Table 7.
Applied model results for WISDM dataset. MLP: multi-layer perceptron. LR: logistic regression. Stat. Feat.: statistical features. Att. M.: attention mechanism. R. B.: residual block. LSTM: Long short-term memory.
| Evaluation | Reference | Segment Length (s) | Feature Extraction | Classifier | Accuracy (%) |
|---|---|---|---|---|---|
| 10-fold cross validation |
Kwapisz et al. [43] | 10 | Handcrafted | MLP | 91.7 |
| Garcia-Ceja et al. [55] | 5 | CNN | FC layer | 94.2 | |
| Catal et al. [57] | 10 | Handcrafted | Ensemble of (LR, MLP, j48) |
91.62 | |
| Ignatov [58] | 10 | CNN + Stat. Feat. | FC layer | 93.32 | |
| Current model | 10 | Handcrafted | RF | 94 | |
| 70%/30% split |
Gao et al. [56] | 10 | CNN + Att. M. | FC layer | 98.85 |
| Suwannarat et al. [59] | 8 | CNN | FC layer | 95 | |
| Abdel-Basset et al. [60] | 10 | CNN + R. B. + LSTM + Att. M. |
MLP | 98.90 | |
| Zhang et al. [61] | 11.2 | CNN | FC layers | 96.4 | |
| Zhang et al. [62] | 10 | CNN + Att. | FC layer | 96.4 | |
| Current model | 10 | Handcrafted | RF | 98.56 |