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Abstract: Background: Tocopherol acetate (TA) is known as a skin moisturizing and photoprotective
agent. One major drawback with tocopherol and its derivatives remains its limited stability. Aim: To
develop highly stable TA-containing ethosomal gel (TAEG) as an advanced dosage form. Methods:
A cold method technique was used to produce the ethosomes. An in vitro evaluation of viscosity,
conductivity, and pH stability was carried out for three months. An in vitro physical characterization
of the nanoparticles (NPs) that included particle size (PS), zeta potential (ZP), transmission electron
microscopy (TEM), and Fourier-transform infrared (FTIR) spectroscopy analysis was then performed.
Organoleptic evaluation, thermostability at 8 ◦C, 25 ◦C, 40 ◦C and 40 ◦C ± 75% RH, pH, conductivity,
viscosity, and spreadability measurements were also performed in vitro for three months. An ex
vivo permeation study was performed in phosphate-buffered solution (1× PBS; pH 5.5 or pH 7.4)
at 37 ± 0.2 ◦C by using rat abdominal skin and the Franz diffusion cell method. The data of
three independent experiments were expressed as mean ± SD. A two-way ANOVA was applied to
compare data on TAEG versus TA control gel (TACG). Results: PS of the ethosomes was in the range
of 144–289 nm. A total of nine formulations were developed. Optimized TAEG formulation (TA-5)
was selected based on the highest entrapment efficiency (EE) of 99.71%, while the stability, the PS, and
the uniformity-based polydispersity index (PDI) were also among the best. TA-5 exhibited smooth
spherical ethosomal NPs with PS of 200.6 nm, ZP value of −18.6 V, and PDI of 0.465. Stability data
obtained for TA-5 in terms of rheology, conductivity, and pH presented no significant change (p > 0.05)
during the entire study duration. Rheological studies indicated that TA-5 followed a non-Newtonian
behavior of shear thinning system. The ex vivo drug permeation was 44.55 ± 0.01% in TA-5 and
the drug retention in skin was 51.20%, which was significantly higher than TACG as observed after
24 h permeation study (p < 0.05). Conclusions: The newly developed TAEG formulation appears
promising to enhance the effectivity of TA and its topical application.

Keywords: tocopherol acetate; ethosomes; gel formulation; permeation studies; drug delivery;
cosmetics
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1. Introduction

The human body is covered by many layers of skin, which is the largest organ and
naturally protects the body from continuous exposure to intense hazardous environmental
factors (e.g., heat, cold, temperature, light, microbes, and dirt particles) [1]. Skin also
provides a route for topical drug delivery, for both local and systemic effects [2]. Importantly,
the stratum corneum is the outermost layer of the skin, which helps to prevent and regulate
the water content and other salts in body fluids [2,3].

Tocopherol has a crucial role in the skin physiological structure and functions [4]. It
is an important component of the biological membrane, acting as a lipophilic antioxidant
skin [4]. The derivatives of vitamin E are known as tocols, which belong to the family of
tocotrienols and tocopherols [4]. The primary structure of tocols is a 6-hydroxy-2-methyl-
phytylchroman. In nature, there are eight known tocols divided into four tocopherols and
four tocotrienols further classified as alpha (α), beta (β), gamma (γ), and delta (δ) isomers.
Esterified form is more stable against oxidation then free or non-ester form. Vitamin E
derivatives commercially available are tocopherol acetate (TA), tocopherol succinate (TOS)
and tocopherol polyethylene glycol-1000 succinate [5]. Tocopherols are liposoluble [6].
TA is the most biologically active form of vitamin E [7]. The molecular formula of TA
is C31H52O3, and its molecular weight is 472.7 g/mol (Figure 1). Its melting point is
26.5–27.5 ◦C. It is a slightly yellow or off-white crystalline substance which is odorless,
sensitive to light and heat. TA is an extremely weak basic substance with a pKa value of
4.9. TA is insoluble in water but forms a clear solution in acetone and methanol. TA and
TOS are the most used derivatives compared with other tocopherol derivatives [8].
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Figure 1. Chemical structure of α-tocopherol acetate (C31H52O3).

In terms of applications, tocopherol and its ester forms are present in many cos-
metics products for skin moisturizing and as antioxidant agents. For instance, alpha-TA
represents the main lipophilic antioxidant in many sunscreens and commercial derma-
tological products (e.g., skin conditioning agents, humectants, anti-aging solutions) to
prevent transepidermal water (TEWL/TWL) loss and aging [9]. Nevertheless, it is worth
mentioning that different vitamin E compounds show various degrees of photoprotection
when topically used at the concentration of 5% [10]. Usually, 1–5% concentrations of TA
is used in many topical products to protect skin and treat skin conditions such as atopic
dermatitis [9,11]. Increases in TA concentrations from 5% to 10% is not correlated with
increases in skin permeability and retention on skin [9]. TA helps to prevent skin from
dangerous effects of UV radiation [12]. Since TA is depleted with continuous exposure to
UV radiation [13], skin health maintenance is required by percutaneous administration of
the lipophilic antioxidant TA.

Interestingly, it has been reported that vitamin E and its derivatives are not only
used in cosmetics (e.g., as photoprotective agents) but also in combination with other
nanomedicines to improve the solubility and therapeutic effects of poorly water-soluble
drugs [14]. Therefore, various vitamin E derivatives are used as adjuvants for the treatment
of cancer to improve the solubility of antineoplastic agents [5]. Several research studies
evidenced the antitumor activity exerted by orally (per os) administrated vitamin E and
derivatives [15]. So far, a wide range of drug delivery systems have been developed due to
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the valuable biological and physicochemical properties of tocopherol derivatives [16,17].
Indeed, tocopherols were used in nanoformulations, including liposomes, NPs, niosomes,
and nanoemulsions, for oral and topical applications. The active development and use of
these nanodrug delivery systems (NDDS) have solved many issues related to skin perme-
ation, biodistribution, bioavailability, absorption, stability, metabolism, and solubility [17].
Permeation and metabolism of TA is highly depending on the type of formulation and
thus on the drug delivery system [17]. This subsequently increased their concentration at
the desired site of action with a minimal drug dosage, thereby eliminating unwanted side
effects linked to drug overdose, whereas the therapeutic index is enhanced [18].

Ethosomes was developed for the first time in 1997 [19,20]. Ethosomes are artificially
prepared as self-assembled spherical, stable, and soft lipid vesicles [21]. Ethosomes are
basically composed of 20–45% alcohol (ethanol or isopropyl alcohol) relatively with high
amount of phospholipids, and purified water. The ethosomes are then produced from
the combination of ethanol, propylene glycol, phospholipids, and water [20]. Structurally,
ethosomes are like liposomes, which is a conventional drug delivery system consisting of
layered lipids, but ethosomes contain higher concentration of ethanol than ethosomes [22].
Thanks to their enhanced physicochemical characteristics (e.g., stability, EE), ethosomes
are suitable for the efficient transport, controlled and tissue-targeting drug delivery of
lipophilic, hydrophilic, and amphiphilic drugs into deep layers of skin [23]. Additionally,
this vesicular system is much smaller than liposomes (from tens of nanometers to a few
microns) and depicted with unilamellar or multilamellar structure when visualized by
TEM [24,25]. Research studies reported that ethosomes containing a stable formulation with
good EE increase permeation and percutaneous absorption [26]. Ethosomes were found to
be a more efficient delivery carrier, with high encapsulation capacities (98.5% ± 1.4%) and
PS (200.6 ± 1.6 nm) [27,28]. In vitro transdermal permeation experimental studies showed
that the permeation of tocopherol through abdominal skin of albino rat skin is significantly
higher when ethosomes was used as carrier of delivery system. The solid vesicular drug
nanocarriers range from 1 to 1000 nm [29]. Ethosomes increased the deposition of TA into
skin to reduce hyperpigmentation and dehydration of skin efficiently [30]. Fabrication of
developed ethosomes into semisolid dosage form increases stability, enhance penetration
and increased retention into epidermis with improved beneficial effects [30]. Previous
studies found that ethosomal vesicles were stable for 90 days at room temperature (RT), and
ethosomal vesicles presented unchanged EE value, sedimentation, or phase separation [20].
Hence, we sought that incorporation of TA into ethosomes could have many advantages
over other conventional drug delivery systems.

The aim of this work is to develop TAEG as novel transdermal NDDS for potentializing
the effects of TA. In vitro and ex vivo characterizations have been further carried out before
any in vivo investigations.

2. Materials and Methods
2.1. Reagents

Tocopherol acetate and propylene glycol was purchased from Sigma-Aldrich Chemie
GmbH (Taufkirchen, Germany); Cholesterol was obtained from AppliChem GmbH (Darm-
stadt, Germany); Soy phosphatidylcholine 90 G were obtained from Lipoid GmbH (Lud-
wigshafen, Germany). Carbopol-940 and Ethanol by Merck KGaA (Gernsheim, Germany).
All the chemicals and materials used for ethosomes vesical development were of analytical
standard. Double distilled water (ddH2O) was used throughout the study.

2.2. Instruments

The instruments used in this study include a sonicator/ultrasonic homogenizer
(EP100H, Elma Ultrasonic, Ruiselede, Belgium), centrifuge machine (Hettich EBA 20,
Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany), portable conductivity/pH meter
(ProfiLine™ Cond 197i, VWR, Visalia, CA, USA), electrical balance (BJ-210, Precisa, Poissy,
France), heating magnetic stirrer (VELP scientifica Srl, Usmate, Italy), Zetasizer (Nano
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Series ZEN3600, Malvern Instruments Ltd., Worcestershire, UK), digital rheometer (DV-III
Ultra, Brookfield Engineering Laboratories, Inc., Stoughton, MA, USA), FT-IR spectrome-
ter (Bruker Tensor 27, SpectraLab Scientific Inc., Markham, ON, Canada), hot incubator
(Sanyo MIR-162, Gemini Lab B.V., Apeldoorn, The Netherlands), UV-Vis spectrophotometer
(Irmeco U2020, Irmeco GmbH & Co. KG, Luejensee, Germany),Transmission Electron Mi-
croscope Jem 1010 (Jeol USA, Inc., Peabody, MA, USA), and Franz diffusion cell (PermeGear,
Inc. # 4G-01-00-15-12, Hellertown, PA, USA).

2.3. Preparation of Ethosomal NPs

Ethosomes were produced using modified cold method technique [28]. All required
chemical and material were first selected and weighed accurately. Lipid-soluble chemicals
were dissolved in a measured amount of ethanol, and the TA drug was dissolved into the
previous mixture with continuous stirring in a closed container at RT. Propylene glycol
was used as penetration enhancer and added into the above non aqueous phase, then this
mixture was heated on water bath at 30 ◦C. The pre-heated aqueous phase, in separate
vessels at 30 ◦C, was added to the above non aqueous phase as small droplets with syringe
under stirring constantly for 5 min. The mixture was cooled at RT to allow the formation
of ethosomal vesicles. The size of the developed vesicles was reduced by stirring for
30 min at 750 rpm and by sonication for 30 min using an ultra sonicator [31]. Desired size
vesicles were obtained by the extrusion method. The uniformly sized developed ethosomal
vesicle suspension was stored in a refrigerator (4 ◦C) for further analysis and experimental
purposes [24,32].

2.4. Preparation of Ethosomal Gels

1% w/w Carbopol 940 was used as a gelling agent for the preparation of TAEG.
Accurately weighed amount of carbopol was sprinkled in a measured quantity of distilled
water (dH2O) to soak for overnight [31]. Triethanolamine was added drop by drop with
homogenous stirring with homogenizer until a clear transparent homogenized gel having
pH between 6–6.5 was formed. Optimized TA containing ethosomal suspension was added
to the gel slowly with continuously mixing by using homogenizer to obtained uniform gel
formulation contained ethosomal vesicles [28,30]. A total of 9 formulations were developed,
but in a pre-screening study, TA-5 formulation was selected as the optimized formulation
based on increased EE, ZP, PS, and PDI.

2.5. Physicochemical Characterizations of Ethosomal Dispersions
2.5.1. Zeta Potential (ZP) and Particle Size (PS)

Suspended NPs were characterized for their average PS and electrostatic potential of
charge, which are important features for stability studies [33,34]. The PS and ZP of the dH2O
diluted TA-5 formulation were assessed by dynamic light scattering (DLS) using a Zeta
Sizer Nano ZS90, Malvern, UK at 25 ◦C. The experiments were triplicated independently
to minimize the risk of errors.

2.5.2. Drug Entrapment Efficiency (% EE)

The drug entrapment efficiency calculated how much amount of the drug was en-
trapped into developed spherical vesicles. The % EE was calculated by simple indirect
analysis technique [23,33,34]. First, 1 mL ethosomal suspension was centrifuged for 30 min
to obtain a clear supernatant solution. The collected supernatant was then diluted with
0.2 M phosphate-buffered solution pH 7.4, which was freshly prepared. This procedure was
performed thrice. The supernatant (test sample) was eventually analyzed at 295 nm by UV
spectrophotometry. By using the formula given below, the percent (%) EE was determined:

% EE =
Total amount of drug − Amount of free drug

Total amount of drug
× 100
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2.5.3. Transmission Electron Microscopy (TEM)

Optimized ethosomal TA-5 dispersion was analyzed for its morphology by TEM [34].
The analysis was performed by negative stain procedure [13]. Briefly, the test sample
solution was diluted 1:10 with dH2O and sonicated for 5 min. Then, a drop of the diluted
test sample solution was put on carbon-coated copper grid and air dried at RT, keeping the
test sample on grid for 1 min. For staining, the test sample, 2% (w/v) phosphotungstic acid
was dropped on copper grid, and the extra stain was removed by using tissue paper before
TEM analysis was performed at 60 KV.

2.5.4. Organoleptic, PH, Conductivity, and Spreadability Assessments

TA ethosomal gel (TAEG) and TA control gel (TACG) were assessed for organoleptic
features (i.e., appearance of gel, color, odor, and feel after use of these gels) as well as for
their relative thermostability at 8 ◦C, 25 ◦C, 40 ◦C and 40 ◦C ± 75% RH, temperatures and
spreadability for three months (90 days) [30]. Spreadability evaluation was performed by
using glass slide method [1]. Briefly, 0.5 g gel was placed on 1 cm circled marked glass slide
by putting another glass slide over the first slide. Weight of 500 g was placed on this upper
slide for 5 min and a scale was used to measured increased gel diameter [13,35].

2.5.5. Rheological Analysis

TAEG and TACG were analyzed by using a programmable rheometer, with spindle
number CP41, and Rheocalc version 2.5.6. Viscosity studies are important to determine
the stability of a semisolid system [1]. To analyze the thermostability of viscosity of both
TAEG and TACG, they were placed at different temperatures for three months. Each
sample was analyzed for shear stress, viscosity, and shear rate. Results were obtained as
average ± standard deviation (SD) from three independent experiments. A sample of each
gel (0.5 ± 0.01 g) was placed in a sample holding cup and analyzed at 20–100 rpm [1].

2.6. Ex Vivo Permeation Studies

This study was performed using Franz cell method and albino rat abdominal skin,
as the closest human-like natural skin membrane, on which TAEG and TACG were ap-
plied [36]. First, the rat skin was obtained and washed with normal saline solution. Fatty
tissues were separated carefully, and the skin was then cut into circular form according to
the size of the Franz cell circumference. Skin was mounted on the cell in such a way that
stratum corneum face the donor chamber (compartment). Donor compartment, already
filled with 1× PBS of pH 5.5 (human skin pH), was maintained at 37 ± 0.2 ◦C using a
water bath. Continuous stirring was performed to keep the temperature constant in Franz
cell attached with the water bath. About 0.5 g of each gel was applied on the mounted
skin. Then, 3 mL of the sample was withdrawn at per scheduled time duration from the
donor compartment and, to maintain the volume, the same volume of prewarmed 1×
PBS of pH 5.5 was added to the donor compartment, so that the skin remains in contact
with the solution in the donor compartment. The study was performed for 24 h, and the
obtained samples were analyzed at 295 nm by UV spectrophotometry [36]. The same
procedure was performed at pH 7.4 (human systemic/blood pH) to determine the effects
of pH on permeation.

2.7. Statistical Analysis

The obtained results were evaluated statistically by using IBM SPSS Statistics version
20 software (IBM, Armonk, NY, USA) for paired sample t-test analysis and two-way
ANOVA. The IBM SPSS statistic version 20 was used for the statistical analysis of the
data during the course study. Paired sample t-test was applied to observe a potential
difference between two formulations. The results were considered statistically significant
if the p-values were less than 5% (p < 0.05). The data were expressed as mean values of
±standard error of mean (SEM).
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3. Results and Discussion
3.1. Fabrication and Optimization of TAEG Formulations

Ethosomes have been included as a vesicular-based NDDS. Ethosomes are hydroalco-
holic preparations enabling encapsulation of both hydrophilic and hydrophobic drugs [27].
Ethosomes can entrap high amount of drugs, including insoluble or poorly water-soluble
compounds, due to their high EE, which is an asset for controlled drug delivery [37].

TAEG and TACG formulations were fabricated by a simple cold method technique [31].
This method is simple, effective, and easy to perform. It consists of a simple mixing and a
careful dropping of the aqueous phase into the nonaqueous phase, before reducing the PS
by sonication and extrusion [38].

To obtain the highest stability and EE [39], ethosomal vesicles were produced by vary-
ing the concentration of lipid and ethanol while keeping other constituents’ concentration
constant (Table 1). In a pre-screening study, the test formulation (TA-5) has produced opti-
mal characteristics, including EE (Table 1), and was then selected for further in vitro and
ex vivo investigations. EE of the optimized TA-5 formulation was 99.71% due to its high
lipophilicity [40]. Then, 30% ethanol was used to formulate TA-5. These findings are in line
with previous research on tocopherols (98–100% EE) [39,40]. Such high EE can be explained
by [41,42] (i) the increased number of C-H bonds formed between lipophilic drugs and
hydrophobic tail structures, (ii) the membrane formed from ethanol or phospholipid, which
have good potential characteristics affinity for both lipophilic and hydrophilic drugs to
solubilize and encapsulate, and (iii) the membrane hydrophobic nature, which also permits
a sustained drug release. Like other vesicles, such ethosomes act as drug depot, and are
considered as stable vesicles increasing skin permeation [43].

Table 1. TAEG formulations.

Code Drug
(%)

Propylene
Glycol (%)

Phospholipid
(%)

Ethanol
(%)

Water
(%)

E.E
(%)

TA-1 0.25 10 5 25 q.s 91.80

TA-2 0.25 10 2.5 25 q.s 92.03

TA-3 0.25 10 0.5 25 q.s 96.37

TA-4 0.25 10 5 30 q.s 99.2

TA-5 0.25 10 2.5 30 q.s 99.71

TA-6 0.25 10 0.5 30 q.s 97.89

TA-7 0.25 10 5 40 q.s 93.04

TA-8 0.25 10 2.5 40 q.s 95.78

TA-9 0.25 10 0.5 40 q.s 97.73
q.s: Quantum satis.

3.2. Physicochemical Characterizations of TA-Loaded Ethosomes
3.2.1. TEM Analysis

The results obtained by TEM analysis of ethosomal formulation depicted round shaped
ethosomes (Figure 1). TEM is a technique that uses an electron beam to image a NP sample,
providing much higher resolution than is possible with light-based imaging techniques.
Indeed, TEM is the preferred method to directly measure nanoparticle size, grain size,
crystallographic structure, size distribution, chemical composition, and morphology [44].

TEM micrographs of TA-5 confirm the spherical morphology of formed vesicles
and nano size of uniform ethosomal particles (Figure 2). As showed in Tables 1 and 2,
spherical shaped and nonporous smooth surface multilamelar ethosomes were produced
by combination of 30% ethanol and 2.5% phospholipid with enhanced and high entrapped
drug concentration. These data are in line with other studies reporting the fabrication of
ethosomal gel particles [21,45].
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3.2.2. PS Analysis

Interestingly, we found that the decreasing amount of phospholipid cause vesicles
size decreases (Table 2), and subsequently, smaller vesicles entrapped less amount of drug.
PS has a great influence on drug disposition, diffusion, release factors and deposition on
skin [46]. There are many factors (e.g., chemical structure, nature and amount of drug and
lipid used) and experimental techniques which impact the PS and the amount of drug
loaded in NPs [7,47]. The PS and EE have a direct relationship in terms of ethosomes
formation, and so, by controlling these factors it is possible to improve the stability and
bioavailability of many drugs. The amount of hydrophobic TA drug entrapment is due to
the electrostatic attraction of oppositely charged ethosomes and TA drug molecule. The EE
of larger size ethosomes is higher than small size particulate vesicles [48]. Additionally, the
combination of phospholipid and ethanol enhanced the ethosomal EE compared to the use
of ethanol alone or phospholipid alone [49]. Eventually, the high EE of TA is further due
to its high lipophilicity, because all the added drug amount in the inner lipophilic core is
kept [50]. Herein, we found that by increasing the lipid concentration, the size of vesicles
increases with increased EE, an observation which agrees with previous studies [13].

3.2.3. PDI Analysis

The PDI of a formulation is a key parameter for the characterization of NPs uniformity
in the disperse system. PDI ranging between 0.1 and 0.7 indicates homogeneous dispersion
and narrow size distribution [13,51]. PDI value greater than 0.7 indicates broad size
distribution [13,51]. The PDI of the prepared TAEG formulations was found in the range of
0.214–0.475, which therefore indicates high uniformity PSD (Table 2).

3.2.4. ZP Analysis

ZP indicates the electrostatic stability of colloidal disperse systems [34,52]. Indeed,
ZP represents the potential difference between the electronic charged ions on particles,
which is a very important parameter to prevent NPs aggregation [31,34,36]. This charge
may be positive or negative. ZP ranged from −16.8 (mV) to −28.4 (mV) at RT (Table 2), so
all the nine TA ethosomal formulations were physically stable at this temperature condition
(p > 0.05).
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Table 2. Particle size (PS), polydispersibility index (PDI), and zeta potential (ZP) of the TAEG
formulations (N = 9).

# Formulation
Code

Ethanol
(%)

Phospholipid
(%)

PS
(nm) PDI ZP

(mV)

1 TA-1 25 5 235 0.475 −18.9

2 TA-2 25 2.5 159 0.377 −21.7

3 TA-3 25 0.5 144.4 0.312 −19.2

4 TA-4 30 5 289 0.389 −20.6

5 TA-5 30 2.5 200.6 0.465 −18.6

6 TA-6 30 0.5 156 0.277 −16.8

7 TA-7 40 5 231.2 0.361 −28.4

8 TA-8 40 2.5 207.6 0.348 −20.3

9 TA-9 40 0.5 153.7 0.214 −17.9

3.2.5. FT-IR Analysis

FTIR study were performed on the free TA drug, phosphatidylcholine (PC, aka
lecithin), propylene glycol (PEG), Ethanol, TACG, and TAEG (TA-5) in the range of
400–4000 cm−1, as shown in Figure 3.

The peaks at 1366.67 cm−1, 1377.14 cm−1, 1368.12 cm−1 are attributed to CH3 stretch in
TAEG, PEG and PC, respectively. The peaks at 1463.23 cm−1, 1457.89 cm−1, 1466.04 cm−1

are assigned to CH2 bend in TAEG, PEG and PC, respectively.
The peaks at 2866.60 cm−1, 2925.13 cm−1, 2874.29 cm−1 are attributed to C–H stretches

of TA drug, PEG, and PC, respectively.
The peaks at 1758.87 cm−1, 1740.88 cm−1 would indicate C=O stretch in TAEG and

PC, respectively. The peaks at 1066.00 cm−1, 1064.42 cm−1 would represent C-O stretch in
TAEG and PC, respectively.

In PC, the peaks at 1630 cm−1 and 1064.42 cm−1 are attributed to C–N and P=O
stretches, respectively.

In TAEG, the peak at 685.63 cm−1 is assigned to C=O stretch in plan bending. The
peaks at 1018.92 cm−1 and 1019.32 cm−1 in TAEG is assigned to C–O stretch in the car-
boxylic group. The peak at 1467.81 cm−1 in TAEG is assigned to CH3 bend, which is slightly
shifted from 1366.67 cm−1. The peak at 1479.8 cm−1 in TAEG belongs to CH2 bend. The
peaks at 1631.28 cm−1 and 1642.33 cm−1 in TAEG are attributed to C=C stretch of benzene
or phenyl. The sharp peak at 1754.86 cm−1 in TAEG is attributed to C=O bend of the ester
group. The wide peaks at 2925.04 cm−1 and 2846.08 cm−1 in TAEG belong to C-H bends.

The sharp peak at 1632.26 cm−1 in TACG is attributed to C=O bend of the ester group.
The peaks at 1633.18 cm−1 and 1652.23 cm−1 in TACG are attributed to C=C stretch of
benzene or phenyl.

The FTIR spectrum of TAEG formulation demonstrated that there was no new peak
formation that occurs in the active drug and formulation ingredients. Thus, we can conclude
that there was no chemical interaction between the active drug and ethosomal formulation
components.
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Figure 3. FTIR spectra of TA (A), PC (B), PEG (C), Ethanol (D), TACG (E), and TAEG (TA-5) (F).

3.2.6. Thermostability, and Organoleptic Analysis

The optimized TAEG (TA-5) and TACG (control) formulations were evaluated for
organoleptic characteristics, thermostability, pH, conductivity, and viscosity (Table 3). TA-5
and TACG were placed at various temperatures (i.e., 8 ◦C, 25 ◦C, 40 ◦C, 40 ◦C ± 75% RH)
for 90 days.

TA-5 and TACG were similarly stable initially at 8 ◦C and 25 ◦C during the full study
period (p > 0.05). Furthermore, we observed that, at 40 ◦C and 40 ◦C ± 75% RH, both TA-5
and TACG started to become light yellow from the second month (p > 0.05), whereas TACG
started to become slightly more yellow than TAEG at the third month. Nevertheless, there
were not enough significant differences (p > 0.05) between TA-5 and TACG in terms of
thermostability in the last month at 40 ◦C and 40 ◦C ± 75% RH.

Additionally, no odor and liquefaction were produced in both TA-5 and TACG during
the entire study period (p > 0.05).

Smoothness was unchanged in the first 2 months but, at the third month, TA-5 and
TACG gels became slightly thin (p > 0.05) at 40 ◦C and 40 ◦C ± 75% RH.
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Taken together, data showed no significant difference (p > 0.05) when comparing the
TA-5 to the control, demonstrating that the optimized ethosomal formulation is stable and
that the loading of TA into the ethosomal gel had no significant stability effects.

Table 3. Thermostability of TAEG (TA-5, E) and TACG (C) at 8 ◦C, 25 ◦C, 40 ◦C, and 40 ◦C ± 75% RH
for a study period of three months (90 days).

Observed
Parameters

Temp. Fresh After
48 h

After
72 h

After
7 days

After
21 days

After
30 days

After
60 days

After
90 days

C E C E C E C E C E C E C E C E

Color

8 ◦C W W W W W W W W W W W W W W W W

25 ◦C W W W W W W W W W W W W W W W W

40 ◦C W W W W W W W W W W OW W LY LY Y LY

40 ◦C
± 75% RH W W W W W W W W W W OW W LY LY Y LY

Odor

8 ◦C - - - - - - - - - - - - - - - -

25 ◦C - - - - - - - - - - - - - - - -

40 ◦C - - - - - - - - - - - - - - - -

40 ◦C
± 75% RH - - - - - - - - - - - - - - - -

Look

8 ◦C T M T M T M T M T M T M T M T M

25 ◦C T M T M T M T M T M T M T M T M

40 ◦C T M T M T M T M T M T M T M T M

40 ◦C
± 75% RH T M T M T M T M T M T M T M T M

Liquefaction

8 ◦C - - - - - - - - - - - - - - - -

25 ◦C - - - - - - - - - - - - - - - -

40 ◦C - - - - - - - - - - - - - - - -

40 ◦C
± 75% RH - - - - - - - - - - - - - - - -

T = Transparent, M = Milky, W = White, OW = Off White, LY = Light yellow, Y = yellow, Negative (-) = No change,
C = Control, E = Ethosomes.

3.2.7. pH, Conductivity, and Viscosity Analyses

The pH, rheological (viscosity), and conductivity analyses were carried out for the
optimized TAEG (TA-5) and TACG, which were kept at various temperatures (i.e., 8 ◦C,
25 ◦C, 40 ◦C, 40 ◦C ± 75% RH) for 12 weeks (90 days/3 months), as represented in
Figures 4–6, respectively.

Although the conductivity of the freshly prepared TA-5 was significantly higher than
TACG (p > 0.05%) at RT (Figure 6A), we could observe that, after 12 weeks, their pH
(Figure 4A,B, respectively) and viscosity (Figure 6B,C, respectively) similarly decreased
slightly (p > 0.05) while the conductivity similarly increased (Figure 5A,B, respectively).

When the paired sample t-test was applied, significant (p ≤ 0.05) changes in conductiv-
ity was observed between TA-5 and TACG (Figure 5A,B, respectively). When the two-way
ANOVA was applied, insignificant differences (p > 0.05) were noticed in the conductivity
of TA-5 with respect to time and temperature (Figure 5A); however, significant (p ≤ 0.05)
changes in conductivity were observed for TACG with respect to time and temperature
(Figure 5B).



Gels 2022, 8, 335 11 of 18
Gels 2022, 8, x FOR PEER REVIEW 11 of 18 
 

 

 

Figure 4. pH of (A), TAEG, and (B), TACG, kept at different temperatures for the study period of 

three months. Data are expressed as mean values ± SEM. Insignificant results were produced at 8 

°C and 25 °C, 40 °C, and 40 °C ± 75% RH (p > 0.05). 

Figure 4. pH of (A), TAEG, and (B), TACG, kept at different temperatures for the study period of
three months. Data are expressed as mean values ± SEM. Insignificant results were produced at 8 ◦C
and 25 ◦C, 40 ◦C, and 40 ◦C ± 75% RH (p > 0.05).
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Figure 6. Rheological analysis of (A), Optimized TAEG (TA-5) and TACG freshly prepared at room
temperature (25 ◦C), (B), Optimized TAEG (TA-5) after 12 weeks, (C), TACG, after 12 weeks. The
formulations were kept at different temperatures 8 ◦C, 25 ◦C, 40 ◦C and 40 ◦C ± 75% RH and at share
rate of 1/s. Data are expressed as mean values ± SEM. Shear thinning effects were produced, but
insignificant results are obtained once the study period is completed (p > 0.05).

3.3. Ex Vivo Permeation Analysis

Various important information was obtained from ex vivo study analyses of the op-
timized TAEG (TA-5) and TACG formulations at both pH 5.5 (Human skin-like) and pH
7.4 (human blood-like) (Table 4). Important parameters such as flux, coefficient of perme-
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ability of TA-5 and TACG were evaluated; percent drug retained on skin was also studied.
Targeting efficiency was determined and analysis of enhancement ratio was performed.

Table 4. Permeability coefficient, enhancement ratio (ER), targeting efficiency (TE), drug retention,
and flux values of optimized TAEG (TA-5) compared to TACG.

Formulations
pH 5.5 ER of TAEG TE of TAEG

Flux (µg/cm2.h) Papp (cm/h) % Drug Permeated

TAEG 23.75 0.0095 44.55 ± 0.01%
1.173 2.15

TACG 20.25 0.0081 30.44 ± 0.01%

pH 7.4

TAEG 3.43 0.0014 36.18 ± 0.01%
0.441 1.30

TACG 7.72 0.0031 14.76 ± 0.01%

The permeation of TA at pH 5.5 from TA-5 was 44.55 ± 0.01%, which was significantly
higher (p < 0.05) than permeation of TACG (30.44 ± 0.01%), as represented in Figure 7. The
permeation (%) of TA at pH 7.4 from TAEG was 36.18 ± 0.02%, which was significantly
higher (p < 0.05) compared to that of permeation of TACG (14.76 ± 0.02%), as represented in
Figure 8. The data obtained in these two conditions of human body-like pH demonstrated
a better permeation of TA-5 at pH 5.5 compared to that of pH 7.4 (p < 0.05), strongly
suggesting an increased retention of the drug in the skin rather than in the circulation. This
could be explained by a lower drug systemic penetration. Therefore, such formulation
should be indicated for topical application rather than for intravenous (IV) administration.
The TA-5 flux value was greater compared to that of TACG.
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Figure 8. Time-dependent percentage permeation of optimized TAEG (TA-5) and TACG at physio-
logical human skin pH 7.4 and at physiological human temperature (37 ◦C). Significative differences
were observed (p < 0.05).

Indeed, at pH 5.5 and 37 ◦C, the enhancement ratio (ER) indicated that TA permeation
from TA-5 was increased by 1.17 compared to TACG, whereas ER was increased only by
0.44 at pH 7.4 and at the same physiological human body-like temperature (p < 0.05), as
summarized in Table 4. Furthermore, at pH 5.5 and 37 ◦C, TA-5 was more efficient in
targeting (ratio 2.15) compared to TACG, whereas TE was increased only by 1.30 at the
same temperature but at pH 7.4 (p < 0.05), as shown in Table 4.

According to the kinetic modeling, TA-5 showed increased R2 values of zero-order
model compared to the first-order model. Therefore, it can be assumed that TA will be
released at a constant rate from TA-5 independent of the amount remaining in TA-5. Overall,
a best fit of release data was obtained from Higuchi model (R2 = 0.9091–0.9944) confirming
a Fickian diffusion-controlled release mechanism. Conformingly, the drug release exponent
of Korsmeyer–Peppas model (n) was less than 0.45, with appropriate regression coefficient
(R2 = 0.9867), allowing us to definitively conclude to the Fickian diffusion-based drug
release [13,53]. Therefore, through ethosomal gel, TA followed the Fick’s law of diffusion.

The hydrophilic and adhesive nature of the gelling agent used in this study, i.e.,
Carbopol-940, as well as appropriate physical properties and the effective permeation
of TA from TA-5 through Fickian diffusion collectively strongly suggest that TA-derived
ethosomal gel can effectively be utilized for the topical delivery for the local action [54].

Similar results were seen in other studies where the ethosomal gel has presented
higher permeability than the control gel [48,55]. The reason for increased permeation from
ethosomes is more likely due to nanosized vesicles and properties of phospholipid used to
prepare ethosomes [56,57]. Other permeation studies reported that the percentage retention
of TA in the skin is greater from ethosomal gel compared to simple drug solution [58].
Additionally, it is worth mentioning that ethosomes are non-irritant to skin in comparison
to niosomes [13,31].

4. Conclusions

Herein, a stable TAEG formulation was successfully developed. The TA ethosomal gel
(TAEG) carrier TA-5 had the best EE as well as adequate PS and uniformity. Additionally,
the formulation displayed a good skin retention capacity with increased enhancement
ratio and high targeting efficiency. The formulation elicited prolonged action for sus-
tained drug delivery. This study suggests that ethosomes could be modified to obtain
the desired sustained delivery of TA effects simply by using different concentrations of
ethanol and phospholipid amount. Taken together, the novel ethosomal system was found
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to be a valuable NDDS for topical TA delivery and might be used for therapeutic and
cosmetic purposes.
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