

θ
( , ) i

D
D D

(4)

Second, we randomly split the data set D into training 1D

and test 2D datasets. Next, we choose an adequate func-
tional form for fθ . In our experiments, we found that the
linear function ∈f h h( ) = Θ , Θθ

N N× , provides accurate
predictions for the composition of in silico, in
vitro, and in vivo communities. Importantly, despite fθ is
linear, the map φ̂θ is nonlinear because it is the solution of
the nonlinear ODE of Equation (2). Finally, we adjust the
parameters θ by minimizing Equation (4) on 1D using a
gradient‐based meta‐learning algorithm [65]. This learning
algorithm enhances the generalizability of cNODE (Sup-
porting Information Note S1.2 and Figure S1). Training
cNODE with a data set of 100 species, 100 training samples,
and 100 epochs takes about 30min on a Linux machine
with six Intel Xeon CPUs (E7‐4870 v2) @ 2.30 GHz.

Once trained, we calculate cNODE's test prediction
error E ( )2D that quantifies cNODE's performance in
predicting the compositions of never‐seen‐before spe-
cies assemblages. Test prediction errors could be due
to a poor adjustment of the parameters (i.e., inaccurate
prediction of the training set), low ability to generalize
(i.e., inaccurate predictions of the test data set), or
violations of our three assumptions (universal dy-
namics, steady‐state samples, no true multistability).

Generating in‐silico data for validating
cNODE

We generated in silico data for validating cNODE as
steady‐state compositions of pools with N species and
generalized Lotka‐Volterra (GLV) population dynamics.
The GLV model reads [66]:













x t

t
x t r a x t i N

d ( )

d
= ( ) + ( ) , = 1, …, .i

i i

j

N

ij j

=1
(5)

Above, x t( )i denotes the abundance of the ith species at
time ≥t 0. The GLV model has as parameters the in-
teraction matrix ∈A a= ( )ij

N N× , and the intrinsic
growth‐rate vector ∈r r= ( )i

N . The parameter aij de-
notes the inter‐ (if ≠j i) or intra‐ (if j i= ) species
interaction strength of species j to the per‐capita growth
rate of species i. The parameter ri is the intrinsic growth
rate of species i. The interaction matrix A determines the
ecological network  A( ) underlying the species pool.
Namely, this network has one node per species and edges

→ ∈j i A( ) ( ) if ≠a 0ij . The connectivity ∈C [0, 1] of
this network is the proportion of edges it has compared
to the N 2 edges in a complete network.

To validate cNODE, we generated synthetic micro-
biome samples as steady‐state compositions of GLV
models with random parameters by choosing
a C σ~ Bernoulli( )Normal(0, )ij if ≠i j a, = −1ii , and
r ~ Uniform[0, 1]i , for different values of connectivity C
and characteristic inter‐species interaction strength
σ > 0 (Supporting Information Note S3).

Generating in silico data to test the
robustness of cNODE

For this, given a “base” GLV model with parameters
A r( , ) , we consider two forms of universality loss
(Supporting Information Note S3). First, samples are
generated using a GLV with the same ecological network
but with those non‐zero interaction strengths aij replaced
by a η+ Normal(0, )ij , where η > 0 characterizes the
changes in the typical interaction strength. Second,
samples are generated using a GLV with slightly different
ecological networks obtained by randomly rewiring a
proportion ∈ρ [0, 1] of their edges.

In the second validation, we evaluated the robustness of
cNODE against measurement noises in the relative abun-
dance of species. For this, for each sample p, we first change
the relative abundance of the ith species from pi to

p εmax{0, + Normal(0, )}i , where ≥ε 0 characterizes the
measurement noise intensity. Then, we normalize the vector
p to ensure it is still compositional, that is, ∈p ΔN . Due to
the measurement noise, some species that were absent may
be measured as present and vice‐versa.

In the third validation, we generated datasets with
true multistability by simulating a population dynamics
model with nonlinear functional responses (Supporting
Information Note S3). For each species collection, these
functional responses generate two interior equilibria in
different “regimes”: one regime with low biomass, and
the other regime with high biomass. We then train
cNODE with datasets obtained by choosing a fraction
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μ(1 − ) of samples from the first regime, and the rest
from the second regime.

Validating cNODE using real microbiome
data sets

To validate cNODE, we performed a leave‐one‐out cross‐
validation over real microbiome data sets (see descrip-
tions on Supporting Information Note S4). For each data
set, we measured the prediction error of cNODE using
each sample as a test set and the rest of the samples as a
training set. We repeated this procedure for different
learning rates and mini‐batch sizes and selected the hy-
perparameters that minimized the average prediction
error over the samples (see Table S1).
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