
Citation: Guan, S.; Zhao, B.; Dong, Z.;

Gao, M.; He, Z. GTAD: Graph and

Temporal Neural Network for

Multivariate Time Series Anomaly

Detection. Entropy 2022, 24, 759.

https://doi.org/10.3390/e24060759

Academic Editors: Andrea Prati, Luis

Javier García Villalba and Vincent

A. Cicirello

Received: 28 April 2022

Accepted: 26 May 2022

Published: 27 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

GTAD: Graph and Temporal Neural Network for Multivariate
Time Series Anomaly Detection
Siwei Guan , Binjie Zhao, Zhekang Dong , Mingyu Gao and Zhiwei He *

School of Electronic and Information, Hangzhou Dianzi University, Hangzhou 310018, China;
guansw@hdu.edu.cn (S.G.); zhaobj@hdu.edu.cn (B.Z.); englishp@hdu.edu.cn (Z.D.); mackgao@hdu.edu.cn (M.G.)
* Correspondence: zwhe@hdu.edu.cn

Abstract: The rapid development of smart factories, combined with the increasing complexity of
production equipment, has resulted in a large number of multivariate time series that can be recorded
using sensors during the manufacturing process. The anomalous patterns of industrial production
may be hidden by these time series. Previous LSTM-based and machine-learning-based approaches
have made fruitful progress in anomaly detection. However, these multivariate time series anomaly
detection algorithms do not take into account the correlation and time dependence between the
sequences. In this study, we proposed a new algorithm framework, namely, graph attention network
and temporal convolutional network for multivariate time series anomaly detection (GTAD), to
address this problem. Specifically, we first utilized temporal convolutional networks, including
causal convolution and dilated convolution, to capture temporal dependencies, and then used graph
neural networks to obtain correlations between sensors. Finally, we conducted sufficient experiments
on three public benchmark datasets, and the results showed that the proposed method outperformed
the baseline method, achieving detection results with F1 scores higher than 95% on all datasets.

Keywords: anomaly detection; multivariate time series; graph neural network; temporal convolutional
network

1. Introduction

Industrial equipment and service systems, such as servers, cybersecurity and robotic
systems, are often tested using multiple time series (telemetry data or sensor data) to keep
track of equipment operation and promptly detect system anomalies. Since anomalies in
the data imply important information, timely and efficient detection of these messages
by operational engineers helps to improve efficiency, reduce costs and increase safety [1].
Anomalies are system behaviour patterns in time steps that do not conform to a well-
defined notion of normal behaviour [2]. The purpose of anomaly detection is to provide
the opportunity to take action to identify and resolve potential problems before they
cause disasters. The difficulty of label acquisition and the extreme imbalance between
normal and abnormal categories have resulted in anomaly detection being classified as
an unsupervised machine learning task [3–5]. Traditionally, domain experts set thresholds
for normal events, and the system is considered abnormal if its measurements exceed the
expert-defined thresholds. Given the dramatic increase in the number of sensors required
to detect systems today and the hidden correlation and temporal information in the data
becoming cumbersome, the traditional threshold approach is no longer applicable and
automatic anomaly detection methods have become a necessity.

Currently, anomaly detection has become an active research topic in the field of
data mining and is widely used in areas such as healthcare, aerospace and industrial
production [6–11]. Although numerous time series anomaly detection methods have
been developed for univariate time series [1,12–14], where the anomalies are detected
mainly based on one specific metric, for a complex real-world system, there is an intrinsic
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correlation between different sensors. A single univariate time series does not represent
the overall state of the system well. Formally, a multivariate time series consists of a set of
univariate time series, each of which describes an attribute of a complex entity. Multivariate
time series have higher spatial and temporal complexity, more noisy data and more severe
disturbances. In addition, there is often synergistic variation among individual features.
Dividing multivariate time series into several univariate time series will lead to poor
performance in anomaly detection [15,16]. This causes difficulties in anomaly detection for
multivariate time series.

In the past few years, many classical algorithms have been proposed for automatic
anomaly detection in multivariate time series. These include distance-based methods [17,18],
clustering-based methods [19,20], similarity-based methods [21,22] and classification-based
methods [23,24], which have driven the development of anomaly detection techniques.
However, the failure to consider the temporal dependence of time series limits the perfor-
mance of these techniques. To address this problem, time series prediction models, such
as autoregressive moving average (ARMA) [25] and autoregressive integrated moving
average (ARIMA) [26], are used to model time-dependent anomaly detection. However,
these methods do not consider the correlation between time series and are sensitive to noise,
which affects the robustness of the models. We argue that it is beneficial to improve the
performance of the model by modeling the time dependence and the correlation between
different sequences.

Recently, deep learning has gained significant attention in computer vision and natural
language processing and has also been applied to the task of anomaly detection. Anomaly
detection algorithms for deep learning can be broadly classified into two categories:
prediction-based and reconstruction-based. Reconstruction-based anomaly detection al-
gorithms, e.g., TAnoGAN [27], EncDec-AD [28], TCN-AE [11] and OmniAnomaly [29],
reconstruct the input by learning the data distribution of the normal state of the time
series. Reconstruction errors are used for anomaly detection, avoiding the difficulty of time
series prediction; however, minor anomalies in the data are not easily detected using this
method. In addition, prediction-based models, such as LSTM-NDT [10] and GDN [30],
learn historical patterns to predict the future and perform anomaly detection by prediction
errors. Lastly, hybrid models, such as NSIBF [31] and MTAD-GAT [32], use prediction
and reconstruction errors of all dimensions for detection. This multi-task optimization
problem is extremely complicated when there are numerous features in the data. We believe
that combining the advantages of both can help improve detection performance without
increasing the complexity of the task.

To address the above problem, we proposed a new framework, namely, graph atten-
tion network and temporal convolutional network for multivariate time series anomaly
detection (GTAD). Specifically, GTAD uses temporal convolutional networks to capture the
temporal dependence of the sequences, where causal convolution maintains the causality
of the sequences and dilation convolution allows for flexible perceptual field sizes. Subse-
quently, graph attention networks are adopted to model the correlation of different time
series, which are naturally obtained through the properties of the edges in the structure of
the graph. Finally, we utilized a joint approach based on the prediction and reconstruction
of one feature to optimize the model, simplifying the optimization objective.

We summarize the study’s main contributions as follows:

1. We proposed a new framework for an unsupervised multivariate time series anomaly
detection algorithm (GTAD) that combines the advantages of prediction-based ap-
proaches, which focus on feature engineering at the next time step, and reconstruction-
based approaches, which emphasize capturing the overall distribution of the data.

2. GTAD uses parallel operations instead of RNN frameworks, such as LSTM and GRU,
and its ability to extract contextual information is enhanced, resulting in a model with
low sensitivity to sliding window size.
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3. GTAD specifies the optimization objective by using the error of prediction and recon-
struction for one dimension as the loss function, rather than all dimensions, leading
to better detection performance.

The structure of the rest of the paper is as follows. The related work on the anomaly
detection of time series is described in Section 2. The method overview is introduced and
briefly analyzed in Section 3. In Section 4, the effectiveness of the proposed method is
experimentally verified. Finally, we summarize the whole paper and suggest possible
future work in Section 5.

2. Related Works

Multivariate time series anomaly detection algorithms have been advanced by many
methods that can achieve effective detection in recent years. Here, we summarize these
anomaly detection methods as classical methods and deep learning-based methods.

Classical methods: The K-nearest neighbor (KNN) [17] algorithm calculates the av-
erage distance of the K nearest neighbors of each sample as the anomaly score. However,
the computational complexity of this method is high when the feature dimension of the
data is high. Principal component analysis (PCA) [33] and partial least squares (PLS) [34]
are two linear model-based approaches for anomaly detection. However, these models
assume that the data are Gaussian-distributed and are only feasible for highly correlated
data. The find-CBLOF algorithm [35] assigns a predefined anomaly score known as the
cluster-based local outlier factor (CBLOF) for each data instance to cluster different data
samples. The extended fuzzy C-means clustering technique [20] can work better to detect
anomalies. However, the computational overhead of clustering methods is high, and
performance depends heavily on the effectiveness of capturing the clustering structure of
normal instances. ARMA [25] and ARIMA [26] are two common statistical techniques that
are used for anomaly detection, which rely on assumptions that the data is generated from
a particular distribution. This assumption often does not hold, especially for multivariate
time series. Other machine learning methods, such as support vector domain description
(SVDD) [36], one-class support vector machine (OC-SVM) [37] and isolation forest (IF) [38],
show effectiveness regarding anomaly detection, but these methods do not consider the
time dependence, resulting in poor detection of contextual anomalies.

Deep-learning-based methods: Most contemporary state-of-the-art technologies em-
ploy some form of deep learning. The DAGMM [39] uses a deep autoencoder to generate
a low-dimensional representation and reconstruct the error for each input data, further
feeding it into a Gaussian mixture model. However, this method cannot exploit temporal
information. The TCN-AE [11], combining the temporal convolutional network (TCN) [40]
and autoencoder (AE), was designed to learn the compressed expression of normal time
series. This approach has the ability to obtain temporal information but ignores the corre-
lation between time series. The MSCRED [41] constructs a multi-scale signature matrix,
reconstructs the matrix using an attention-based mechanism Conv-LSTM and a convo-
lutional encoder–decoder, and detects anomalies using the residual signature matrices.
Although correlations and temporal information in multivariate time series are captured
using this method, it consumes a lot of training time and works poorly in the case of
insufficient data.

Models with LSTM or GRU require long training times. The NSIBF [31] designs
an LSTM-based neural network framework for system identification and Bayesian filtering
for robust anomaly detection by recursively tracking the uncertainty of the hidden states
of the system over time. Ergen et al. [42] proposed an algorithm to turn a variable-length
data sequence into a fixed-length sequence using LSTM, followed by an anomaly detector
decision function based on a single class support vector machine or support vector data de-
scription algorithm. The LSTM-NDT [10] method is an LSTM-based neural network model
that makes predictions for each input timestamp. This work also proposes a nonparametric
dynamic error thresholding strategy that uses the moving average of the prediction error
sequence to set the threshold of anomaly markers. The MAD-GAN [43] uses LSTM-RNN as
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the basic framework of the GAN to capture potential interrelationships between time series
and determines whether a sample is anomalous or not using trained discriminator and
reconstruction errors. The MTAD-GAT [32] uses a graph attention networks (GATs) [44]
in each of the time dimension and feature dimensions to better represent the complex
dependencies of the time series, and then captures the dependency information of the input
data through a GRU, which is used for prediction and reconstruction. However, these
RNN-based models tend to be inefficient in modeling long time series, especially when the
data is noisy.

More recent methods, such as USAD [45], GDN [30] and TranAD [46], do not use
resource-hungry recurrent models, but only attention-based network architectures [47]
to improve training speeds. The USAD [45], which is based on generative adversarial
networks and an autoencoder, is used for unsupervised anomaly detection, where re-
construction errors containing anomalous inputs are amplified by an adversarial trained
autoencoder. This is one of the first works to focus on a low overhead, allowing a several-
fold reduction in training time compared with existing techniques. The GDN [30] combines
structural learning with GAT, applying attention mechanisms to adjacent sensors on the
graph to learn predictions for each timestamp and detect anomalies using prediction er-
rors. However, existing graph-neural-network-based anomaly detection methods still have
difficulties in dealing with lengthy and highly correlated multivariate time series. The
deep-transformer-network-based anomaly detection and diagnosis model (TranAD) [26]
employs an attention-based sequential encoder to rapidly make inferences using extensive
temporal trend information in the data.

3. Method Overview

In this section, we present the problem in Section 3.1. In Section 3.2, the proposed
model GTAD is elaborated. Specifically, GTAD uses TCN, GAT and attention mechanisms
to predict and reconstruct the inputs and obtains anomaly scores using the prediction and
reconstruction errors. The automatic threshold selection strategy is described in detail in
Section 3.3.

3.1. Problem Statement

The time series contains observations at successive equal time intervals, and our
research objective is a multivariate time series defined as X ∈ RN×k, where N denotes the
length of the time series and k denotes the dimension of the sample at a certain moment,
as shown in Figure 1. XT ∈ RM×k is the training set, where M(M < N) denotes the length
of the training set and the rest as the testing set, where the training set is full of normal
samples and the testing set contains normal and abnormal samples. The input of GTAD is
a sliding window of data that is denoted as XL ∈ Rk×L, where L denotes the length of the
sliding window. We define the PR-score as the anomaly score and choose the best threshold
using an adaptive threshold strategy. If the PR-score of an instance exceeds the threshold,
it is marked as abnormal; otherwise, it is marked as normal.

3.2. Model Architecture

GTAD is divided into three parts in total: feature extraction, prediction and recon-
struction, as shown in Figure 2. Pseudocode for the training period of the proposed GTAD
model is given in Algorithm 1. In the feature extraction, the data are processed in the first
step using TCN to obtain the local features and temporal information of the time series,
and in the second step by a variant of the graph attention network, namely, GATv2 [48],
to process the correlation between different time series. Then, the processed outputs
are concatenated to obtain H ∈ R2k×L. In the prediction, H is fed to the TCN, followed
by a fully connected layer for single-step prediction. In the reconstruction, the complex
contextual information of the multivariate time series is processed using a multi-head
attention mechanism and is later input to the TCN to obtain the overall reconstruction.
The overall loss function is obtained by weighting the prediction and reconstruction errors.
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Algorithm 1: GTAD Training Algorithm

Input: Training Dataset X = {x1, . . . , xM}, The number of epochs R
Output: Trained GTAD
GTAD←initialize weight
epoch←1
repeat

for t = L to M do
x′itrx′it−l:t−1← TAD (xt-L:t-1)

Loss =
√

xi
t − x′it +

√
t−1
∑

j=t−L

(
xi

j − x′ij
)

GTAD←update weight using Loss
end for

epoch←epoch + 1
until epoch = R
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3.2.1. Temporal Convolution Network

The TCN is a sequential model that combines simplicity, autoregressive prediction and
residual connectivity to adapt to long sequence tasks while reducing the computational
complexity. The TCN is based on two principles: the network produces an output of the
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same length as the input and there can be no information leakage from the future into
the past. To accomplish the first point, the TCN uses a 1D fully convolutional network
framework and zero padding to make the sequence length constant in each layer. To
achieve the second point, causal convolution is used to ensure that the output at time
t is only associated with the input at the current and previous times. To view valid
historical information from the distant past, the TCN employs dilation convolution so that
the perceptual field is amplified for long sequence tasks rather than recalling temporal
information at a linear size over the network depth. The dilation causal convolution is
shown in Figure 3.
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Weight normalization, ReLU activation function and a spatial dropout are added after
the dilated causal convolution. Finally, unlike the standard ResNet [49] where the input
is directly added to the output of the residual block, the TCN uses a 1 × 1 convolution as
a residual connection to ensure that the input and output have the same shape, and the
residual connection is employed to avoid gradient vanishing in very deep networks. The
residual block of the temporal convolutional network is shown in Figure 4. Compared with
GRU and LSTM, the TCN can achieve parallel operation without sequential processing,
like an RNN framework, and stable gradients can be obtained. In multivariate time
series anomaly detection, temporal information can be obtained naturally by the network.
Specifically, local mutations that may contain anomalous patterns are very sensitive in
convolutional operations. In addition, flexible perceptual field sizes are important for
handling sequences containing complex and lengthy temporal patterns.

3.2.2. Graph Attention Network

A GAT is one of the most popular graph neural networks and is considered to be
the most advanced graph representation learning architecture. The graph represents the
relationships between entities in the network. A graph is formulated as G = (V, E), where
V is the set of nodes and E is the set of edges. We use k to denote the number of nodes
in a graph. Let v ∈ V denote a node and e = (v, u) ∈ E denote an edge pointing from u to
v. The neighborhood of a node v is defined as N(v) = {u ∈ V| (v, u) ∈ E}. The adjacency
matrix to represent this directed graph, denoted as A∈Rk×k with Aij = c > 0 if (vi, vj) ∈E and
Aij = 0 if (vi, vj) /∈ E. Since without a priori knowledge, we do not know the mathematical
expression of the adjacency matrix, it will be learned by our model.

The data between different sensors in a system are not isolated, but there are de-
pendencies. The linear and nonlinear dependencies between different sensors can be
successfully modeled as graph-structured data. We used a variant of the graph attention
network, namely, GATv2, to learn these complex dependencies. The input of GATv2 is the
set of node feature vectors, denoted as V = {v1, v2,..., vk}, where vi ∈ RF and F denotes the
dimensionality of each node vector. The GATv2 outputs a new set of node feature vectors,
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namely, V’ = {v1’, v2’,..., vk’}, where vi’ ∈ RF’. In order to obtain sufficient expressiveness,
we transformed the input feature vectors into higher-level feature vectors using a learnable
linear transformation, and the output of each node can be expressed as Equation (1).

vi
′ = sigmoid

 ∑
vj∈N(vi)

αijWvi

 (1)

where vi’ denotes the output of node vi; sigmoid denotes the sigmoid activation func-
tion, N (vi) denotes the set of nodes adjacent to node vi; αij denotes the attention score,
which indicates the importance of neighboring nodes to node vi; and W∈RF’×F is the
learnable parameter.

The attention score αij can be calculated using the following equation.

e
(
vi, vj

)
= aT LeakyReLU(W[vi

∣∣∣∣vj])

αij = so f tmaxj(e
(
vi, vj

)
) =

exp(e(vi ,vj))

∑j′∈Ni
exp(e(vi ,vj′))

(2)

where T denotes transposition, ‖ is the concatenation operation, a ∈ R2F’ is a learnable
parameter and LeakyReLU is an activation function. The attention scores αij are obtained
by normalizing the attention coefficients e (vi, vj) of all its neighbors vj ∈ N (vi) using the
softmax function.

In the task of multivariate time series anomaly detection, we viewed the whole sliding
window XL as a graph, as shown in Figure 5. Each node represents a sensor datum and
the relationship between two sensors is represented by an edge. The information delivery
between nodes is achieved through the properties of edges. The update of each node will
aggregate the information of the nodes adjacent to it. The interrelationships between time
series are learned by the GATv2.
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Figure 4. A residual block has two layers of dilated causal convolution, weight normalization, ReLU
activation function and spatial dropout, as well as residual connectivity.



Entropy 2022, 24, 759 8 of 17

Entropy 2022, 24, x FOR PEER REVIEW 8 of 17 
 

 

by normalizing the attention coefficients e (vi, vj) of all its neighbors vj ∈ N (vi) using the 
softmax function. 

In the task of multivariate time series anomaly detection, we viewed the whole slid-
ing window XL as a graph, as shown in Figure 5. Each node represents a sensor datum 
and the relationship between two sensors is represented by an edge. The information de-
livery between nodes is achieved through the properties of edges. The update of each 
node will aggregate the information of the nodes adjacent to it. The interrelationships be-
tween time series are learned by the GATv2. 

1vA-1
A-2

A-3

A-4A-5

A-6

A-7

A-8

A-9

...

α 15

α 14

α 13

α 12

α 16

α 17

α 18

α 19 ′
 

v4v5
v3

v2

v1

v9

v8

v7

v6

 
Figure 5. Graph structure of the multivariate time series, where A-1 to A-9 denote the names of 
univariate time series, v1 to v9 denote their corresponding vectors, respectively, and v1’ is the output 
vector after the v1 update. 

3.2.3. Loss Function  
The prediction-based and reconstruction-based methods were optimized to be 

adopted by GTAD in Figure 2. In the prediction, we used the autoregressive prediction 
property of TCNs to perform a single-step prediction for each sliding window. Since a 
TCN is only suitable for modeling univariate time series and cannot take into account 
spatial relationships, we finally used a multi-layer perceptron to solve it. In the recon-
struction, on the one hand, to not lose temporal information, we added position encoding, 
which is beneficial to obtain long-range contextual information later, and on the other 
hand, to obtain the overall data distribution of each sliding window, we applied a self-
attention mechanism and TCNs. The loss function is the sum of the prediction and recon-
struction errors in one feature dimension, as shown in Equation (3). 𝐿𝑜𝑠𝑠 = ට𝑥௧ − 𝑥’௧ + ට∑ (𝑥 − 𝑥’)௧ିଵୀ௧ି   (3)

where the first term of the loss function represents the root-mean-square error (RMSE) of 
the prediction loss in one feature dimension, and the second term represents the RMSE of 
the reconstruction error in the same dimension. In the absence of prior knowledge of the 
task, the first feature dimension is chosen by GTAD. 

3.3. Automatic Threshold Selection Strategy 
The PR-score measures the prediction and reconstruction error at each timestamp by 

Equation (4) as the anomaly score, denoted as e = {e1, e2, …, em}. Unlike the loss function, 
the anomaly score is derived from the two adjacent periods of GTAD. 𝑒௧ = ට𝑥௧ − 𝑥’௧ + 𝜃ට∑ (𝑥 − 𝑥’)௧ୀ௧ିାଵ   (4)

where the first term is the prediction-based anomaly score, the second term is the recon-
struction-based anomaly score and θ is the hyperparameter that mediates the weights of 

Figure 5. Graph structure of the multivariate time series, where A-1 to A-9 denote the names of
univariate time series, v1 to v9 denote their corresponding vectors, respectively, and v1’ is the output
vector after the v1 update.

3.2.3. Loss Function

The prediction-based and reconstruction-based methods were optimized to be adopted
by GTAD in Figure 2. In the prediction, we used the autoregressive prediction property
of TCNs to perform a single-step prediction for each sliding window. Since a TCN is
only suitable for modeling univariate time series and cannot take into account spatial
relationships, we finally used a multi-layer perceptron to solve it. In the reconstruction,
on the one hand, to not lose temporal information, we added position encoding, which
is beneficial to obtain long-range contextual information later, and on the other hand, to
obtain the overall data distribution of each sliding window, we applied a self-attention
mechanism and TCNs. The loss function is the sum of the prediction and reconstruction
errors in one feature dimension, as shown in Equation (3).

Loss =
√

xi
t − x′it +

√√√√ t−1

∑
j=t−L

(
xi

j − x′ij
)

(3)

where the first term of the loss function represents the root-mean-square error (RMSE) of
the prediction loss in one feature dimension, and the second term represents the RMSE of
the reconstruction error in the same dimension. In the absence of prior knowledge of the
task, the first feature dimension is chosen by GTAD.

3.3. Automatic Threshold Selection Strategy

The PR-score measures the prediction and reconstruction error at each timestamp by
Equation (4) as the anomaly score, denoted as e = {e1, e2, . . . , em}. Unlike the loss function,
the anomaly score is derived from the two adjacent periods of GTAD.

et =
√

xi
t − x′it + θ

√√√√ t

∑
j=t−L+1

(
xi

j − x′ij
)

(4)

where the first term is the prediction-based anomaly score, the second term is the
reconstruction-based anomaly score and θ is the hyperparameter that mediates the weights
of the two anomaly scores. In Section 4.6, we present the analysis results of the effect of
different values of theta on the performance of the model.

GTAD uses a nonparametric dynamic error thresholding (NDT) strategy [10] to set
thresholds and select the best threshold to identify extreme values without labels and
without making any assumptions. This approach adapts to data streams with different
properties and different ranges, addressing diversity, non-stationarity and noise through
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automatic thresholding schemes. The threshold is chosen from the set ε, which is expressed
as Equation (5). The threshold value ε is determined using Equation (6).

ε = µ(e) + zσ(e) (5)

ε = argmax(ε) =
∆µ(e)
µ(e) + ∆σ(e)

σ(e)

|ea|+
∣∣Eseq

∣∣2
such that

∆µ(e) = µ(e)− µ({e ∈ e|e < ε})
∆σ(e) = σ(e)− σ({e ∈ e|e < ε})

ea = {e ∈ e|e > ε)

Eseq = continous sequences o f ea ∈ ea

(6)

The evaluated value for ε is determined by z ∈ z, where z is the set of positive values
representing the number of standard deviations above µ(e). The value of z depends on
the context, but from empirical facts, it works well when z is between 3 and 13. A value
of z less than 3 led to an excessive number of false positives in our experiments. This
function also penalizes larger values of ea and sequences Eseq in the anomaly score to avoid
overly greedy behavior that results in a large number of true anomalies going undetected.
Pseudocode for the proposed GTAD model in the anomaly detection phase is presented in
Algorithm 2.

Algorithm 2: GTAD Detection Algorithm

Input: Dataset X = {x1, . . . , xN}, parameter θ
Output: Labels y: {yM+1, . . . , yN}

for t = L to M do
x′it _← GTAD (xt−L:t−1)
_x
′ i
t−l:t−1← GTAD (xt−L+1:t)

et =
√

xi
t − x′it + θ

√
t

∑
j=t−L+1

(
xi

j − x′ij
)

end for
Threshold λ = threshold function (e1, . . . , eM)
for t = M + 1 to N do

xri
t, _← GTAD (xt−L:t−1)

_x
′ i
t−L+1:t← GTAD (xt−L+1:t)

et =
√

xi
t − x′it + θ

√
t

∑
j=t−L+1

(
xi

j − x′ij
)

If et > λ then
yt = 1

else
yt = 0
end if

end for

4. Experimental Evaluation

In this section, we describe the experimental datasets, baseline methods and evaluation
metrics. Then, we present the results of the many experiments conducted to show the
effectiveness of GTAD in unsupervised anomaly detection.

4.1. Datasets

We employed three publicly available datasets in our experiment. The Soil Moisture
Active Passive (SMAP) satellite and the Mars Science Laboratory (MSL) rover datasets
are two real-world public datasets collected by NASA [46]. The Server Machine Dataset



Entropy 2022, 24, 759 10 of 17

(SMD) is a five-week dataset collected and made publicly available by a large Internet
company [29]. It contains data from 28 server machines. SMD is divided into two subsets of
equal size: the first half of the data from each machine is the training set and the second half
is the test set. Detailed information about the datasets is shown in Table 1.

Table 1. Description of the datasets. (%) is the percentage of anomalous data points in the dataset.

Dataset Variables Train Test Anomalies (%)

SMAP 25 135,183 427,617 13.13
MSL 55 58,317 73,729 10.27
SMD 38 708,405 708,420 4.16

4.2. Experimental Setup

In the experiments, the machine learning library Scikit-learn, the deep learning frame-
work Pytorch-1.7.1 and Python 3.6 were adopted. The operating system used to implement
the experiment was Ubuntu 16.04, the computer configuration was an Intel(R) Core (TM)
i7-6850K CPU @ 3.60 GHz and the GPU was an NVIDIA GTX1080Ti. The Adam optimizer
was used to train the anomaly detection model and the root-mean-squared error function
was used as the loss function during training. We employed a learning rate schedule of
exponential decay with fixed steps and set the initial learning rate to 2.5 × 10−5.

4.3. Baseline Methods and Indicators Evaluation

Baseline methods: These state-of-the-art multivariate time series anomaly detection
models, including DAGMM [39], MSCRED [41], USAD [45], MTAD-GAT [32], Omni-
Anomaly [29], GDN [30] and MAD-GAN [43] were used as baseline models in this paper
for comparison with GTAD.

Evaluation indicators: Anomaly detection is a binary classification problem. Precision,
recall and the F1 score were used to evaluate the detection performance of the model GTAD
and various benchmark methods, as shown in Equation (7). Anomalous observations
usually occur in the form of contiguous anomaly segments. If at least one observation of
an anomalous segment is correctly detected, all the other observations of the segment are
also considered as correctly detected, even if they were not. This approach is known as the
point adjust method [5], which was utilized by our model.

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F1 scores = 2· Precision·Recall
Precision + Recall

(7)

with TP referring to true positives, FP referring to false positives and FN referring to
false negatives. Precision indicates how many of the anomalous events predicted by
the algorithm are actual anomalous events. Recall denotes the percentage of predicted
abnormal behavior versus all abnormal behavior. The F1 score is a better measure of model
performance since it considers precision and recall. We expect the highest F1 score.

4.4. Results

We conducted experiments on the three publicly available datasets. In detail, we used
the hyperparameters of the baseline models as presented in their respective papers. Table 2
shows the precisions, recalls and F1 scores of GTAD and all baseline methods.

The experimental results showed that our model outperformed the other models on
all three datasets. On the SMAP and SMD datasets, the F1 score of GTAD outperformed
all benchmark models, and on the MSL dataset, it ranked second, only slightly behind the
GDN, but the GDN did not work well on the SMAP and SMD datasets. Overall, compared
with the best results of the baseline models, GTAD improved the F1 scores by about 7.4% on
SMAP and 3.4% on SMD, which was significant in terms of anomaly detection. DAGMM
could achieve better detection performance in SMD, but it did not work well in MSL
and SMAP because DAGMM only considers the correlation between different sequences



Entropy 2022, 24, 759 11 of 17

and ignores the temporal dependence. GTAD achieved better detection of anomalies by
considering the temporal dependence using TCN. It shows that in the field of multivariate
time series anomaly detection, obtaining temporal dependence helps with performance
improvement.

MSCRED, UASD and OmniAnomaly discriminate anomalies only through reconstruction-
based methods, which will result in some mild anomalies not being detected. The GDN
performs anomaly detection via prediction only, focusing on feature engineering for the
next timestamp, but it is always known that there are time series that are not predictable.
Different data have different attributes, ranges and feature dimensions, resulting in different
performances for the same algorithm on different datasets. Among them, MSCRED, GDN
and OmniAnomaly performed the best on MSL and average on SMD and SMAP, while
USAD worked well on SMD but had moderate detection in SMAP. GTAD performs anomaly
detection by using a blend of prediction and reconstruction methods, with excellent results.

The MTAD-GAT based on a graph neural network (GNN) models time series as graph
structures, which takes correlations between time series into consideration. However,
dividing the time series into small sliding windows restricts the model from acquiring
more contextual information, while causing the model to be more sensitive to the data
and less effective in detecting datasets with long-term anomalies, like SMD, reducing its
robustness. The MAD-GAN performed well on the SMD dataset with a large number of
collective anomalies by considering the relationship between features through the autoen-
coder and adversarial training, but it ignored temporal information, resulting in moderate
performance on the MSL and SMAP datasets with many contextual anomalies. GTAD
applies TCN and multi-head attention to obtain more contextual information, which can
improve the capability of the algorithm.

4.5. Ablation Analysis

In this section, we present the results from analyzing the impact of six main compo-
nents on the model performance: GATv2, TCN for feature extraction, attention mechanism,
prediction and reconstruction errors in a feature, using the prediction method and em-
ploying the reconstruction method. On the three datasets, we observed the F1 score of
the model after removing each principal component to measure its impact on the model.
Specifically, the first variant of the model was a mapping of its own being used to replace
GATv2. Second, an own mapping was chosen to replace the TCN in the feature extraction.
Third, the multi-head attention layers were removed. Fourth, the error in predicting and
reconstructing all features was chosen as the optimization objective and anomaly score,
rather than choosing one of the dimensions. Fifth, we eliminated the reconstruction-based
method for optimization and detection. Finally, we abandoned the prediction-based ap-
proach to optimization and detection. The following conclusions were obtained based on
the results shown in Figure 6.

• Using the prediction and reconstruction errors of all dimensions as a loss function and
anomaly detection resulted in an average decrease of about 23% in the F1 score. The
most notable of these was a 26% decrease on the SMAP dataset, implying that the loss
in selecting a dimension was significant.

• When we removed GATv2 from GTAD, the F1 scores decreased by about 6%, indicating
that GTAD could work well using the GATv2, taking into account the correlation of
the time series.

• Without the attention mechanism, the F1 scores were reduced by 10% on average.
This suggested that adding the attention mechanism allowed for more contextual
information and facilitated reconstruction.

• The absence of TCN caused a decrease of about 2% in the F1 score, indicating that
the TCN could capture temporal dependence and local features that could steadily
improve the model performance.
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• Both the prediction-based and reconstruction-based methods were less effective on
their own than the integration of the two methods, demonstrating that GTAD could
combine their advantages.

Table 2. Experimental results on the MSL, SMAP and SMD datasets. The top 2 F1 scores are bolded.

Method
MSL

Precision Recall F1 Score

DAGMM 0.5412 0.9934 0.7007
MSCRED 0.8912 0.9862 0.9363

USAD 0.7949 0.9912 0.8822
MTAD-GAT 0.7917 0.9824 0.8767

OmniAnomaly 0.8867 0.9117 0.8989
GDN 0.9308 0.9892 0.9591

MAD-GAN 0.8517 0.8991 0.8747
GTAD 0.9668 0.9413 0.9539

Method
SMAP

Precision Recall F1 Score

DAGMM 0.5845 0.9058 0.7105
MSCRED 0.8175 0.9216 0.8664

USAD 0.7480 0.9627 0.8419
MTAD-GAT 0.7991 0.9991 0.8880

OmniAnomaly 0.7416 0.9776 0.8434
GDN 0.7480 0.9891 0.8518

MAD-GAN 0.8049 0.8214 0.8131
GTAD 0.9821 0.9426 0.9620

Method
SMD

Precision Recall F1 Score

DAGMM 0.9869 0.8174 0.8942
MSCRED 0.8164 0.7261 0.7686

USAD 0.9858 0.8174 0.8937
MTAD-GAT 0.7609 0.9999 0.8643

OmniAnomaly 0.8854 0.8827 0.8531
GDN 0.7754 0.7286 0.7513

MAD-GAN 0.9750 0.8827 0.9265
GTAD 0.9515 0.9690 0.9601

4.6. Sensitivity Analysis of Hyperparameters

Sensitivity of the window size: We used the SMD dataset to compare the F1 scores
of GTAD with its baseline approach under different sliding window sizes, as shown in
Figure 7. Since DAGMM does not use sliding windows for data preprocessing, DAGMM
was not addressed in this experiment. A small sliding window size will result in limited
ability to obtain contextual information, but with a large sliding window size, short-term
subtle anomalies will be hidden in long sequences, resulting in most baseline models being
sensitive to sliding windows, e.g., GDN, MSCRED and USAD. Although MTAD-GAT and
OmniAnomaly are also insensitive to sliding window size, their overall results were not
as effective as GTAD. Long-term memory was preserved by the TCN, while contextual
information was captured by a multi-headed attention mechanism, resulting in the low
sensitivity of GTAD to the sliding window size.

Analysis of θ: Empirically, we adjusted the weights of the prediction and reconstruction
errors of the training process without any significant improvement in the performance
of our model; therefore, we made the prediction and reconstruction parts have the same
weight in terms of the loss function. We performed an additional experiment to evaluate
the recall, precision and F1 score of the algorithm for different values of θ on the three
datasets, and the results are shown in Figure 8. The result showed that GTAD achieved
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the largest F1 scores on the SMAP and SMD datasets when θ was equal to two, and on the
SML dataset when θ was equal to one. The recall was low when θ was less than one only
on the SMAP dataset. Overall, GTAD achieved excellent anomaly detection performances
at different values of θ, which indicated that our algorithm was robust against θ.
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4.7. Overhead Analysis

In this section, we present the computational performance of GTAD by comparing it
with all baseline models. Table 3 shows the average training time for all models on the three
datasets in seconds per epoch. The training time for DAGMM and USAD, which consist
of fully connected layers, was shorter than that of GTAD, and the time consumption of
MSCRED was the largest. Models with LSTM or GRU, such as MSCRED, MTAD-GAT and
OmniAnomaly, had a longer training time than GTAD with parallel computing. MSCRED
first increases the amount of data by constructing a 2D feature matrix, and second, applies
Conv-LSTM to process the data sequentially, leading to a tremendous time overhead. To
ensure fairness in the experimental comparison, we set the batch size sequence length to be
the same for all models except DAGMM. Because DGAMM does not consider the temporal
relationship, its sequence length was set to 1, which also explained the short training time
of DAGMM.

Table 3. Comparison of training times in seconds per epoch.

Methods MSL SMAP SMD

DAGMM 3.06 7.04 37.36
MSCERD 231.47 416.51 3332.12

USAD 2.78 6.35 34.08
MTAD-GAT 3.91 8.72 43.89

OmniAnomaly 5.83 13.05 70.72
GDN 4.57 10.72 53.51

MAD-GAN 7.84 18.66 86.68
GTAD 3.73 7.16 37.96

4.8. The Effectiveness of Automatic Threshold Selection

An efficient automatic thresholding method for time series anomaly detection is
essential. In these three datasets, we compared the F1 scores obtained using the NDT
method, which were obtained by iterating all thresholds in small steps between 0 and 2,
with the best F1 score. The results shown in Table 4 indicate that the F1 scores of the NDT
method were just lower than the best F1 scores (0.005 to 0.131), demonstrating the validity
of the thresholding method used by GTAD.

Table 4. F1 scores obtained by the NDT vs. the best F1 scores.

Mothed MSL SMAP SMD

F1 score-NDT 0.9539 0.9620 0.9601
F1 score-best 0.9544 0.9634 0.9732

4.9. Discussion

In this subsection, we discuss the advantages and disadvantages of our model. The
advantages are mainly in three aspects. First, different from supervised learning for multi-
variate time series anomaly detection, GTAD does not require labels for each timestamp
in the training of the model. Labels for time series are often generated manually by ex-
perts, which is often inefficient, time-consuming and costly. Moreover, unlike other joint
reconstruction-based and prediction-based methods, we only reconstructed and predicted
one sequence of multivariate time series without increasing the complexity of the multi-task
optimization objective. This advantage was experimentally demonstrated in Section 4.5
to benefit anomaly detection. Finally, we implemented parallel operations using causal
convolution and attention mechanisms in modeling time dependence and sequence correla-
tion, respectively. Compared with models that process data sequentially, the experimental
arguments in Sections 4.6 and 4.7 revealed that our model had a short training time and
low sensitivity to the time window size.
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Although the proposed method showed very good performance, there are some
limitations. A limitation of the proposed method is the inability of the model to explain the
anomaly; we cannot provide the root cause of the anomaly occurrence. However, GDN,
TranAD, MSCRED and OmniAnomaly enable the diagnosis and root cause analysis of the
anomaly. Another limitation is that the training data of the model needs to be all normal
data and cannot be mixed with abnormal data. However, DAGMM and many classical
methods [17,19,23] do not require the training set to be all normal data.

5. Conclusions and Future Work

An effective anomaly detection algorithm can effectively reduce the cost of industrial
production and the burden on operators. We proposed an unsupervised anomaly detection
algorithm called GTAD for multivariate time series based on graph attention networks and
temporal convolutional networks. By learning the temporal dependence of the series and
correlations between different series, combining prediction and reconstruction optimization
methods, and leveraging an automation threshold strategy, our model outperformed other
state-of-the-art models on all three datasets. Future work will consist of two aspects. First,
extending other GNN frameworks, such as gated graph neural networks and graph convo-
lutional networks for time series anomaly detection, and second, providing a mechanism
for anomaly diagnosis and analyzing the root cause of anomalies.
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