
Citation: Kigka, V.I.; Georga, E.;

Tsakanikas, V.; Kyriakidis, S.;

Tsompou, P.; Siogkas, P.; Michalis,

L.K.; Naka, K.K.; Neglia, D.;

Rocchiccioli, S.; et al. Machine

Learning Coronary Artery Disease

Prediction Based on Imaging and

Non-Imaging Data. Diagnostics 2022,

12, 1466. https://doi.org/10.3390/

diagnostics12061466

Academic Editors: Keun Ho Ryu

and Nipon Theera-Umpon

Received: 15 April 2022

Accepted: 11 June 2022

Published: 14 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Machine Learning Coronary Artery Disease Prediction Based on
Imaging and Non-Imaging Data
Vassiliki I. Kigka 1,2, Eleni Georga 1,2, Vassilis Tsakanikas 1,2, Savvas Kyriakidis 1,2, Panagiota Tsompou 1,
Panagiotis Siogkas 1,2, Lampros K. Michalis 3, Katerina K. Naka 3 , Danilo Neglia 4, Silvia Rocchiccioli 5 ,
Gualtiero Pelosi 5, Dimitrios I. Fotiadis 1,2 and Antonis Sakellarios 1,2,*

1 Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and
Engineering, University of Ioannina, GR 45110 Ioannina, Greece; kigkavaso@gmail.com (V.I.K.);
egewrga@gmail.com (E.G.); vasilistsakanikas@gmail.com (V.T.); savvasik21@gmail.com (S.K.);
panagiotatsompou@gmail.com (P.T.); psiogkas4454@gmail.com (P.S.); dimitris.fotiadis30@gmail.com (D.I.F.)

2 Institute of Molecular Biology and Biotechnology, Department of Biomedical Research—FORTH,
University Campus of Ioannina, GR 45110 Ioannina, Greece

3 Department of Cardiology, Medical School, University of Ioannina, GR 45110 Ioannina, Greece;
lamprosmihalis@gmail.com (L.K.M.); drkknaka@gmail.com (K.K.N.)

4 Fondazione Toscana Gabriele Monasterio, IT 56126 Pisa, Italy; dneglia@ftgm.it
5 Institute of Clinical Physiology, National Research Council, IT 56124 Pisa, Italy;

silvia.rocchiccioli@ifc.cnr.it (S.R.); pelosi@ifc.cnr.it (G.P.)
* Correspondence: ansakel13@gmail.com; Tel.: +30-26510-07848

Abstract: The prediction of obstructive atherosclerotic disease has significant clinical meaning for
the decision making. In this study, a machine learning predictive model based on gradient boosting
classifier is presented, aiming to identify the patients of high CAD risk and those of low CAD risk.
The machine learning methodology includes five steps: the preprocessing of the input data, the
class imbalance handling applying the Easy Ensemble algorithm, the recursive feature elimination
technique implementation, the implementation of gradient boosting classifier, and finally the model
evaluation, while the fine tuning of the presented model was implemented through a randomized
search optimization of the model’s hyper-parameters over an internal 3-fold cross-validation. In total,
187 participants with suspicion of CAD previously underwent CTCA during EVINCI and ARTreat
clinical studies and were prospectively included to undergo follow-up CTCA. The predictive model
was trained using imaging data (geometrical and blood flow based) and non-imaging data. The
overall predictive accuracy of the model was 0.81, using both imaging and non-imaging data. The
innovative aspect of the proposed study is the combination of imaging-based data with the typical
CAD risk factors to provide an integrated CAD risk-predictive model.

Keywords: coronary artery disease; noninvasive cardiovascular imaging; coronary artery disease
risk stratification; machine learning models

1. Introduction

Atherosclerosis is considered as a chronic inflammatory disease of arteries, and its clin-
ical manifestation accounts for a significant number of deaths worldwide. Atherosclerotic
disease is characterized by the pathologic process of lipid accumulation and inflammation
in the vessel wall, leading to the vessel wall thickening, lumen stenosis, calcification, and
in some cases thrombosis [1]. The most important form of atherosclerosis is coronary artery
disease (CAD), which accounts for the largest portion of cardiovascular disease deaths
and leads to narrowing of the arteries that carry blood to the heart muscle [2]. The recent
advances in coronary imaging techniques, either invasive or noninvasive, have enabled the
identification of coronary vessels features, which are considered as CAD risk factors.

However, despite the recent technological cardiovascular imaging advancements
to recognize the subclinical disease and the improvement of patient’s management, the
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identification of high-risk patients remains a challenge due to the inherently unpredictable
disease’s nature [3] since the rate of major adverse cardiac events (MACE) remains high
both for patients with known CAD or for asymptomatic individuals [4].

Both CAD risk prediction and its progression prediction are two issues of high impor-
tance in biomedical research that aims to identify those individuals who are associated with
an increased risk of CAD and the main factors that contribute to the disease progression.
Existing studies have reported the different types of CAD risk factors, such as the pa-
tient’s lipid profile (total cholesterol and low-density lipoprotein cholesterol, high-density
lipoprotein cholesterol, triglycerides), smoking, hypertension, diabetes mellitus, obesity,
and family history [5], and have established the importance of the conventional CAD risk
factors in the prediction of CAD.

In the literature, different studies have been proposed for CAD risk prediction and
the classification of patients into risk categories, either taking advantage of statistical mod-
elling or artificial intelligence-based models [6–8]. The traditional statistical-based CAD
prediction models have implemented regression models, such as the Cox model utilized
in Framingham Risk Score study [6] and the Weibull model applied for the Systematic
Coronary Risk Evaluation (SCORE) model. In spite of their predictability, statistical models
are often dedicated to interpreting the input parameters and contributing to features as-
sociation input analysis [9]. On the other hand, machine-learning-based models perform
an automated search in the input features, either stochastic or deterministic, for the opti-
mal prediction outcome and, in some cases, may be found advantageous over traditional
regression methods [10,11].

As far as the existing machine-learning-based studies, different studies have been
presented both for the prediction of CAD and the prediction of its progression, whereas
other studies are dedicated to detect the most significant biomarkers. More specifically,
Exarchos et al. [10] implemented typical classification schemes to predict the number of
vessels’ stenosis, the atherosclerosis progression, as well as a hybrid score corresponding to
the severity of the disease. The utilized input features were demographics, clinical data,
several biochemical variables, monocytes, and adhesion molecules. In another recently
published study [11], demographics, clinical data, echocardiography data, and 54 features
of laboratory variables were used to predict the status of CAD by applying a support
vector machine (SVM) algorithm with kernel fusion. Ambale et al. [12] implemented
machine learning techniques to characterize cardiovascular risk, predict outcomes, and
identify biomarkers in population studies. More specifically, they tested the ability of
random forests (RF) to predict six different cardiovascular events and concluded that
the RF technique performed better than established risk scores with increased prediction
accuracy. Motwani et al. [13] found that machine learning techniques combining clinical and
CTCA data predict 5-year all-cause mortality (ACM) in patients with suspected coronary
artery disease better than existing clinical or CTCA metrics alone. In a study proposed
by van Rosendael et al. [14], they investigated whether a machine-learning-based score
incorporating only the 16-segment coronary tree information derived from CTCA provides
enhanced risk stratification compared with current CTCA-based risk scores and concluded
that the proposed model can improve the integration of CTCA-derived plaque information
to improve risk stratification. In a more recent study, Sakellarios et al. [15] presented a
multi-parametric predictive model, including traditional risk factors, plasma lipids, 3D
imaging parameters, and computational data, for the prediction of site-specific plaque
progression and concluded that imaging-based characteristics, such as low endothelial
shear stress (ESS) and low-density lipid (LDL) accumulation, are significant predictors.
On the other hand, Heo et al. [16] developed and validated machine learning models to
predict patients with hidden CAD and assess long-term outcomes in patients with acute
ischemic stroke.
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The basic concept of the proposed study is to develop a machine learning predictive
model that incorporates both noninvasive imaging data derived by CTCA and typical
patient baseline characteristics to predict the CAD risk and especially the obstructive
disease. The clinical focus of the proposed machine-learning-based model is to indicate the
prognostic value of the combination of non-imaging and imaging features derived by CTCA
imaging for the prediction of CAD high-risk patients and to compare the predictability of
the combination of non-imaging and imaging features with non-imaging features alone.
As for the innovative aspect of the proposed study, we assemble a variety of patient
characteristics that have never been previously utilized, aiming to predict the risk for
CAD. The final selected predictive model adopted both bagging and boosting ensemble
modelling principles such that the model’s variance and bias are treated concurrently.

2. Materials and Methods
2.1. Dataset Description

The proposed study is based on the EVINCI population [17], in which patient-specific
information, both imaging and non-imaging, were collected for clinical purposes and
utilized as the baseline information for the development of a CAD risk stratification
methodology, whereas the follow-up data were collected after 6.22 ± 1.42 during the
SMARTool project (September 2016–November 2017) [18]. More specifically, during the
H2020 SMARTool project, a prospective, multicenter study in patients was conducted by
7 medical centers (Pisa, Turku, Zurich, Barcelona, Warsaw, Naples, Viareggio) from 5 Euro-
pean countries. All the participants signed informed consent to participate in the study and
all the following procedures. Patients who previously underwent coronary CTCA during
the EVINCI (Evaluation of Integrated Cardiac Imaging for the Detection and Characteriza-
tion of Ischemic Heart Disease; FP7-222915; n = 152—February 2009–June 2012) [12] and
ARTreat (FP7-224297; n = 18) [13] clinical studies were prospectively included to undergo
follow-up CTCA. In addition to this, individuals (n = 32) who underwent CTCA in the
period from 2009 to 2012 were also prospectively included. A detailed list of inclusion and
exclusion criteria is provided in Supplementary Materials.

Anonymized data were acquired from 187 patients, derived by different medical
centers, and the cohort data were obtained under a data protection agreement fulling all
the ethical and legal requirements for data sharing posed by the General Data Protection
Regulation in a third-level care setting. Table 1 below demonstrates the collected data
types. The median age of the patients of our dataset is 61 years old (45–76), and at their
first visit to the physician, all the participants underwent CTCA imaging regardless of the
presence of symptoms. More specifically, 45% and 25% of the participants had atypical
and typical angina, respectively, whereas 12% of them had other symptoms, and 16% were
asymptomatic. In addition to this, as for the pharmaceutical treatment of the participants,
18%, 28%, 13%, 40%, 13%, 10%, 3%, and 48% of them received angiotensin receptor blockers
(ARBs), angiotensin converting enzyme inhibitors (ACE inhibitors), diuretics, beta blockers,
calcium antagonists, oral antidiabetics, insulin, and statins, respectively, at the baseline
time step.

2.2. Methodology
2.2.1. CTCA Image Analysis and Three-Dimensional Reconstruction

The first step of the development of the CAD risk-prediction model was the analysis of
the CTCA images. This analysis was conducted by implementing an active contour based
model for the segmentation of CTCA images and aimed to provide a detailed geometry
of the three major coronary arteries, the left anterior descending artery (LAD), the left cir-
cumflex artery (LCX), and the right coronary artery (RCA). This methodology is integrated
in a dedicated software tool, which can semi-automatically provide the detailed 3D coro-
nary artery anatomy [19,20]. More details for the overall three-dimensional reconstruction
methodology can be found in the Supplementary Materials in the Section 2.2.1.



Diagnostics 2022, 12, 1466 4 of 14

Table 1. Imaging and non-imaging data utilized. * Imaging data from CTCA.

Type Features

Imaging data * Geometrical vasculature

Degree of Stenosis, Minimal Lumen Area, Minimal
Lumen Diameter, Plaque Burden, Calcified Plaque
Volume, Noncalcified Plaque Volume, SmartFFR
Index, Number of Calcified Plaques, Number of

Non-calcified Plaques

Non-imaging data

Demographics Age, Gender

Risk factors
Family History of CAD, Hypertension, Diabetes,

Dyslipidemia, Smoking, Obesity, Metabolic
Syndrome, Past Smokers

Biohumoral Markers

Creatinine, Uric Acid, Glucose, Total Cholesterol,
HDL, LDL, Triglycerides, Insulin, Aspartate

Aminotransferase, Alanine Aminotransferase,
Alkaline Phosphatase, Gamma-glutamyl

Transferase, Hs-C Reactive Protein, Interleukin-6,
TSH, fT3, fT4, Leptin, MMP2 Protein Plasma,

MMP9 Protein Plasma, hs-cardiac Troponin T, N
terminal Fragment of Pro-brain Natriuretic

Peptide, Lipidomics, Metabolomics

2.2.2. Calculation of the SmartFFR index

In this study, except the geometrical derived metrics and a blood-flow-based index,
the SmartFFR index [21] was utilized. More details about the SmartFFR index can be found
in the Supplementary Materials, in the Section 2.2.2.

2.2.3. Problem Definition

The CAD risk stratification problem has been formulated as a two-class classification
problem based on the maximal coronary artery stenosis. This hypothesis is based on the
findings of the Coronary Artery Disease Reporting and Data System (CAD-RADS) [22],
which provides a standardized method to associate findings of the CTCA imaging modality
to facilitate decision making regarding further patient management. Figure 1 shows the dis-
tribution of the population across the two CAD-severity groups. More specifically, among
the total 263 patients who underwent CTCA imaging for clinical purposes, 55 patients un-
derwent percutaneous coronary intervention stenting procedure and 10 patients coronary
artery bypass grafting procedure, whereas CTCA images of 11 patients were considered as
interpretable either at the baseline time step or at the follow-up time step. The annotation
was based on the assessment of the obstructive disease: at least one major artery with
stenosis > 50%.

The definition of these two classes is based on the quantitative degree of stenosis de-
rived by the CTCA imaging modality according to the society of cardiovascular computed
tomography guidelines committee [23]. More specifically, the first class, the no CAD—
minimal CAD class (Class 1¯C1)), includes the grading scale 0, 1, and 2 (normal, minimal,
and mild), whereas the obstructive CAD class (Class 2¯C2)) includes the grading scale 3, 4,
and 5 (moderate, severe, and occluded), as it is shown in Table 2. This classification was
selected because we want to predict the obstructive CAD disease.
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Figure 1. Flow chart depicting the distribution of the cohort in CAD-severity groups based on the
CTCA imaging at the follow-up step. in total, 287 patient imaging data (125 in Class 1 and 62 in
Class 2) were analyzed. (CAGB, coronary artery bypass graft surgery; CAD, coronary artery disease).

Table 2. Definition of the utilized CAD risk classes. (CAD, coronary artery disease).

Proposed Classes Recommended Stenosis
Grading Scale of CAD Quantitative Stenosis

Class 1¯C1

0: Normal No luminal stenosis
1: Minimal Plaque with <25% stenosis

2: Mild 25–49% stenosis

Class 2¯C2

3: Moderate 50–69% stenosis
4: Severe 70–99% stenosis

5: Occluded 100% stenosis

Baseline imaging and non-imaging characteristics were trained into a gradient boost-
ing classification scheme, aiming to discriminate the patients at low risk (Class C1) and
those at high risk (Class C2), concerning their follow-up time step. This predictive super-
vised learning approach aims to learn mapping from input features x to output Y given a
labeled set of input output pairs D = {(xi, Yi)}N

i=1, where D is the training set, and N is the
number of training examples [24]. Each sample (xi, Yi) associates the input features with
the risk prediction of CAD severity, Y, where Y ∈ {C1, C2}, is estimated by a non-linear
parameterized function ( f ) of input features x ∈ Rd, x = [x1, x2, . . . , xN ]. The goal of this
supervised classification problem is to obtain an approximation F(x) of the function F∗(x)
mapping the input x to output Y. The function F∗(x) minimizes the expected value of
some specified loss function L(y, F(x)), whereas the procedure followed in this proposed
study is to restrict the function F(x) to be a member of parameterized class of functions
F(x; Y). In addition to this, in this paper, we constructed our model based on additive
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expansions of the form F
(

x; {βm, am}M
1

)
. F∗(x) and F

(
x; {βm, am}M

1

)
, which are described

in the Supplementary Materials in Equations (S1) and (S2), respectively [24].
The selected predictive model was nested into an easy ensemble classification scheme

to overcome the class imbalance problem. To estimate the classification performance of
the proposed method, an externally stratified 10-fold cross-validation was applied, with
data pre-processing, a multivariate feature ranking, and a gradient boosting classifica-
tion scheme being efficiently combined at each iteration of the procedure. The overall
proposed model performs feature selection in the learning time since it achieves model
fitting and feature selection simultaneously. Data-preprocessing and feature ranking follow
the resampling procedure itself, which reduces the selection bias in the estimates of the
model’s performance, whereas stratification assures that each validation fold retains the
class distribution in the dataset. In addition to these, randomized search optimization of
the model’s hyper-parameters over an internal 3-fold cross-validation contributes to the
fine-tuning of the presented model.

2.2.4. Easy Ensemble Algorithm Implementation-Class Imbalance Handling

The easy ensemble algorithm [25] is a class imbalance handling approach in which
P are the training instances of the minority class, whereas Q denotes the instances of the
majority class. The idea of the easy ensemble algorithm is to employ random resampling to
generate K subsets of {Q1, Q2, . . . ., QK} from Q (|Qi| < |Q|, i = 1, 2, . . . , K). Subsequently,
each Qi ∪ P is trained by the classifier, and the final decision is selected by majority voting.
In the proposed predictive model approach, the easy ensemble approach is combined with
the gradient boosting classifier, and each individual model is trained by the Equations
(S10)–(S13) in the Supplementary Materials.

2.2.5. Data Pre-Processing

In this step, one hot encoding procedure was implemented to represent all the cat-
egorical input features as binary vectors. In addition to this, a curation procedure was
implemented to curate our dataset both for outliers and missing values. All the input
features whose missing values were higher than 10% were removed from the dataset,
whereas features with missing values lower than 10% were imputed by either the most
frequent value (categorical type features) or the median value (numerical type features).

2.2.6. Recursive Feature Elimination

In this step, our aim is to reduce the dimensionality d of input features x ∈ Rd to over-
come the risk of overfitting, which basically arises when the number of d is comparatively
large, and the number of the training patterns is small. In this study, a feature ranking
technique with a support vector machine (SVM) with recursive feature elimination (RFE)
was implemented to rank the input features. The whole SMV RFE procedure is shown in
Table S1 in the Supplementary Materials [26].

2.2.7. Gradient Boosting Classification

In the first step, the gradient boosting classification algorithm [27] implements a nu-
merical implementation minimizing the equation of F∗(x) (Equation (S1)—Supplementary
Materials). The whole function of the utilized classification scheme is described in the
Supplementary Materials (Equations (S3)–(S13)).

The overall pipeline of the proposed machine learning methodology is shown in
Figure 2 below.
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Figure 2. Overall pipeline of the proposed methodology. The input is based on clinical data, laboratory
test, and imaging data provided by the three-dimensional reconstruction of the artery and the blood-
flow modelling. Different machine learning models were implemented for the prediction of coronary
artery disease presence.

3. Results
CAD Risk-Prediction Model Performance Evaluation

The utilized CAD risk-prediction model performance metrics are the balanced accu-
racy, the negative predictive value, the positive predictive value, the area under the receiver
operating curve (ROC AUC), and the sensitivity and specificity. The values of the adopted
performance metrics and their mean value and the 10-fold standard deviation are given
in Table 3. The average balanced accuracy of the selected predictive model is 0.81, while
its sensitivity and specificity is 0.88 and 0.73, respectively. In Figure 3, we demonstrate
the normalized confusion matrix regarding the selected gradient boosting classification
algorithm combined with an SVM RFE feature selection technique. In addition to this, in
Table 4, the respective performance metrics over the different folds and their mean and
standard deviation values using only non-imaging data are shown. The average balanced
accuracy of the predictive model trained only by non-imaging features is 0.69, while its
sensitivity and specificity are both 0.69.

Table 3. Evaluation of the CAD risk-prediction problem over 10-fold using imaging and non-imaging
data (AUC, area under curve).

Folds Balanced
Accuracy

Negative
Predictive Value

Positive
Predictive Value ROC AUC Sensitivity Specificity

Fold #0 0.73 0.78 0.67 0.60 0.67 0.78
Fold #1 0.75 0.86 0.63 0.82 0.84 0.67
Fold #2 0.89 1 0.72 0.92 1 0.78
Fold #3 0.69 0.78 0.6 0.72 0.6 0.78
Fold #4 0.84 1 0.63 0.83 1 0.67
Fold #5 0.84 1 0.63 0.89 1 0.67
Fold #6 0.95 1 0.84 1 1 0.89
Fold #7 0.78 1 0.56 0.78 1 0.56
Fold #8 0.8 0.86 0.72 0.88 0.84 0.75
Fold #9 0.8 0.86 0.72 0.75 0.84 0.75

Mean ± std 0.81 ± 0.08 0.92 ± 0.1 0.68 ± 0.08 0.82 ± 0.11 0.88 ± 0.15 0.73 ± 0.09
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Figure 3. Normalized Confusion Matrix regarding the Gradient Boosting Classification algorithm for
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Table 4. Evaluation of the CAD risk-prediction problem over 10-fold using only non-imaging data
(AUC, area under curve).

Folds Balanced
Accuracy

Negative
Predictive Value

Positive
Predictive Value ROC AUC Sensitivity Specificity

Fold #0 0.5 0.6 0.4 0.33 0.33 0.67
Fold #1 0.56 0.64 0.5 0.65 0.33 0.78
Fold #2 0.72 1 0.5 0.89 1 0.44
Fold #3 0.69 0.78 0.6 0.69 0.6 0.78
Fold #4 0.79 0.88 0.67 0.87 0.8 0.78
Fold #5 0.78 1 0.56 0.78 1 0.56
Fold #6 0.79 0.88 0.67 0.8 0.8 0.78
Fold #7 0.72 1 0.5 0.76 1 0.44
Fold #8 0.6 0.64 0.67 0.79 0.33 0.88
Fold #9 0.71 0.75 0.67 0.83 0.67 0.75

Mean ± std 0.69 ± 0.1 0.82 ± 0.16 0.57 ± 0.1 0.74 ± 0.16 0.69 ± 0.28 0.69 ± 0.15

Additionally, a SHAPley Additive exPlanations (SHAP) analysis was implemented
for explaining the prediction of the proposed model by computing the contribution of
each feature to the prediction [28]. The most important predictors of the proposed model
are presented in Figure 4 below. Mean absolute SHAP values for the 10 most significant
features are estimated to illustrate the global feature importance. As it is shown in Figure 4,
the most significant feature is the number of the existing calcified plaques and the highest
coronary degree of stenosis at the baseline step. In addition to this, input features such
as pro-brain natriuretic peptide (NT-proBNP), matrix metalloproteinase-2 and 9 (MMP-2,
MMP-9), leptin, low-density lipoprotein (LDL), and patient characteristics such as weight,
age, and height are highly ranked as significant features for the prognosis of coronary
artery disease (CAD).

In addition to this, in Figure 5 below, we demonstrate the global interpretability of
the proposed model by representing how much each input feature, either positively or
negatively, contributes to the target variable. In Figure 5, we show with yellow columns
the input features that contribute positively to the output target (detection of Class 2,
CAD class). On the other hand, with blue columns, we indicate the input predictors that
contribute negatively to the output target (detection of Class 1, no-CAD class). As it is
shown in Figure 5, most of the input features contribute negatively to the output target
and contribute to the prognosis of Class 1. Indicatively, the most significant features that
contribute positively to the output target are thyroid stimulating hormone, medication
therapy of beta blockers, aspartate aminotransferase, diabetes, and minimum lumen area.
In the presented model, we observe that the most significant predictor for the prognosis of
CAD is thyroid stimulating hormone, which confirms the effect of the thyroid hormones
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on the cardiovascular system [29,30]. Thyroid hormone is considered is a significant regu-
lator of cardiovascular system function and hemodynamics through different mechanisms.
More specifically, inadequate thyroid hormone levels impair the relaxation of vascular
smooth muscle cells and decrease cardiac contractility by regulating calcium uptake and
the expression of several contractile proteins in cardiomyocytes. Additionally, low thyroid
hormone levels also increase systemic vascular resistance and induce endothelial dysfunc-
tion by reducing nitric oxide availability [31,32]. As for the imaging-based input predictors,
minimum lumen area has the most significant positive effect on the proposed model. As
it is shown in Figure 5, the most significant feature with negative effect on the output is
the number of the calcified plaques at the baseline analysis of patient imaging. Different
studies in the literature have confirmed the prognostic capability of the presence of calcified
atherosclerotic plaques [33]. Calcification of the coronary arteries plays a key role in the
pathophysiology of atherosclerosis, and these lesions are considered advanced lesions [34].
In addition to this, patient height contributes negatively to the prognosis of the output tar-
get, confirming the genetic relationship between height and coronary artery disease [35,36].
As for the biochemical predictors for the no-CAD class (Class 1), we observed that pro-brain
natriuretic peptide, low density lipoprotein, and matrix metalloproteinase 2 have a high
negative effect on the output target.
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Figure 5. Input Features Contribution Table (blue, features with negative effect; yellow, features with positive effect). The most significant features that contribute
positively to the output target are thyroid stimulating hormone, medication therapy of beta blockers, aspartate aminotransferase, diabetes, and minimum lumen
area, whereas the most significant feature with negative effect on the output is the number of the calcified plaques at the baseline analysis of patient imaging.
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4. Discussion

In this study, a novel approach for the prediction of obstructive CAD is presented.
The aim of this study is to develop a machine learning model for the CAD risk prediction,
which takes into account different types of data, including both imaging and non-imaging
data. To our knowledge, our approach to combine the imaging and blood-flow-based
characteristics with typical CAD risk factors constitutes the novelty of the presented study.

Different methodologies have been presented for the prediction of CAD and the identi-
fication of the major CAD risk factors. Most of these studies are concentrated on the different
CAD-related risk-prediction outputs and are based either on statistical analysis [6,37,38]
or machine learning classification schemes [39]. Our proposed study in comparison with
these ones is more concentrated on the CAD risk prediction and its future presence and
achieves a higher AUC.

Additionally, recent studies have indicated that non-invasive cardiovascular imaging
and especially the CTCA imaging modality utilized in this study provides useful prognos-
tic information of atherosclerosis progression since it permits the accurate quantification
of luminal area and the detection of plaque burden region and the characterization of its
composition. Moreover, the overall plaque burden, which can be provided by CTCA imaging,
is highly relevant to the degree and characteristics of atherosclerosis [40]. In addition to this,
the clinical relevance of the overall coronary plaque burden has been also emphasized by
studies showing that increased non-calcified plaque volumes is directly linked with acute
coronary syndrome (ACS) patients [41]. Furthermore, the latest technological advancements
in patient-specific blood-flow modeling have introduced alternative CAD progression risk
factors, such as fractional flow reserve (FFR) index and wall shear stress (WSS).

The prognostic capability of CTCA imaging modality and its derived imaging features
has also been confirmed by the proposed study, in which the overall accuracy of the
proposed predictive model using both imaging and non-imaging data is 0.81. Moreover,
the prognostic significance of imaging-derived features is also indicated by the collected
results, shown in Table 4. More specifically, the predictive model trained by the non-
imaging-based features achieved a comparatively lower accuracy of 0.69.

Furthermore, another notable point of the proposed CAD risk-predictive model is
that the input geometrical features are derived by an automated CTCA image analysis
tool [19,20], able to detect accurately the inner and outer wall and atherosclerotic plaques
and provide an accurate 3D model of coronary arteries and the atherosclerotic plaques dis-
tribution over the 3D space. As far as the SmartFFR index is concerned, it is also calculated
automatically by the developed software tool in the 3D-reconstructed coronary artery.

In addition to this, another innovative aspect of the presented predictive model is the
implementation of the easy ensemble algorithm, which constitutes a random resampling
scheme, which mainly handles the class imbalance problem. Except for the class imbalance
handling, the applied easy ensemble scheme allows the progressive correction of the
model’s decision hyperplane and subsequently the reduction of the classification error. In
addition to this, the predictive capability of the proposed model is evaluated based on
nested stratified cross-validation, which provides and unbiased estimation of the predictive
model’s capability. Moreover, except for the innate hyperparameters of the classification
algorithm, the input features are also treated as a hyper-parameter, and an SVM RFE
feature selection technique is implemented to eliminate the input features’ dimension. The
particular machine learning algorithm was selected after the implementation of different
classification schemes in combination with different feature selection techniques, and
the highest accuracy was provided by the combination of the extreme gradient boosting
algorithm and the support vector machine (SVM) feature selection technique.

However, except for the prediction of CAD presence, the prediction of the CAD-related
events is also a very important task both for the clinical research area and for patients’
management. However, the proposed methodology was trained using an existing dataset
of 187 participants, in which there were only few CAD-related events. This is a low–
medium-risk population, and we have few major CAD events to use for the development
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of such an event-prediction model. On the other hand, thanks to the advantage of our
intermediate CAD risk population, we were able to build a model that can be used as a
prognostic decision-support tool by clinicians to properly monitor and manage patients of
intermediate CAD risk for the next years after a first imaging is available.

A future step of the proposed methodology will include the integration of additional
imaging-based features, which will be either based on CTCA image analysis or on blood-
flow modeling. Additionally, another future step will be the development of predictive
models aiming to predict CAD-related events either using imaging and non-imaging data
and the investigation of the predictability of these features when the desired outcome is the
CAD-related events.

5. Conclusions

This proposed CAD risk-predictive model highlights the clinical utility of machine
learning models to identify individuals of high CAD risk and those at risk of a potential
CAD clinical event. In this investigation, we conclude that both imaging-derived features,
combined with typical CAD risk factors and typical biochemical markers, have a significant
predictive capability considering risk-prediction problem for CAD presence. In clinical
practice, the utilization of such machine-learning-based approaches could improve CAD
risk stratification and contribute to better strategies for patients’ management.
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