
RESEARCH ARTICLE

Clinical time-to-event prediction enhanced by

incorporating compatible related outcomes

Yan GaoID
1,2*, Yan CuiID

1,2,3*

1 Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center,

Memphis, Tennessee, United States of America, 2 Center for Integrative and Translational Genomics,

University of Tennessee Health Science Center, Memphis, Tennessee, United States of America, 3 Center

for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, United States

of America

* ygao45@uthsc.edu (YG); ycui2@uthsc.edu (YC)

Abstract

Accurate time-to-event (TTE) prediction of clinical outcomes from personal biomedical data

is essential for precision medicine. It has become increasingly common that clinical datasets

contain information for multiple related patient outcomes from comorbid diseases or multi-

faceted endpoints of a single disease. Various TTE models have been developed to handle

competing risks that are related to mutually exclusive events. However, clinical outcomes

are often non-competing and can occur at the same time or sequentially. Here we develop

TTE prediction models with the capacity of incorporating compatible related clinical out-

comes. We test our method on real and synthetic data and find that the incorporation of

related auxiliary clinical outcomes can: 1) significantly improve the TTE prediction perfor-

mance of conventional Cox model while maintaining its interpretability; 2) further improve

the performance of the state-of-the-art deep learning based models. While the auxiliary out-

comes are utilized for model training, the model deployment is not limited by the availability

of the auxiliary outcome data because the auxiliary outcome information is not required for

the prediction of the primary outcome once the model is trained.

Author summary

The disease outcome of a patient is often characterized by the occurrence of important

clinical events such as stroke, heart failure, cancer progression, and death. Prediction of

the time to the occurrence of such clinical events is critical for disease prognosis and ther-

apeutic decision. However, accurate time-to-event prediction is a long-standing challenge

due to inadequate data and modeling tools. In recent years, the rapid advance in biomedi-

cal data collection and artificial intelligence has provided a solid foundation for more

sophisticated and accurate time-to-event prediction models. In this work, we develop a

machine learning method to incorporate information from related clinical outcomes to

improve the accuracy of time-to-event prediction. This method can improve the perfor-

mance of different time-to-event prediction models including the conventional regression

based model and the state-of-the-art deep learning based model. We expect that this new
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method can be broadly used for complex prognosis problems involving comorbidities and

multifaceted disease endpoints.

Introduction

With the rapid advances in health informatic technologies, comprehensive biomedical datasets

with multiple related clinical outcomes have become increasingly common. The related clini-

cal outcome variables may represent comorbidity or multifaceted endpoints of a single disease.

The multifaceted endpoints provide the measurement of the disease outcomes from different

perspectives. The Cancer Genome Atlas [1] (TCGA) clinical dataset [2], as a well-known

example, includes four variables to characterize the cancer outcome endpoints: overall sur-

vival, disease-specific survival, disease-free interval, and progression-free interval. Studies of

comorbidity, the coexistence of multiple diseases or disorders in relation to a primary disease

in a patient [3], may also generate multiple related clinical outcome data such as the cardiovas-

cular disease related outcomes in the Sleep Heart Health Study (SHHS) data [4,5]. These

related clinical outcomes contain rich information from multiple aspects of disease progres-

sion and may stem from common molecular mechanisms or environmental factors.

The Cox proportional hazards (CPH) [6–8] model has been widely used for time-to-event

(TTE) data analysis for decades. In the recent years, deep learning (DL) based methods have

been developed for disease classification, diagnosis, and prognosis from personal biomedical

data [9–16]. The DL-based TTE models generally outperformed the conventional CPH and

other survival analysis models in recent studies [17–23]. However, the black-box nature of

deep neural networks makes the DL-based models lack the interpretability that is critical for

clinical applications. In these TTE prediction models, a single outcome variable was used as

the prediction target, even when multiple related clinical outcome data were available. Devel-

oping models to utilize the information from the related outcomes may provide an effective

approach to enhance TTE prediction. Various multi-task machine learning models have been

developed to handle competing risks that are related to mutually exclusive events [24–28].

However, the widely available compatible related outcomes that may occur at the same time or

sequentially have not been formally utilized in the TTE models to improve prediction

accuracy.

In this study, we develop a new method, the related outcome incorporator (ROI), to

improve the TTE prediction performance for the primary outcome by incorporating related

clinical outcome (the auxiliary outcome) data during model training. However, the auxiliary

outcome information is not required for the prediction of the primary outcome after model

training. Thus, the model application would not be limited by the availability of the auxiliary

outcome data. We integrated the ROI with the conventional CPH model and the DL-based

model. Using prognosis tasks assembled from real and synthetic datasets, we show that ROI

can significantly improve the prediction performance of CPH model while maintaining its

interpretability and the ROI can further improve the prediction performance of the state-of-

the-art DL-based model.

Results

TTE prediction experiments on TCGA data

We compared the TTE prediction models with and without the ROI using the TCGA data.

The TCGA dataset contains 4 clinical outcome endpoints for 40 cancer types and categories of
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cancers (S1 Table): overall survival (OS), disease-specific survival (DSS), disease-free interval

(DFI), and progression-free interval (PFI). We assembled 160 time-to-event prediction tasks

using the TCGA clinical data and protein expression data. We filtered out the tasks with less

than 50 patients or less than 20 observed events. We further filtered out the tasks with an

event-to-censored ratio (E/C) less than 0.2. Finally, we removed the tasks with concordance-

index (C-index) less than 0.6 from the baseline CPH model, resulting in 19 tasks from 9 cancer

types/categories and 4 different outcomes (Table 1). We tested four different TTE prediction

models on each task: CPH, CPH with ROI (CPH_ROI), CPH integrated with a deep neural

network (CPH_DL), and CPH_DL with ROI (CPH_DL_ROI). The models are described in

the Method section. OS and DSS are survival outcomes and are used as a pair of related out-

comes for the ROI. Also, PFI and DFI are disease progression outcomes and are used as

another pair of related outcomes.

In our experiments, the CPH_ROI outperformed CPH on 17 out of the 19 tasks and

CPH_DL_ROI outperformed CPH_DL on 15 out of the 19 tasks and tied with CPH_DL on 2

tasks. The use of ROI improved the mean C-index for the conventional Cox model (CPH) by

6.1%, and the mean C-index for the deep Cox model (CPH_DL) by 2.9%. The p-values indi-

cate that the performance improvements by ROI are statistically significant (Fig 1).

TTE prediction experiments on SHHS data

To further test the ROI method, we assembled TTE prediction tasks using the data from Sleep

Heart Health Study (SHHS). The SHHS dataset contains 5804 samples from 10 different types

of cardiovascular diseases (CVD), and each sample comprises 1279 clinical features, as well as

Table 1. TTE prediction model performance comparison on TCGA data.

Cancer Type� Primary Outcome Auxiliary Outcome Censored Events E/C C-Index

CPH CPH_ROI CPH_DL CPH_DL_ROI

GBMLGG OS DSS 391 274 0.70 0.74 0.79 0.80 0.81
GBMLGG DSS OS 397 246 0.62 0.74 0.80 0.81 0.81
GBMLGG PFI DFI 325 340 1.05 0.72 0.76 0.77 0.76

KIPAN OS DSS 548 206 0.38 0.71 0.73 0.73 0.74
KIRC DSS OS 364 104 0.29 0.70 0.72 0.71 0.74
KIPAN DSS OS 609 133 0.22 0.70 0.76 0.78 0.80
PanGyn PFI DFI 622 459 0.74 0.69 0.70 0.70 0.69

PanGyn DFI PFI 479 216 0.45 0.67 0.70 0.71 0.73
KIPAN PFI DFI 539 213 0.40 0.67 0.70 0.72 0.72
LGG OS DSS 330 98 0.30 0.66 0.73 0.75 0.76
CESC PFI DFI 141 32 0.23 0.64 0.70 0.61 0.64
LGG DSS OS 333 89 0.27 0.63 0.72 0.76 0.77
PanGyn OS DSS 693 388 0.56 0.63 0.64 0.66 0.67
KIRC OS DSS 312 166 0.53 0.62 0.69 0.68 0.70
PanGyn DSS OS 734 313 0.43 0.62 0.67 0.68 0.70
COADREAD OS DSS 383 104 0.27 0.62 0.64 0.63 0.64
LUAD DSS OS 244 80 0.33 0.61 0.52 0.53 0.58
PanGI DFI PFI 376 80 0.21 0.61 0.58 0.54 0.64
KIRC PFI DFI 322 155 0.48 0.60 0.65 0.68 0.69
Mean 428 195 0.44 0.66 0.69 0.70 0.72
Median 383 166 0.40 0.66 0.70 0.71 0.72

�See S1 Table for the annotations of cancer type abbreviations.

https://doi.org/10.1371/journal.pdig.0000038.t001
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the follow-up event time. We used Angina as the primary outcome, and Congestive Heart Fail-

ure (CHF) and Stroke as the auxiliary tasks are (Table 2). In these experiments, the CPH_ROI

model outperformed the CPH model, and the CPH_DL_ROI model outperformed the

CPH_DL model. The results show that using ROI can improve the TTE predictions.

TTE prediction experiments on synthetic data

To further study our method and test the performance improvement of ROI, we performed an

experiment on a synthetic dataset. The synthetic dataset has a total of 300 patients, 200 patients

with observed events, and 100 patients with censorship. Each patient has 150 covariates to sim-

ulate the high-dimensional biomedical features. The time to the primary outcome (Outcome1)

event and auxiliary outcome (Outcome2) event for each patient were generated using the

exponential Cox model [29], in which the hazard function is a linear combination of features h
(x) = β×x. To simulate the relevance between Outcome1 and Outcome2, we set the weights for

their hazard functions have a correlation value greater than 0.8. The results for the primary

outcome and the auxiliary outcome are shown in Table 3. We observed a significant improve-

ment in the performance of the models with ROI (CPH_ROI and CPH_DL_ROI) compared

to the corresponding models without ROI (CPH and CPH_DL). The results on the synthetic

data show that incorporating a related outcome can improve time-to-event predictions, which

is consistent with the observations from the real datasets.

Discussion

We developed a method to improve TTE prediction by incorporating related clinical outcomes

(ROI) in model training. We tested the utility of the ROI method in two types of models: the

Fig 1. TTE prediction performance comparison between models with and without the related outcome incorporator (ROI). Each box plot shows the

distribution of C-index values for the 19 TTE prediction tasks (Table 1). The p values were calculated using one-sided Wilcoxon signed-rank test.

https://doi.org/10.1371/journal.pdig.0000038.g001

Table 2. TTE prediction model performance comparison on SHHS data.

Primary outcome Auxiliary outcome C-Index

CPH CPH_ROI CPH_DL CPH_DL_ROI

Angina CHF 0.49 0.60 0.61 0.64

Angina Stroke 0.49 0.59 0.59 0.62

https://doi.org/10.1371/journal.pdig.0000038.t002
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conventional CPH model and the deep learning based model that integrates deep neural net-

work and Cox regression (CPH_DL). Consisting with previous observations [17–23], the DL

structures can generate better feature representations and therefore are able to improve the

TTE predictions. However, the low interpretability of DL-based models is a major obstacle

to their application in healthcare where user (patients and clinicians) trust is critical [30–32].

The use of ROI can improve the TTE prediction performance of the CPH model while main-

tain its full interpretability. In our experiments on the real and synthetic datasets, the use of

ROI improved the prediction performance of the CPH model to the level that is comparable

to that of the DL-based model (CPH_ROI vs CPH_DL, Tables 1–3). This interesting obser-

vation suggests that the use of ROI with CPH model and the integration of DL with CPH

model may lead to a comparable level of prediction performance improvement. The use of

ROI also further improved the performance of the DL-based model. Time-to-event analysis

is widely used in many areas beyond medicine, including engineering, economics and

finance. We expect that the ROI framework may also be applicable to TTE predictions in

these areas.

Methods

Datasets

We used the TCGA clinical and protein expression datasets from the Genome Data Commons

(GDC, https://gdc.cancer.gov). We filtered the proteins with missing values, resulting in 189

protein features. Patients with missing values for follow-up time or event indicators were

removed. For each survival analysis task, the protein expression values were standardized by

removing the mean and scaled to unit variance. The clinical outcome is the time in days and

the event indicator for endpoints: OS, PFI, DFI, and DSS.

For the Sleep Heart Health Study (SHHS) [4,5] dataset, we acquired the data from the

National Sleep Research Resource (https://sleepdata.org/datasets/shhs). We removed the rec-

ords with 20% missing features and dropped the features with missing values. We converted

the rcrdtime (total recording time) into the number of minutes and filtered out samples with-

out follow-up time information. After the preprocessing, we got 1514 uncensored events from

10 outcomes, and each record has 374 features. For each event, we applied an unsupervised

feature selection method to select 150 features with top mean absolute deviation values. We

then filtered out the clinical outcomes with less than 50 samples. The final dataset contains

three clinical outcomes: Angina (121 patients), Congestive Heart Failure (197 patients), and

Stroke (79 patients).

The baseline model

In our study, for each survival analysis task, the baseline model we used is the Cox propor-

tional-hazards (CPH) model [33] (Fig 2A) implemented in the python lifeline package [34].

To improve the robustness of the model, we set the penalty weight of 0.0001 to the coefficients

during fitting. All other parameters remain unchanged.

Table 3. TTE prediction model performance comparison on synthetic data.

Primary Outcome Auxiliary Outcome C-Index

CPH CPH_ROI CPH_DL CPH_DL_ROI

Outcome1 Outcome2 0.67 0.81 0.79 0.84

Outcome2 Outcome1 0.63 0.78 0.78 0.80

https://doi.org/10.1371/journal.pdig.0000038.t003
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The CPH_ROI model

The proposed CPH_ROI model has two parts, and each part is a regularized CPH model (Fig

2B). The loss function of CPH_ROI (Eq 1) is a linear combination of two related events, the

loss of the main task and the loss for the auxiliary task. In the equation, λ is a hyperparameter

used to balance the loss between the primary outcome and the auxiliary outcome, β1 and β2

are the log partial hazard ratio for the main and the auxiliary outcomes, b is the bias, U1 and

U2 are the set of uncensored patients for the main and the auxiliary outcomes. In Eq 2,
Pm

i2U Lðb; bÞ is the log partial likelihood which is defined in Eq 3, U is the set of uncensored

patients, and λ1 is the weight of the L2 regularization term. In Eq 3, m is the number of

patients, R(Ti) is the risk group in which each patient’s survival time is greater than Ti, δi is the

event status of patient i, δi = 1 if an event (like death) occurred, and δi = 0 when there is a cen-

sorship. The h(Xi, β, b) in Eq 4 is the linear hazard function, where Xij is the jth feature of

patient i, βj is jth weight of β, and b is the bias. During the training, we set λ to 0.2, the parame-

ters of β1, β2, b were randomly initialized and optimized by minimizing the objective function

in Eq 1. Adopting the idea of transfer learning for high-dimensional linear regression [35], we

set the two linear functions to share the same bias.

lðb1; b2; bÞ ¼ ð1 � lÞlðb1; bÞi2U1
þ llðb2; bÞi2U2

ð1Þ

lðb; bÞi2U ¼ �
Pm

i2ULðb; bÞ þ l1kb; bk
2

ð2Þ

Fig 2. The four TTE prediction models: (A) CPH Model, (B) CPH_ROI Model, (C) CPH_DL Model and (D)

CPH_DL_ROI Model. X represents the input features, C is the Cox regression layer, L is the partial hazard loss

function, λ is the weight to balance outcomes, and F is the feature extractor to map the input feature into an

embedding space. CPH: Cox proportional hazards. ROI: related outcome incorporator. DL: deep learning.

https://doi.org/10.1371/journal.pdig.0000038.g002
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L b; bð Þ ¼ log
Qm

i¼1

ehðXi ;b;bÞ
P

j�RðTiÞ
ehðXj ;b;bÞ

" #di

¼
Pm

i¼1
di½hðXi; b; bÞ � logf

P
j�RðTiÞ

ehðXj ;b;bÞg� ð3Þ

hðXi; b; bÞ ¼
Pn

j¼1
bj � Xij þ b ð4Þ

The CPH_DL model

In the CPH_DL model, a Cox regression layer was added on top of a deep neural network struc-

ture (Fig 2C). The loss function is shown in Eq 5, which has two parts: a deep neural network-

based feature extractor F and a Cox regression layer C, where F maps the high-dimensional

input feature into an embedded space Z, and then C makes a prediction from Z. In Eq 5, λ1 is the

L2 regularization weight, W is the weight of F, β and b are the log partial hazard ratio and the bias

of C. All other notions are the same as the CPH_ROI model. The feature extractor F is a 4-layer

deep neural network structure: a fully connected (FC) layer of 100 nodes followed by a dropout

layer (with p = 0.5), an FC layer of 50 nodes followed by a dropout layer (with p = 0.5). These

two dropout layers and the regularization term are used to avoid overfitting during training.

lðF;CÞ ¼ �
Pm

i2U LðF; b; bÞ þ l1kW; b; bk2
ð5Þ

L F; b; bð Þ ¼ log
Qm

i¼1

ehðFðXiÞ;b;bÞ

P
j�RðTiÞ

ehðFðXjÞ;b;bÞ

" #di

¼
Pm

i¼1
di hðFðXiÞ; b; bÞ � log

P
j�RðTiÞ

ehðFðXjÞ;b;bÞ
n oh i

ð6Þ

The CPH_DL_ROI model

The CPH_DL_ROI model (Fig 2D) incorporates the related outcome in its loss function (Eq

7), where λ is the adjustment weight, F is the feature extractor, C1 and C2 are the Cox regres-

sion layer for each outcome. Similar to the CPH_ROI model, we set C1 and C2 share the bias

and set λ to 0.2. The notion of l(F, C), U1 and U2 are same as the notions defined in the

CPH_ROI and CPH_DL models.

lðF;C1;C2Þ ¼ ð1 � lÞlðF;C1Þi2U1
þ llðF;C2Þi2U2

ð7Þ

Experiment setup

For a given task with two related outcomes D ¼ fxi; ti; ei; t0i; e
0
ig

m
i¼1

, m is the number of patients,

and for patient i, xi is the input feature, ti and ei are the event time and status of the primary

outcome, t0i and e0i are the time and event for the auxiliary outcome. We formulate it as D =

{D1[D2}, where D1 ¼ fxi; ti; eig
m
i¼1

is the main task and D2 ¼ fxi; t0i; e
0
ig

m
i¼1

is the auxiliary task.

For each task Di, we applied a stratified ten-fold cross-validation for training and testing split-

ting. The dataset was stratified by the event status to ensure a uniform distribution of events

across each fold. In each fold, the training set of D1 was used to train a CPH and CPH_DL

models, while the training sets of D1 and D2 were used to train the CPH_ROI and

CPH_DL_ROI models. For the CPH_ROI and CPH_DL_ROI models, in the testing stage,

only the input features from the testing set of D1 were used to calculate the risk of each sample,

and these risk scores were used for evaluation.

Evaluation metric

We evaluated the prediction performance of each model using the concordance index (C-

index) [36], which measures the proportion of concordant pairs among the total number of

PLOS DIGITAL HEALTH Compatible related clinical outcome incorporator

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000038 May 26, 2022 7 / 10

https://doi.org/10.1371/journal.pdig.0000038


possible pairs. Those pairs were discarded if the earlier time is censored. For a testing set, its

risk scores with event time and event status were used to calculate the C-index. A higher C-

index value indicates a better TTE prediction model. A C-index of 1.0 indicates a perfect pre-

diction model, while a C-index of 0.5 indicates a totally random prediction model.

Synthetic data generator

We developed a synthetic data generator to simulate the dataset for our simulation study. The

simulated dataset can be formulated as D ¼ fxij; ti; ei; t0; e0ig
M
i¼1

, where M is the total number of

patients, xij is the jth input feature of patient i, ti and ei are the event time and status of the pri-

mary outcome, t0i and e0i are the event time and statues of the auxiliary outcome of patient i. We

simulated the feature matrix xij from a uniform distribution with the lower boundary −1 and

higher boundary of 1. For each patient, we set the feature size to 150 to simulate the high-

dimensional biomedical data. The main event time for patient i was simulated using the expo-

nential Cox model, as shown in Eq 8, where λ is the baseline function, EXP is an exponential

distribution with a mean = 3000, and βj is the weight of feature j which was generated from a

uniform distribution. With the simulated event time, we set a cut-off time threshold to simu-

late the “end-of-study” to keep a portion of desire uncensored samples in the dataset.

To simulate the event time and status of the related outcome, we added a random noise to

the weight of the primary outcome, b
0

j ¼ bj þ x, where ξ is a uniform distribution with a range

of 0 to 1. We control the correlation between β and β0 to be greater than 0.8 to ensure the rele-

vance of two outcomes. For both events, we generated a total of 300 patients, 200 patients with

observed events, and 100 patients with censorship.

Ti � Exp lðt; xiÞð Þ ¼
EXP

expð
Pm

j¼1
bj � xijÞ

ð8Þ
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