Table 3.
Sr. No. | Used Model for Cleveland Datasets | Predicted Value (Actual Class) | Predicted Value | Actual Value | ||
---|---|---|---|---|---|---|
1. | Random Forest | N = 46 | NO | YES | ||
NO | TN = 15 | FP = 1 | 16 | |||
YES | FN = 1 | TP = 29 | 30 | |||
Total predict | 16 | 30 | 46 | |||
2. | AdaBoost | N = 46 | NO | YES | ||
NO | TN = 14 | FP = 2 | 16 | |||
YES | FN = 2 | TP = 28 | 30 | |||
Total predict | 16 | 30 | 46 | |||
3. | Decision Tree | N = 46 | NO | YES | ||
NO | TN = 13 | FP = 3 | 16 | |||
YES | FN = 10 | TP = 20 | 30 | |||
Total predict | 23 | 23 | 46 | |||
4. | KNN | N = 46 | NO | YES | ||
NO | TN = 15 | FP = 1 | 16 | |||
YES | FN = 0 | TP = 30 | 30 | |||
Total predict | 15 | 31 | 46 |